Abbreviations: 4-HPA, 4-hydroxyphenylacetic acid; 5-FU, 5-fluorouracil;
APAP, acetaminophen; AVPR1A/B, arginine vasopressin receptor 1A/B; BBB,
blood brain barrier; DOPA, 3,4-dihydroxyphenylacetic acid; FMT, fecal
microbiota transplantation; FOXP+, forkhead box
P3-positive; GABA, γ-aminobutyric acid; GSH, glutathione; MMF,
mycophenolate mofetil; MTX, methotrexate; OXTR, oxytocin receptor; PPD,
1-phenyl-1,2-propanedione; TLRs, toll-like receptors.
↑ signifies that toxicity of drugs is enhanced after intervention and ↓
signifies that toxicity of drugs is decreased after intervention.
In conclusion, gut microbiota modulates drug toxicity within the
following aspects (Table 1): (a) gut-derived endogenous metabolites
inhibit drug metabolism by competitive effects and lead to drug
accumulation; (b) gut-derived endogenous and exogenous metabolites
restore gut dysbiosis caused by drugs and ameliorate drug toxicity; (c)
specific gut microbial enzymes transform drugs into toxic or nontoxic
metabolites; (d) prebiotics, probiotics, and diet intervention attenuate
drug toxicity by regulating gut microbiota; (e) gut microbial
metabolites inactivate metabolic enzymes of drugs and also lead to drug
accumulation; (f) gut microbiota translocation induced by drugs causes
damages especially in the brain. Currently, high-throughput technologies
such as sequencing analysis and omics technologies facilitate the
unprecedented development of mechanistic studies of gut microbiota. In
terms of drug toxicity, special attention should be given to drug
metabolisms both in the liver and gut, which appeals for development in
analytical methods. The utilization of gut microbiota as biomarkers of
diseases and guidance for personalized medicine is a trend of the
future.
Declarations of interest : None.
Acknowledgements : This work was supported by National Natural
Science Foundation of China (grant number:
81973457).
References :
Aabed, K., Bhat, R.S., Al-Dbass, A., Moubayed, N., Algahtani, N.,
Merghani, N.M., et al. (2019). Bee pollen and propolis improve
neuroinflammation and dysbiosis induced by propionic acid, a short chain
fatty acid in a rodent model of autism. Lipids Health Dis. 18 :
1–8.
Aburada, M., and Kobashi, K. (1994). Enzymic Studies on the Animal and
Intestinal Bacterial Metabolism of Geniposide. Biol. Pharm. Bull.
Al-Orf, N., El-Ansary, A., Bjørklund, G., Moubayed, N., Bhat, R.S., and
Bacha, A. Ben (2018). Therapeutic effects of probiotics on neurotoxicity
induced by clindamycin and propionic acid in juvenile hamsters. Metab.
Brain Dis. 33 : 1811–1820.
Amodio, P., Canesso, F., and Montagnese, S. (2014). Dietary management
of hepatic encephalopathy revisited. Curr. Opin. Clin. Nutr. Metab. Care17 : 448–452.
Aron-Wisnewsky, J., Warmbrunn, M., Nieuwdorp, M., and Clément, K.
(2020). Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to
Improve Severity? Gastroenterology.
Awolade, P., Cele, N., Kerru, N., Gummidi, L., Oluwakemi, E., and Singh,
P. (2020). Therapeutic significance of β-glucuronidase activity and its
inhibitors: A review. Eur. J. Med. Chem.
Bajaj, J.S. (2018). Hepatic encephalopathy: classification and
treatment. J. Hepatol. 68 : 838–839.
Bajaj, J.S., and Khoruts, A. (2020). Microbiota changes and intestinal
microbiota transplantation in liver diseases and cirrhosis. J. Hepatol.72 : 1003–1027.
Bangert, M.K., and Hasbun, R. (2019). Neurological and Psychiatric
Adverse Effects of Antimicrobials. CNS Drugs.
Bastos, R.W., Pedroso, S.H.S.P., Vieira, A.T., Moreira, L.M.C., França,
C.S., Cartelle, C.T., et al. (2016). Saccharomyces cerevisiae UFMG A-905
treatment reduces intestinal damage in a murine model of
irinotecan-induced mucositis. Benef. Microbes.
Bethesda (MD): National Institute of Diabetes and Digestive and Kidney
Diseases (2018). LiverTox: Clinical and Research Information on Drug-
Induced Liver Injury.
Bhat, R.S., Chandrul, K.K., and El-Ansary, A. (2016). Beneficial effects
of a protein rich diet on coping neurotransmitter levels during
ampicillin-induced neurotoxicity compared to propionic-acid induced
autistic biochemical features. Int. J. Mol. Cell. Med.
Budzyński, J., and Kłopocka, M. (2014). Brain-gut axis in the
pathogenesis of Helicobacter pylori infection. World J. Gastroenterol.20 : 5212–5225.
