10.1056/NEJM199909023411006.
[3] Shanmugapriya, K., Kang, H. W. (2019). Engineering
pharmaceutical nanocarriers for photodynamic therapy on wound healing:
Review. Mater. Sci. Eng. C, 105, 110110. doi:10.1016/j.msec.2019.110110.
[4] Rajendran, R., Volova, T., Oluwafemi, O. S., Thomas, R. S. S.,
Kalarikkal, N. (2020). Nano formulated proanthocyanidins as an effective
wound healing component. Mater. Sci. Eng. C, 106, 110056.doi: 10.1016/j.msec.2019.110056.
[5] Menke, N. B., Ward, K. R., Witten, T. M., Bonchev, D. G.,
Diegelmann, R. F. (2007). Impaired wound healing. Clin Dermatol.,
25(1), 19. doi: 10.1016/j.clindermatol.2006.12.005.
[6] Kim, J. E., Lee, J., Jang, M., Kwak, M. H., Go, J., Kho, E. K.,
Song, S. H., Sung, J. E., Lee, J., Hwang, D. Y. (2015). Accelerated
healing of cutaneous wounds using phytochemically stabilized gold
nanoparticle deposited hydrocolloid membranes. Biomater. Sci., 3 ,
509-519. doi:10.1039/C4BM00390J.
[7] Pan, A., Zhong, M., Wu, H., Peng, Y., Xia, H., Tang, Q., Huang,
Q., Wei, L., Xiao, L., Peng, (2018). Topical Application of Keratinocyte
Growth Factor Conjugated Gold Nanoparticles Accelerate Wound Healing.Nanomed-Nanotechnol, 14(5) , 1619-1628, doi:10.1016/j.nano.2018.04.007;
[8] Ovais, M., Ahmad, I., Khalil, A. T., Mukherjee, S., Javed, R.,
Ayaz, M., Raza, A., Shinwari, Z. K. (2018). Wound healing applications
of biogenic colloidal silver and gold nanoparticles: recent trends and
future prospects. Appl. Microbiol. Biot., 102, 4305-4318.doi: 10.1007/s00253-018-8939-z
[9] Du, J., Wong, K.K.Y. (2019). Cap. 9 - Nanomaterials for Wound
Healing: Scope and Advances in Theranostic Bionanomaterials .
Elsevier, pp. 211-230. doi: 10.1016/B978-0-12-815341-3.00009-2.
[10] Barai, A. C., Paul, K., Dey, A., Manna, S., Roy, S., Bag, B.
G., Mukhopadhyay, C. (2018). Green synthesis of Nerium
oleander-conjugated gold nanoparticles and study of its in vitro
anticancer activity on MCF-7 cell lines and catalytic activity.Nano Convergence, 5, 10. doi: 10.1186/s40580-018-0142-5.
[11] Rajendran, N. K., Kumar, S. S. D., Houreld, N. N., Abrahamse,
H. (2018). A review on nanoparticle based treatment for wound healing.J Drug Deliv Sci Tec, 44, 421-430. doi:10.1016/j.jddst.2018.01.009;
[12] Leu, J.G., Chen, S.A., Chen, H.M., Wu, W.M., Hung, C. F., Yao,
Y.D., Tu, C. S., Liang, Y. J. (2012). The effects of gold nanoparticles
in wound healing with antioxidant epigallocatechin gallate and
alpha-lipoic acid. Nanomed-Nanotechnol, 8(5), 767-775.doi: 10.1016/j.nano.2011.08.013.
[13] Molnár, Z., Bódai, V., Szakacs, G., Erdélyi, B., Fogarassy, Z.,
Sáfrán, G., Varga, T., Kónya, Z., Tóth-Szeles, E., Szűcs, R., Lagz, I.
(2018). Green synthesis of gold nanoparticles by thermophilic
filamentous fungi. Sci. Rep.-UK, 8, 3943. doi:10.1038/s41598-018-22112-3.
[14] Ismail, E.H., Saqer, A.M.A., Assirey, E., Naqvi, A., Okasha,
R.M. (2018). Successful Green Synthesis of Gold Nanoparticles using a
Corchorus olitorius Extract and Their Antiproliferative Effect in Cancer
Cells. Int. J. Mol. Sci., 19, 2612. doi:10.3390/ijms19092612.