Campion, D., Giovo, I., Ponzo, P., Saracco, G.M., Balzola, F., and
Alessandria, C. (2019). Dietary approach and gut microbiota modulation
for chronic hepatic encephalopathy in cirrhosis. World J. Hepatol.11 : 489–512.
Caputi, V., Marsilio, I., Filpa, V., Cerantola, S., Orso, G.,
Bistoletti, M., et al. (2017). Antibiotic-induced dysbiosis of the
microbiota impairs gut neuromuscular function in juvenile mice. Br. J.
Pharmacol.
Chahin, M., Krishnan, N., Chhatrala, H., and Shaikh, M. (2020). A
5-Fluorouracil-Induced Hyperammonemic Encephalopathy Challenged with
Capecitabine. Case Rep. Oncol. Med.
Champagne-Jorgensen, K., Kunze, W.A., Forsythe, P., Bienenstock, J., and
McVey Neufeld, K.A. (2019). Antibiotics and the nervous system: More
than just the microbes? Brain. Behav. Immun. 77 : 7–15.
Champagne-Jorgensen, K., Mian, M.F., Kay, S., Hanani, H., Ziv, O., McVey
Neufeld, K.A., et al. (2020). Prenatal low-dose penicillin results in
long-term sex-specific changes to murine behaviour, immune regulation,
and gut microbiota. Brain. Behav. Immun. 84 : 154–163.
Chamseddine, A.N., Ducreux, M., Armand, J.P., Paoletti, X., Satar, T.,
Paci, A., et al. (2019). Intestinal bacterial β-glucuronidase as a
possible predictive biomarker of irinotecan-induced diarrhea severity.
Pharmacol. Ther. 199 : 1–15.
Chang, C.W., Lee, H.C., Li, L.H., Chiau, J.S.C., Wang, T.E., Chuang,
W.H., et al. (2020a). Fecal microbiota transplantation prevents
intestinal injury, upregulation of toll-like receptors, and
5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int.
J. Mol. Sci. 21 :.
Chang, C.W., Liu, C.Y., Lee, H.C., Huang, Y.H., Li, L.H., Chiau, J.S.C.,
et al. (2018). Lactobacillus casei Variety rhamnosus probiotic
preventively attenuates 5-Fluorouracil/Oxaliplatin-induced intestinal
injury in a syngeneic colorectal cancer model. Front. Microbiol.9 : 1–15.
Chang, J., Wang, T., Wang, P., Yin, Q., Liu, C., Zhu, Q., et al.
(2020b). Compound probiotics alleviating aflatoxin B1 and zearalenone
toxic effects on broiler production performance and gut microbiota.
Ecotoxicol. Environ. Saf.
Chang, L., Xu, D., Zhu, J., Ge, G., Kong, X., and Zhou, Y. (2020c).
Herbal Therapy for the Treatment of Acetaminophen-Associated Liver
Injury: Recent Advances and Future Perspectives. Front. Pharmacol.11 : 1–13.
Chao, X., Wang, H., Jaeschke, H., and Ding, W.X. (2018). Role and
mechanisms of autophagy in acetaminophen-induced liver injury. Liver
Int. 38 : 1363–1374.
Chen, Z., Zhou, D., Han, S., Zhou, S., and Jia, G. (2019).
Hepatotoxicity and the role of the gut-liver axis in rats after oral
administration of titanium dioxide nanoparticles. Part. Fibre Toxicol.
Chi, L., Xue, J., Tu, P., Lai, Y., Ru, H., and Lu, K. (2019a). Gut
microbiome disruption altered the biotransformation and liver toxicity
of arsenic in mice. Arch. Toxicol.
Chi, Y., Lin, Y., Lu, Y., Huang, Q., Ye, G., and Dong, S. (2019b). Gut
microbiota dysbiosis correlates with a low-dose PCB126-induced
dyslipidemia and non-alcoholic fatty liver disease. Sci. Total Environ.
Cho, S., Tripathi, A., Chlipala, G., Green, S., Lee, H., Chang, E.B., et
al. (2017). Fructose diet alleviates acetaminophen-induced
hepatotoxicity in mice. PLoS One 12 : 1–19.
Choi, J.S., Han, Y.R., Byeon, J.S., Choung, S.Y., Sohn, H.S., and Jung,
H.A. (2015). Protective effect of fucosterol isolated from the edible
brown algae, Ecklonia stolonifera and Eisenia bicyclis, on tert-butyl
hydroperoxide- and tacrine-induced HepG2 cell injury. J. Pharm.
Pharmacol.
Ciorba, M.A., Hallemeier, C.L., Stenson, W.F., and Parikh, P.J. (2015).
Probiotics to prevent gastrointestinal toxicity from cancer therapy: An
interpretive review and call to action. Curr. Opin. Support. Palliat.