[15] Ghodake, G., Eom, C.-Y., Kim, S.W., Jin, E. (2010). Biogenic
Nano-Synthesis; towards the Efficient Production of the Biocompatible
Gold Nanoparticles. Bull. Korean Chem. Soc., 31, 2771-2775. doi:
10.5012/bkcs.2010.31.10.2771.
[16] Vijayan, R., Joseph, S., Mathew, B. (2018). Indigofera
tinctoria leaf extract mediated green synthesis of silver and gold
nanoparticles and assessment of their anticancer, antimicrobial,
antioxidant and catalytic properties. Artif Cells Nanomed
Biotechnol, 46(4), 861-871. doi: 10.1080/21691401.2017.1345930.
[17] Jiménez-Pérez, Z. E., Singh, P., Kim, Y.J., Mathiyalagan, R.,
Kim, D. H., Lee, M. H., Yang, D. C. (2018). Applications of Panax
ginseng leaves-mediated gold nanoparticles in cosmetics relation to
antioxidant, moisture retention, and whitening effect on B16BL6 cells.J Ginseng Res, 42(3), 327-333. doi:10.1016/j.jgr.2017.04.003.
[18] Gubitosa, J., Rizzi, V., Lopedota, A., Fini, P., Laurenzana,
A., Fibbi, G., Fanelli, F., Petrella, A., Laquintana, V., Denora, N.,
Comparelli, R., Cosma, P. (2018). One pot environmental friendly
synthesis of gold nanoparticles using Punica Granatum Juice: A novel
antioxidant agent for future dermatological and cosmetic applications.J. Coll. Interf. Sci., 521, 50-61. doi:10.1016/j.jcis.2018.02.069.
[19] Borase, H. P., Patil, C. D., Salunkhe, R. B., Suryawanshi, R.
K., Salunke, B. K., Patil, S. V. (2014). Phytolatex synthesized gold
nanoparticles as novel agent to enhance sun protection factor of
commercial sunscreens. Int. J. Cosmet. Sci., 36, 571-578.doi: 10.1111/ics.12158.
[20] Gonnelli, C., Giordano, C., Fontani, U., Salvatici, M.C.,
Ristori, S. (2018). Green Synthesis of Gold Nanoparticles from Extracts
of Cucurbita pepo L. Leaves: Insights on the Role of Plant Ageing in
Advances in Bionanomaterials. Lecture Notes in Bioengineering(Eds. S. Piotto, F. Rossi, S. Concilio, E. Reverchon, G. Cattaneo),
Springer, Cham., pp. 155-174. doi: 10.1007/978-3-319-62027-5_14.
[21] Harti, A. S., Sulisetyawati, S. D., Murharyati, A., Oktariani,
M. (2016). The Effectiveness of Snail Slime and Chitosan in Wound
Healing. Int. J. Pharma Med. Biol. Sci., 5(1), 76-80. doi:10.18178/ijpmbs.5.1.76-80.
[22] Hatuikulipi, T. N., Kouachi, M., Bouchetob, L. E., Naimi, D.
(2016). Preventive effect of Helix aspersa slime against experimentally
chemo-induced colitis in rat. Der Pharmacia Lettre, 8(13),200-206.
[23] Conte, R. (2016). Recent advances on nano delivery of Helix
mucus pharmacologically active components. Int. J. Nano Dimens.,
7(3), 181-185. doi: 10.7508/ijnd.2016.03.001.
[24] Ellijimi, C., Hammouda, M. B., Othman, H., Moslah, W., Jebali,
J., Mabrouk, H. B., Morjen, M., Haoues, M., Luis, J., Marrakchi, N.,
Essafi-Benkhadir, K., Srairi-Abid, N. (2018). Helix aspersa maxima mucus
exhibits antimelanogenic and antitumoral effects against melanoma cells.Biomed Pharmacother, 101, 871-880. doi:10.1016/j.biopha.2018.03.020.
[25] Guillen Fabi, S., Cohen, J. L., Peterson, J. D., Kiripolsky, M.
G., Goldman, M. P. (2013). The Effects of Filtrate of the Secretion of
the Cryptomphalus aspersa on Photoaged Skin. J Drugs Dermatol,
12(4) , 453-457-
[26] Tribo-Boixareu, M.J., Parrado-Romero, C., Rais, B., Reyes, E.,
Gonzalez, S. (2009). Clinical and histological efficacy of a secretion
of the mollusk Cryptomphalus aspersa in the treatment of
cutaneous photoaging. Cosmet. Dermatol., 22(5), 247-252.