Care 9 : 157–162.
Clayton, T.A., Baker, D., Lindon, J.C., Everett, J.R., and Nicholson,
J.K. (2009). Pharmacometabonomic identification of a significant
host-microbiome metabolic interaction affecting human drug metabolism.
Proc. Natl. Acad. Sci. U. S. A. 106 : 14728–14733.
Coryell, M., McAlpine, M., Pinkham, N. V., McDermott, T.R., and Walk,
S.T. (2018). The gut microbiome is required for full protection against
acute arsenic toxicity in mouse models. Nat. Commun.
Cryan, J.F., O’riordan, K.J., Cowan, C.S.M., Sandhu, K. V.,
Bastiaanssen, T.F.S., Boehme, M., et al. (2019). The
microbiota-gut-brain axis. Physiol. Rev. 99 : 1877–2013.
Daisley, B.A., Trinder, M., McDowell, T.W., Collins, S.L., Sumarah,
M.W., and Reid, G. (2018). Microbiota-mediated modulation of
organophosphate insecticide toxicity by species-dependent interactions
with lactobacilli in a Drosophila melanogaster insect model. Appl.
Environ. Microbiol. 84 :.
Dempsey, J.L., Little, M., and Cui, J.Y. (2019). Gut microbiome: An
intermediary to neurotoxicity. Neurotoxicology 75 : 41–69.
Dey, P. (2019). Gut microbiota in phytopharmacology: A comprehensive
overview of concepts, reciprocal interactions, biotransformations and
mode of actions. Pharmacol. Res. 147 : 104367.
Dinan, T.G., and Cryan, J.F. (2017). Brain-Gut-Microbiota Axis and
Mental Health. Psychosom. Med.
El-Ansary, A., Bacha, A. Ben, Bjørklund, G., Al-Orf, N., Bhat, R.S.,
Moubayed, N., et al. (2018). Probiotic treatment reduces the
autistic-like excitation/inhibition imbalance in juvenile hamsters
induced by orally administered propionic acid and clindamycin. Metab.
Brain Dis. 33 : 1155–1164.
El-Ansary, A., Bhat, R.S., Al-Daihan, S., and Dbass, A.M. Al (2015). The
neurotoxic effects of ampicillin-associated gut bacterial imbalances
compared to those of orally administered propionic acid in the etiology
of persistent autistic features in rat pups: Effects of various dietary
regimens. Gut Pathog.
El-Ansary, A., Shaker, G.H., El-Gezeery, A.R., and Al-Ayadhi, L. (2013).
The neurotoxic effect of clindamycin - Induced gut bacterial imbalance
and orally administered propionic acid on DNA damage assessed by the
comet assay: Protective potency of carnosine and carnitine. Gut Pathog.5 : 1–10.
El-Nezami, H.S., Polychronaki, N.N., Ma, J., Zhu, H., Ling, W.,
Salminen, E.K., et al. (2006). Probiotic supplementation reduces a
biomarker for increased risk of liver cancer in young men from Southern
China. Am. J. Clin. Nutr.
Encarnação, J.C., Pires, A.S., Amaral, R.A., Gonçalves, T.J., Laranjo,
M., Casalta-Lopes, J.E., et al. (2018). Butyrate, a dietary fiber
derivative that improves irinotecan effect in colon cancer cells. J.
Nutr. Biochem.
Ervin, S.M., Ramanan, S.V., and Bhatt, A.P. (2020). Relationship Between
the Gut Microbiome and Systemic Chemotherapy. Dig. Dis. Sci. 65 :
874–884.
Fader, K.A., Nault, R., Zhang, C., Kumagai, K., Harkema, J.R., and
Zacharewski, T.R. (2017). 2,3,7,8-Tetrachlorodibenzo-p-dioxin
(TCDD)-elicited effects on bile acid homeostasis: Alterations in
biosynthesis, enterohepatic circulation, and microbial metabolism. Sci.
Rep. 7 : 1–17.
Fang, X. (2019). Microbial treatment: the potential application for
Parkinson’s disease. Neurol. Sci. 40 : 51–58.
Fijlstra, M., Ferdous, M., Koning, A.M., Rings, E.H.H.M., Harmsen,
H.J.M., and Tissing, W.J.E. (2015). Substantial decreases in the number
and diversity of microbiota during chemotherapy-induced gastrointestinal
mucositis in a rat model. Support. Care Cancer 23 : 1513–1522.
Finegold, S.M. (2008). Therapy and epidemiology of autism-clostridial
spores as key elements. Med. Hypotheses.
Fiori, J., Turroni, S., Candela, M., and Gotti, R. (2020). Assessment of
gut microbiota fecal metabolites by chromatographic targeted approaches.
J. Pharm. Biomed. Anal. 177 : 112867.
Flannigan, K.L., Taylor, M.R., Pereira, S.K., Rodriguez-Arguello, J.,
Moffat, A.W., Alston, L., et al. (2018). An intact microbiota is
required for the gastrointestinal toxicity of the immunosuppressant
mycophenolate mofetil. J. Hear. Lung Transplant. 37 : 1047–1059.
Fröhlich, E.E., Farzi, A., Mayerhofer, R., Reichmann, F., Jačan, A.,
Wagner, B., et al. (2016). Cognitive impairment by antibiotic-induced
gut dysbiosis: Analysis of gut microbiota-brain communication. Brain.
Behav. Immun.
Galland, L. (2014). The gut microbiome and the brain. J. Med. Food17 : 1261–1272.
Ghanem, C.I., Pérez, M.J., Manautou, J.E., and Mottino, A.D. (2016).
Acetaminophen from liver to brain: New insights into drug
pharmacological action and toxicity. Pharmacol. Res.
Gong S, Lan T, Zeng L, Luo H, Yang X, Li N, Chen X, Liu Z, Li R, Win S,
Liu S, Zhou H, Schnabl B, Jiang Y, Kaplowitz N, C.P. (2018). Gut
microbiota mediates diurnal variation of acetaminophen induced acute
liver injury in mice. J. Hepatol. 69 : 51–59.
Gong, X., Li, X., Bo, A., Shi, R.Y., Li, Q.Y., Lei, L.J., et al. (2020).
The interactions between gut microbiota and bioactive ingredients of
traditional Chinese medicines: A review. Pharmacol. Res. 157 :
104824.
Gopalakrishnan, V., Helmink, B.A., Spencer, C.N., Reuben, A., and Wargo,
J.A. (2018). The Influence of the Gut Microbiome on Cancer, Immunity,
and Cancer Immunotherapy. Cancer Cell.
Gori, S., Inno, A., Belluomini, L., Bocus, P., Bisoffi, Z., Russo, A.,
et al. (2019). Gut microbiota and cancer: How gut microbiota modulates
activity, efficacy and toxicity of antitumoral therapy. Crit. Rev.
Oncol. Hematol.
Gorkiewicz, G., and Moschen, A. (2018). Gut microbiome: a new player in
gastrointestinal disease. Virchows Arch.
Hartmann, P., Chu, H., Duan, Y., and Schnabl, B. (2019). Gut microbiota
in liver disease: Too much is harmful, nothing at all is not helpful
either. Am. J. Physiol. - Gastrointest. Liver Physiol.
Helaly, A.M.N., El-Attar, Y.A., Khalil, M., Ahmed Ghorab, D.S.E.-D., and
El- Mansoury, A.M. (2019). Antibiotic Abuse Induced Histopathological
and Neurobehavioral Disorders in Mice. Curr. Drug Saf. 14 :
199–208.
Holma, R., Korpela, R., Sairanen, U., Blom, M., Rautio, M., Poussa, T.,
et al. (2013). Colonic methane production modifies gastrointestinal
toxicity associated with adjuvant 5-fluorouracil chemotherapy for
colorectal cancer. J. Clin. Gastroenterol. 47 : 45–51.
Huang, J.F., Zhao, Q., Dai, M.Y., Xiao, X.R., Zhang, T., Zhu, W.F., et
al. (2020a). Gut microbiota protects from triptolide-induced
hepatotoxicity: Key role of propionate and its downstream signalling
events. Pharmacol. Res. 155 : 104752.
Huang, X., Fang, Q., Rao, T., Zhou, L., Zeng, X., Tan, Z., et al.
(2020b). Leucovorin ameliorated methotrexate induced intestinal toxicity
via modulation of the gut microbiota. Toxicol. Appl. Pharmacol.391 : 114900.
Jarrott, B. (2017). Tacrine: In vivo veritas. Pharmacol. Res.116 : 29–31.
Jin, M.J., Kim, I.S., Kim, D.H., and Yoo, H.H. (2014). Effects of
intestinal microbiota on the bioavailability of geniposide in rats. J.
Agric. Food Chem.
Justino, P.F.C., Melo, L.F.M., Nogueira, A.F., Costa, J.V.G., Silva,
L.M.N., Santos, C.M., et al. (2014). Treatment with Saccharomyces
boulardii reduces the inflammation and dysfunction of the
gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in
mice. Br. J. Nutr.
Kang, M.J., Khanal, T., Kim, H.G., Lee, D.H., Yeo, H.K., Lee, Y.S., et
al. (2012). Role of metabolism by human intestinal microflora in
geniposideinduced toxicity in HepG2 cells. Arch. Pharm. Res. 35 :
733–738.
Khan, M.S., Ikram, M., Park, J.S., Park, T.J., and Kim, M.O. (2020). Gut
Microbiota, Its Role in Induction of Alzheimer’s Disease Pathology, and
Possible Therapeutic Interventions: Special Focus on Anthocyanins.