[27] Greistorfer, S., Klepal, W., Cyran, N., Gugumuck, A., Rudoll,
L., Suppan, J., von Byern, J. (2017). Snail mucus - glandular origin and
composition in Helix pomatia. Zoology, 122, 126-138. doi:10.1016/j.zool.2017.05.001.
[28] Gubitosa, J., Rizzi, V., Fini, P., Cosma, P. (2019). Hair Care
Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo, A
Review. Cosmetics, 6(1), 13-28. doi:10.3390/cosmetics6010013;
[29] Soto, M. L., Parada, M., Falqué, E., Domínguez, H. (2018).
Personal-Care Products Formulated with Natural Antioxidant Extracts.Cosmetics, 5(1), 13-23. doi: 10.3390/cosmetics5010013.
[30] El Backly, R., Ulivi, V., Tonachini, L., Cancedda, R.,
Descalzi, F., Mastrogiacomo, M. (2011). Platelet Lysate Induces In Vitro
Wound Healing of Human Keratinocytes Associated with a Strong
Proinflammatory Response. Tissue Eng Pt, 17(13-14), 1787-1800.doi: 10.1089/ten.tea.2010.0729.
[31] Yin, X., Chen, S., Wu, A. (2010). Green chemistry synthesis of
gold nanoparticles using lactic acid as a reducing agent. Micro
Nano Lett, 5(5), 270-273. doi: 10.1049/mnl.2010.0117.
[32] Golmoraj, V. E., Khoshayand, M. R., Amini, M., Moghadamd, K.
M., Amin, G., Shahverdi, A. R. (2011). The surface chemistry and
stability of gold nanoparticles prepared using methanol extract of
Eucalyptus camaldulensis. J. Exp. Nanosci., 6(2), 200-208.doi: 10.1080/17458080.2010.489581.
[33] Skingsley, D. R., White, A. J., Weston, A. (2000). Analysis of
pulmonate mucus by infrared spectroscopy. J. Mollus. Stud.,
66(3), 363-371. doi:10.1093/mollus/66.3.363.
[34] Tan, Y.W., Li, Y.F., Zhu, D.B. (2002). Fabrication of gold
nanoparticles using a trithiol (thiocyanuric acid) as the capping agent.Langmuir, 18(8), 3392-3397. doi: 10.1021/la011612f.
[35] Li, X.H., Li, Y.C., Tan, Y.W., Yang, C.H., Li, Y.F. (2004).
Self-assembly of gold nanoparticles prepared with
3,4-ethylenedioxythiophene as reductant. J. Phys. Chem. B, 108,5192-5199. doi: 10.1021/jp0356618.
[36] Xie, J.P., Lee, J.Y., Wang, D.I.C. (2007). Synthesis of
single-crystalline gold nanoplates in aqueous solutions through
biomineralization by serum albumin protein. J. Phys. Chem. C,
111, 10226-10232. doi: 10.1021/jp0719715.
[37] Casaletto, M. P., Longo, A., Martorana, A., Prestianni, A.,
Venezia, A.M. (2006). XPS study of supported gold catalysts: the role of
Au-0 and Au+delta species as active sites. Surf Interface Anal.
2006, 38(4), 215-218. doi: 10.1002/sia.2180.
[38] Love, C. S., Chechik, V., Smith, D. K., Wilson, K., Ashworth,
I., Brennan, C. (2005). Synthesis of gold nanoparticles within a
supramolecular gel-phase network. Chem. Commun., 15, 1971-1973.doi: 10.1039/b418190e.
[39] Sylvestre, J. P., Poulin, S., Kabashin, A. V., Sacher, E.,
Meunier, M., Luong, J. H. T. (2004). Surface chemistry of gold
nanoparticles produced by laser ablation in aqueous media. J.
Phys. Chem. B, 108(43), 16864-16869. doi: 10.1021/jp047134+.
[40] Fujigaya, T., Kim, C.R., Hamasaki, Y., Nakashima, N. (2016).
Growth and Deposition of Au Nanoclusters on Polymer-wrapped Graphene and
Their Oxygen Reduction Activity. Sci. Rep., 6, 21314. doi:10.1038/srep21314.