Cells.
Kim, J.K., Choi, M.S., Jeong, J.J., Lim, S.M., Kim, I.S., Yoo, H.H., et
al. (2018). Effect of probiotics on pharmacokinetics of orally
administered acetaminophen in mice. Drug Metab. Dispos. 46 :
122–130.
Kim, Y.C., and Lee, S.J. (1998). Temporal variation in hepatotoxicity
and metabolism of acetaminophen in mice. Toxicology 128 : 53–61.
Klaassen, C.D., and Cui, J.Y. (2015). Review: Mechanisms of How the
Intestinal Microbiota Alters the Effects of Drugs and Bile Acids. Drug
Metab. Dispos.
Klein-Petersen, A.W., Köhler-Forsberg, O., and Benros, M.E. (2019).
Infections, antibiotic treatment and the mircrobiome in relation to
schizophrenia. Schizophr. Res.
Klein, R.M., Rigobello, C., Vidigal, C.B., Moura, K.F., Barbosa, D.S.,
Gerardin, D.C.C., et al. (2020). Gestational exposure to paracetamol in
rats induces neurofunctional alterations in the progeny. Neurotoxicol.
Teratol.
Koliada, A., Syzenko, G., Moseiko, V., Budovska, L., Puchkov, K.,
Perederiy, V., et al. (2017). Association between body mass index and
Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC
Microbiol. 17 : 4–9.
Krishna, G., and Muralidhara (2018). Oral supplements of combined
fructo- and xylo-oligosaccharides during perinatal period significantly
offsets acrylamide-induced oxidative impairments and neurotoxicity in
rats. J. Physiol. Pharmacol. 69 : 801–814.
Lamba, V., Sangkuhl, K., Sanghavi, K., Fish, A., Altman, R.B., and
Klein, T.E. (2014). PharmGKB summary: mycophenolic acid pathway.
Pharmacogenet. Genomics.
Leclercq, S., Mian, F.M., Stanisz, A.M., Bindels, L.B., Cambier, E.,
Ben-Amram, H., et al. (2017). Low-dose penicillin in early life induces
long-term changes in murine gut microbiota, brain cytokines and
behavior. Nat. Commun.
Leung, C., Rivera, L., Furness, J.B., and Angus, P.W. (2016). The role
of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol.13 : 412–425.
Li, H., He, J., and Jia, W. (2016). The influence of gut microbiota on
drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol.12 : 31–40.
Li, Y., Pan, H., Li, X., Jiang, N., Huang, L., Lu, Y., et al. (2019).
Role of intestinal microbiota-mediated genipin dialdehyde intermediate
formation in geniposide-induced hepatotoxicity in rats. Toxicol. Appl.
Pharmacol. 377 :.
Liew, W.P.P., Mohd-Redzwan, S., and Than, L.T.L. (2019). Gut microbiota
profiling of aflatoxin b1-induced rats treated with Lactobacillus casei
shirota. Toxins (Basel).
Lin, X., Zhao, J., Zhang, W., He, L., Wang, L., Chang, D., et al.
(2020). Acute oral methylmercury exposure perturbs the gut microbiome
and alters gut-brain axis related metabolites in rats. Ecotoxicol.
Environ. Saf. 190 : 110130.
Liu, S., Marcelin, G., Blouet, C., Jeong, J.H., Jo, Y.H., Schwartz,
G.J., et al. (2018). A gut–brain axis regulating glucose metabolism
mediated by bile acids and competitive fibroblast growth factor actions
at the hypothalamus. Mol. Metab.
Liu, Y., Li, Y., Xia, Y., Liu, K., Ren, L., and Ji, Y. (2020). The
dysbiosis of gut microbiota caused by low-dose cadmium aggravate the
injury of mice liver through increasing intestinal permeability.
Microorganisms.
Madden, S., Woolf, T.F., Pool, W.F., and Park, B.K. (1993). An
investigation into the formation of stable, protein-reactive and
cytotoxic metabolites from tacrine in vitro. Studies with human and rat
liver microsomes. Biochem. Pharmacol.
Mahmoodpoor, F., Rahbar Saadat, Y., Barzegari, A., Ardalan, M., and
Zununi Vahed, S. V (2017). The impact of gut microbiota on kidney
function and pathogenesis. Biomed. Pharmacother.
Malfatti, M.A., Kuhn, E.A., Murugesh, D.K., Mendez, M.E., Hum, N.,
Thissen, J.B., et al. (2020). Manipulation of the Gut Microbiome Alters
Acetaminophen Biodisposition in Mice. Sci. Rep. 10 : 1–10.
Mancini, A., Campagna, F., Amodio, P., and Tuohy, K.M. (2018). Gut:
Liver: brain axis: The microbial challenge in the hepatic
encephalopathy. Food Funct. 9 : 1373–1388.