[41] Engin, S., Trouillet, V., Franz, C. M., Welle, A., Bruns, M.,
Wedlich, D. (2010). Benzylguanine Thiol Self-Assembled Mono layers for
the Immobilization of SNAP-tag Proteins on Microcontact-Printed Surface
Structures. Langmuir, 26(9), 6097-6101. doi:10.1021/la904829y.
[42] Artyushkova, K., Atanassov, P. (2013). X-Ray Photoelectron
Spectroscopy for Characterization of Bionanocomposite Functional
Materials for Energy-Harvesting Technologies. ChemPhysChem,
14(10), 2071-2080. doi: 10.1002/cphc.201300037.
[43] Fanelli, F., Fracassi, F., Lapenna, A., Angarano, V., Palazzo,
G., Mallardi, A. (2018). Atmospheric Pressure Cold Plasma: A Friendly
Environment for Dry Enzymes. Adv. Mat. Interfaces, 5(24),1801373. doi: 10.1002/admi.201801373.
[44] Glassford, S. E., Byrne, B., Kazarian, S. G. (2013). Recent
applications of ATR FTIR spectroscopy and imaging to proteins.Biochim Biophys Acta, 1834(12), 2849-2858. doi:10.1016/j.bbapap.2013.07.015.
[45] Barth, A. (2007). Infrared spectroscopy of proteins.Biochim. Biophys. Acta, 1767(9), 1073-1101. doi:10.1016/j.bbabio.2007.06.004.
[46] Akturk, O., Kismet, K., Yasti, A. C., Kuru, S., Duymus, M. E.,
Kaya, F., Caydere, M., Hucumenoglu, S., Keskin, D. (2016). Collagen/gold
nanoparticle nanocomposites: A potential skin wound healing biomaterial.J. Biomat. Appl., 31(2), 283-301. doi:10.1177/0885328216644536.
[47] Pascale, R., Bianco, G., Cataldi, T. R. I., Schmitt Kopplin,
P., Bosco, F., Vignola, L., Uhl, J., Lucio, M., Milella, L. (2018). Mass
spectrometry-based phytochemical screening for hypoglycemic activity of
Fagioli di Sarconi beans (Phaseolus vulgaris L.). Food Chem.,
242, 497-504. doi: 10.1016/j.foodchem.2017.09.091.
[48] Dolashka, P., Dolashki, A., Velkova, L., Stevanovic, S., Molin,
L., Traldi, P., Velikova, R., Voelter, W. (2015). Bioactive compounds
isolated from garden snails. J. BioSci. Biotechnol., SE/ONLINE ,
147-155.
[49] D’Alessio, S., Gerasi, L., Blasi, F. (2008). uPAR-deficient
mouse keratinocytes fail to produce EGFR-dependent laminin-5, affecting
migration in vivo and in vitro. J. Cell Sci., 121, 3922-3932.doi: 10.1242/jcs.037549.
[50] Blasi, F., Carmeliet, P. (2002). uPAR: A versatile signalling
orchestrator. Nat Rev Mol Cell Bio, 3(12), 932-943. doi:10.1038/nrm977.
[51] Wilson, H.M. (2010). Macrophages heterogeneity in
atherosclerosis - implications for therapy. J. Cell. Molec. Med.,
14(8), 2055-2065. doi: 10.1111/j.1582-4934.2010.01121.x.
[52] Talekar, M., Tran, T., Amiji, M. (2015). Translational
Nano-Medicines: Targeted Therapeutic Delivery for Cancer and
Inflammatory Diseases. AAPS Journal, 17(4), 813-827. doi:10.1208/s12248-015-9772-2.
[53] Mirza, R.E., Fang, M.M., Ennis, W.J., Koh, T.J. (2013).
Blocking Interleukin-1 beta Induces a Healing-Associated Wound
Macrophage Phenotype and Improves Healing in Type 2 Diabetes.Diabetes. 2013, 62(7), 2579-2587. doi: 10.2337/db12-1450.
[54] Sumbayev, V.V., Yasinska, I.M., Garcia, C.P., Gilliland, D.,
Lall, G.S., Gibbs, B.F., Bonsall, D.R., Varani, L., Rossi, F., Calzolai,
L. (2013). Gold Nanoparticles Downregulate Interleukin-1-Induced
Pro-Inflammatory Responses. Small, 9(3), 472-477. doi:10.1002/smll.201201528.