Neag, M.A., Catinean, A., Muntean, D.M., Pop, M.R., Bocsan, C.I., Botan,
E.C., et al. (2020). Probiotic bacillus spores protect against
acetaminophen induced acute liver injury in rats. Nutrients.
Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., and Andoh, A.
(2018). Gut microbiota in the pathogenesis of inflammatory bowel
disease. Clin. J. Gastroenterol.
Park, S.M., Ki, S.H., Han, N.R., Cho, I.J., Ku, S.K., Kim, S.C., et al.
(2015). Tacrine, an oral acetylcholinesterase inhibitor, induced hepatic
oxidative damage, which was blocked by liquiritigenin through GSK3-beta
inhibition. Biol. Pharm. Bull.
Peng, R., Ma, S.R., Fu, J., Han, P., Pan, L. Bin, Zhang, Z.W., et al.
(2020). Transforming of triptolide into characteristic metabolites by
the gut microbiota. Molecules 25 :.
Possamai, L.A., Mcphail, M.J., Khamri, W., Wu, B., Concas, D., Harrison,
M., et al. (2015). The role of intestinal microbiota in murine models of
acetaminophen-induced hepatotoxicity. Liver Int. 35 : 764–773.
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C.,
et al. (2010). A human gut microbial gene catalogue established by
metagenomic sequencing. Nature.
Quigley, E.M.M. (2017). Microbiota-Brain-Gut Axis and Neurodegenerative
Diseases. Curr. Neurol. Neurosci. Rep.
Rasmussen, B.B., Nielsen, T.L., and Brøsen, K. (1998). Fluvoxamine is a
potent inhibitor of the metabolism of caffeine in vitro. Pharmacol.
Toxicol.
Relling, M. V., and Evans, W.E. (2015). Pharmacogenomics in the clinic.
Nature.
Roberts, A.B., Wallace, B.D., Venkatesh, M.K., Mani, S., and Redinbo,
M.R. (2013). Molecular insights into microbial β-glucuronidase
inhibition to abrogate CPT-11 toxicity. Mol. Pharmacol.
Roberts, M.S., Magnusson, B.M., Burczynski, F.J., and Weiss, M. (2002).
Enterohepatic circulation: Physiological, pharmacokinetic and clinical
implications. Clin. Pharmacokinet.
Roman, P., Cardona, D., Sempere, L., and Carvajal, F. (2019). Microbiota
and organophosphates. Neurotoxicology 75 : 200–208.
Roy, S., and Trinchieri, G. (2017). Microbiota: A key orchestrator of
cancer therapy. Nat. Rev. Cancer.
Saad, M.A., Rastanawi, A.A., and El-Yamany, M.F. (2018). Alogliptin
abates memory injuries of hepatic encephalopathy induced by acute
paracetamol intoxication via switching-off autophagy-related apoptosis.
Life Sci. 215 : 11–21.
Scorza, C., Piccini, C., Martínez Busi, M., Abin Carriquiry, J.A., and
Zunino, P. (2019). Alterations in the Gut Microbiota of Rats Chronically
Exposed to Volatilized Cocaine and Its Active Adulterants Caffeine and
Phenacetin. Neurotox. Res. 35 : 111–121.
Secombe, K.R., Coller, J.K., Gibson, R.J., Wardill, H.R., and Bowen,
J.M. (2019). The bidirectional interaction of the gut microbiome and the
innate immune system: Implications for chemotherapy-induced
gastrointestinal toxicity. Int. J. Cancer.
Shen, T.C.D., Albenberg, L., Bittinger, K., Chehoud, C., Chen, Y.Y.,
Judge, C.A., et al. (2015). Engineering the gut microbiota to treat
hyperammonemia. J. Clin. Invest. 125 : 2841–2850.
Sougiannis, A.T., VanderVeen, B.N., Enos, R.T., Velazquez, K.T., Bader,
J.E., Carson, M., et al. (2019). Impact of 5 fluorouracil chemotherapy
on gut inflammation, functional parameters, and gut microbiota. Brain.
Behav. Immun.
Srivastav, S., Neupane, S., Bhurtel, S., Katila, N., Maharjan, S., Choi,
H., et al. (2019). Probiotics mixture increases butyrate, and
subsequently rescues the nigral dopaminergic neurons from MPTP and
rotenone-induced neurotoxicity. J. Nutr. Biochem. 69 : 73–86.
Stachlewitz, R.F., Arteel, G.E., Raleigh, J.A., Connor, H.D., Mason,
R.P., and Thurman, R.G. (1997). Development and characterization of a
new model of tacrine-induced hepatotoxicity: Role of the sympathetic
nervous system and hypoxia- reoxygenation. J. Pharmacol. Exp. Ther.
Tang, D., Zeng, T., Wang, Y., Cui, H., Wu, J., Zou, B., et al. (2020).
Dietary restriction increases protective gut bacteria to rescue lethal
methotrexate-induced intestinal toxicity. Gut Microbes 00 : 1–21.
Taylor, M.R., Flannigan, K.L., Rahim, H., Mohamud, A., Lewis, I.A.,
Hirota, S.A., et al. (2019). Vancomycin relieves mycophenolate
mofetil–induced gastrointestinal toxicity by eliminating gut bacterial
-glucuronidase activity. Sci. Adv. 5 : 1–10.
Teichman, E.M., O’Riordan, K.J., Gahan, C.G.M., Dinan, T.G., and Cryan,
J.F. (2020). When Rhythms Meet the Blues: Circadian Interactions with
the Microbiota-Gut-Brain Axis. Cell Metab.
Thaiss, C.A., Levy, M., Korem, T., Dohnalová, L., Shapiro, H., Jaitin,
D.A., et al. (2016). Microbiota Diurnal Rhythmicity Programs Host
Transcriptome Oscillations. Cell 167 : 1495-1510.e12.
Tian, J., Zhu, J., Yi, Y., Li, C., Zhang, Y., Zhao, Y., et al. (2017).
Dose-related liver injury of Geniposide associated with the alteration
in bile acid synthesis and transportation. Sci. Rep. 7 : 1–11.
Tilg, H., Cani, P.D., and Mayer, E.A. (2016). Gut microbiome and liver
diseases. Gut.
Vigo, M.B., Pérez, M.J., Fino, F. De, Gómez, G., Martínez, S.A.,
Bisagno, V., et al. (2019). Acute acetaminophen intoxication induces
direct neurotoxicity in rats manifested as astrogliosis and decreased
dopaminergic markers in brain areas associated with locomotor
regulation. Biochem. Pharmacol.
Wacoo, A.P., Atukunda, P., Muhoozi, G., Braster, M., Wagner, M., Broek,
T.J. van den, et al. (2020). Aflatoxins: Occurrence, exposure, and
binding to lactobacillus species from the gut microbiota of rural
ugandan children. Microorganisms.
Wallace, B.D., Roberts, A.B., Pollet, R.M., Ingle, J.D., Biernat, K.A.,
Pellock, S.J., et al. (2015). Structure and Inhibition of Microbiome
β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity.
Chem. Biol. 22 : 1238–1249.
Wallace, B.D., Wang, H., Lane, K.T., Scott, J.E., Orans, J., Koo, J.S.,
et al. (2010). Alleviating Cancer Drug Toxicity by Inhibiting a
Bacterial Enzyme. Science (80-. ). 831–836.
Walsh, J., Griffin, B.T., Clarke, G., and Hyland, N.P. (2018). Drug–gut
microbiota interactions: implications for neuropharmacology. Br. J.
Pharmacol.
Wang, J., Feng, W., Zhang, S., Chen, L., Sheng, Y., Tang, F., et al.
(2019a). Ameliorative effect of Atractylodes macrocephala essential oil
combined with Panax ginseng total saponins on 5-fluorouracil induced
diarrhea is associated with gut microbial modulation. J. Ethnopharmacol.
Wang, L., Yang, X., and Wu, H. (2019b). Juvenile Rats Show Altered Gut
Microbiota After Exposure to Isoflurane as Neonates. Neurochem. Res.44 : 776–786.
Wang, W., Zhou, H., and Liu, L. (2018). Side effects of methotrexate
therapy for rheumatoid arthritis: A systematic review. Eur. J. Med.
Chem. 158 : 502–516.
Wang, W.W., Zhang, Y., Huang, X.B., You, N., Zheng, L., and Li, J.
(2017). Fecal microbiota transplantation prevents hepatic encephalopathy
in rats with carbon tetrachloride-induced acute hepatic dysfunction.
World J. Gastroenterol.
Wang, Y., Sun, L., Chen, S., Guo, S., Yue, T., Hou, Q., et al. (2019c).
The administration of Escherichia coli Nissle 1917 ameliorates
irinotecan–induced intestinal barrier dysfunction and gut microbial
dysbiosis in mice. Life Sci.
Wardill, H.R., and Tissing, W.J.E. (2017). Determining risk of severe
gastrointestinal toxicity based on pretreatment gut microbial community
in patients receiving cancer treatment: A new predictive strategy in the
quest for personalized cancer medicine. Curr. Opin. Support. Palliat.
Care.
Weir, V. (2020). Nonpharmacologic Management of Hepatic Encephalopathy:
An Update. Clin. Liver Dis.
Wiest, R., Albillos, A., Trauner, M., Bajaj, J.S., and Jalan, R. (2017).
Targeting the gut-liver axis in liver disease. J. Hepatol.
Wijdicks, E.F.M. (2016). Hepatic Encephalopathy. N. Engl. J. Med.
Wu, H., Rao, Q., Ma, G.C., Yu, X.H., Zhang, C.E., and Ma, Z.J. (2020).
Effect of triptolide on dextran sodium sulfate-induced ulcerative
colitis and gut microbiota in mice. Front. Pharmacol. 10 : 1–13.
Xi, C., Peng, S., Wu, Z., Zhou, Q., and Zhou, J. (2017). Toxicity of
triptolide and the molecular mechanisms involved. Biomed. Pharmacother.90 : 531–541.
Xue, H., Xie, W., Jiang, Z., Wang, M., Wang, J., Zhao, H., et al.
(2016). 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite
of quercetin, attenuates acetaminophen (APAP)-induced liver injury
through activation of Nrf-2. Xenobiotica 46 : 931–939.
Yamano, T., Noda, T., Shimizu, M., Ohmorz, M., Morita, S., and Yamada,
A. (1990). Hepatotoxicity of Geniposide in Rats. Food Chem Toxicol28 : 515–519.
Yang, J., Sun, L., Wang, L., Hassan, H.M., Wang, X., Hylemon, P.B., et
al. (2017). Activation of sirt1/FXR signaling pathway attenuates
triptolide-induced hepatotoxicity in rats. Front. Pharmacol. 8 :
1–11.
Yang, S., Kuang, G., Jiang, R., Wu, S., Zeng, T., Wang, Y., et al.
(2019). Geniposide protected hepatocytes from acetaminophen
hepatotoxicity by down-regulating CYP 2E1 expression and inhibiting TLR
4/NF-κB signaling pathway. Int. Immunopharmacol. 74 : 105625.
Yang, T., Richards, E.M., Pepine, C.J., and Raizada, M.K. (2018a). The
gut microbiota and the brain-gut-kidney axis in hypertension and chronic
kidney disease. Nat. Rev. Nephrol.
Yang, W., Wei, B., and Yan, R. (2018b). Amoxapine Demonstrates
Incomplete Inhibition of β-Glucuronidase Activity from Human Gut
Microbiota. SLAS Discov. 23 : 76–83.
Yip, L.Y., Aw, C.C., Lee, S.H., Hong, Y.S., Ku, H.C., Xu, W.H., et al.
(2018). The liver–gut microbiota axis modulates hepatotoxicity of
tacrine in the rat. Hepatology 67 : 282–295.
Zeng, S.L., Li, S.Z., Xiao, P.T., Cai, Y.Y., Chu, C., Chen, B.Z., et al.
(2020). Citrus polymethoxyflavones attenuate metabolic syndrome by
regulating gut microbiome and amino acid metabolism. Sci. Adv. 6 :
1–14.
Zhang, J., Zhang, J., and Wang, R. (2018). Gut microbiota modulates drug
pharmacokinetics. Drug Metab. Rev.
Zhang, L., Ye, Y., An, Y., Tian, Y., Wang, Y., and Tang, H. (2011).
Systems responses of rats to aflatoxin B1 exposure revealed with
metabonomic changes in multiple biological matrices. J. Proteome Res.
Zhang, S., Jin, Y., Zeng, Z., Liu, Z., and Fu, Z. (2015). Subchronic
Exposure of Mice to Cadmium Perturbs Their Hepatic Energy Metabolism and
Gut Microbiome. Chem. Res. Toxicol.
Zhao, H., Jiang, Z., Chang, X., Xue, H., Yahefu, W., and Zhang, X.
(2018). 4-hydroxyphenylacetic acid prevents acute APAP-induced liver
injury by increasing phase II and antioxidant enzymes in mice. Front.
Pharmacol. 9 : 1–10.
Zhou, B., Xia, X., Wang, P., Chen, S., Yu, C., Huang, R., et al.
(2018a). Induction and Amelioration of Methotrexate-Induced
Gastrointestinal Toxicity are Related to Immune Response and Gut
Microbiota. EBioMedicine 33 : 122–133.
Zhou, J., Tang, L., Wang, J., and Wang, J.S. (2018b). Aflatoxin B1
disrupts gut-microbial metabolisms of short-chain fatty acids,
long-chain fatty acids, and bile acids in male F344 rats. Toxicol. Sci.
Zhou, J., Tang, L., and Wang, J.S. (2019a). Assessment of the adverse
impacts of aflatoxin B1 on gut-microbiota dependent metabolism in F344
rats. Chemosphere.
Zhou, Y.X., Zhang, R.Q., Rahman, K., Cao, Z.X., Zhang, H., and Peng, C.
(2019b). Diverse Pharmacological Activities and Potential Medicinal
Benefits of Geniposide. Evidence-Based Complement. Altern. Med.2019 :.
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., and Goodman, A.L.
(2019). Separating host and microbiome contributions to drug
pharmacokinetics and toxicity. Science (80-. ).