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Summary

This article is concerned with an initial-boundary value problem (IBVP) for a new
phase-field model describing the evolution of structural phase transition in elasti-
cally deformable solid materials. The model consists of an elliptic-parabolic system
in which the displacement field and the order parameter both satisfy periodic bound-
ary conditions. We prove the existence of global solutions to this IBVP by applying
the method of continuation of local solutions and perform numerical simulations to
investigate the microstructure evolution ofMnNi alloys by using this new phase-field
model.
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1 INTRODUCTION

Martensitic transformation is a diffusionless, solid-to-solid phase transformation commonly observed in various metals and
alloys. Materials undergoing this phase transformation often lead to significant changes in material properties, which can be ben-
eficial or harmful as well1. Transformation is mainly dominated by chemical energy, interfacial energy, elastic strain energy and
applied external energy. The elastic strain energy stems from the lattice misfit between parent and product phases is the resistance
of martensitic transformation and determines the evolution direction of microstructure in phase transition. The martensite phase
grows and shrinks elastically during cooling and heating is called thermoelastic martensite, it refers to the interface between
martensite and austenite phases can move reversibly, crystal undergoing a thermoelastic martensitic transformation often exhibit
shape memory effect2,3, which has been widely used in temperature automatic regulator, automatic positioner, artificial satellite
antenna and so on.
The physical and mechanical properties of materials on the macroscopic scale highly depend on their microstructure. Because

the positions of the sharp interfaces change with time in some microstructure evolution, so it is a typical free-moving boundary
value problem, which is difficult to solve mathematically. However, the phase-field method employs a set of conserved or non-
conserved field variables, these are continuous functions of space and time, hence the interfacial regions in a phase-field model
are diffuse, separating the adjoining phases and domains, then the total free energy may include chemical energy, interfacial
energy, elastic strain energy and applied external energy are dependent continuously on the field variables.
During the last few decades, the phase-field approach has emerged as one of the most powerful approaches for predicting

morphological and microstructure evolution in materials at the mesoscale, including solidification4, phase transition in thin

†This is an example for title footnote.
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films5 andmartensitic transformation inmetallicmaterials6. It has been demonstrated that themicrostructure predicted by phase-
field method agrees well with experimental results. Phase-field method avoids the difficulty of describing the sharp interface,
and has the unique advantage in simulating arbitrary structure and complex microstructure evolution in materials.
There are two famous phase-field models for the evolution of field variables: the Cahn-Hilliard nonlinear diffusion equation7

used to describe the evolution of conserved field variables such as atomic concentration, and the time-dependent Ginzburg-
Landau (Allen-Cahn) equation8,9 used of representing the variation of the non-conserved field variables, for instance, orientation
field in martensitic transformation. A large number of achievements have been made in theory10,11,12,13,14 and numerical
studies1,2,3,4,5,6,15 of those two models.
In this study, we investigate a new phase-field model derived by Alber and Zhu16 that is more suitable for structural transitions

such as martensitic transformation in shape memory alloys. The new phase-field model differs from the well-known Allen-Cahn
model by a nonlinear gradient term for the order parameter. We will study this elliptic-parabolic coupled system where the
displacement field and the order parameter both satisfy periodic boundary conditions.
We first introduce the new phase-field model in three space dimensions. Let Ω ⊂ ℝ3 be an open set, it represents the material

points of a solid body. The different phases are characterized by the order parameter S(t, x) ∈ ℝ, a value of S(t, x) near to 0
indicates that the material is in the parent phase at the point x ∈ Ω at time t; a value near to 1 (or -1) indicates that the material
is in the product phase. The other unknowns are the displacement u(t, x) ∈ ℝ3 of the material point x at time t and the Cauchy
stress tensor �(t, x) ∈ 3, where 3 denotes the set of symmetric 3×3-matrices. Then the unknowns must satisfy the following
quasi-static equations (we name it the Alber-Zhu model)

−divx�(t, x) = b(t, x), (1)
�(t, x) = D("(∇xu(t, x)) − "̄S(t, x)), (2)
St(t, x) = −c( S("(∇xu(t, x)), S(t, x)) − �ΔxS(t, x))|∇xS(t, x)| (3)

for (t, x) ∈ (0,∞) × Ω. Here D ∶ 3 → 3 is a linear, symmetric, positive definite mapping, the elastic modulus of materials;
∇xu(t, x) denotes the 3×3-matrix of the first order spatial derivatives of u, the deformation gradient; "(∇xu) =

1
2
(∇xu+(∇xu)T)

is the strain tensor; "̄ ∈ 3 is a given matrix, the misfit strain; c > 0 is a constant, the kinetic coefficient which characterizes the
interface mobility and � > 0 represents the interfacial energy coefficient. The total free energy density of the system is

 ∗(", S,∇xS) =  (", S) +
�
2
|∇xS|2, (4)

the second term on the right-hand side of (4) denotes the interfacial energy density caused by nonhomogeneous distribution of
the order parameter, and

 (", S) = 1
2
(D(" − "̄S)) ⋅ (" − "̄S) +  ̂(S), (5)

here, the first term represents the elastic strain energy density caused by lattice mismatch between parent and product phases,
the scalar product of two matrices is A ⋅ B =

∑

aijbij ,  ̂(S) is the chemical free energy density of the system. We choose
 ̂(S) ∈ C∞(ℝ;ℝ) is a polynomial with at least two minimum points and one maximum point between them

 ̂(S) = A0S2k+2 +
2k+2
∑

i=1
AiS

2k+2−i, A0 is a positive constant, (6)

where k ∈ N+ and Ai (i = 1...2k + 2) are the arbitrary constants. To simplify the writing in Section 3, we let

 ∗(", S,∇xS) =  ∗1 (", S,∇xS) +  
∗
2 (S), (7)

here,
 ∗1 (", S,∇xS) =

�
2
|∇xS|2 +

1
2
(D(" − "̄S)) ⋅ (" − "̄S) + A0S2k+2 (8)

is a positive term, and

 ∗2 (S) =
2k+2
∑

i=1
AiS

2k+2−i. (9)

Given are the volume force b ∶ [0,∞) × Ω → ℝ3 and S0 ∶ Ω → ℝ. This completes the formulation of the new phase-field
model.

Remark 1. When the gradient term |∇xS(t, x)| in (3) disappears, it becomes the classical Allen-Cahn equation.
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In multidimensional space, |∇xS|ΔxS in (3) can’t be written in divergence type, then it has some difficulties to prove the
existence of weak solutions in this case, but |Sx|Sxx can be written in the divergence form

1
2
(Sx|Sx|)x in one space dimension.

We next simplify the model to a one-dimensional case and give the main results of this paper.
Let Ω = (a, d) is a bounded open interval with constants a < d and write QTe ∶= (0, Te) × Ω, Te is a positive constant. If

we denote the first column of matrix �(t, x) by �1(t, x) and let "(ux) =
1
2
(ux, 0, 0) + (ux, 0, 0)T). Then, we consider the periodic

boundary conditions, the unknown functions (u, �, S) satisfy the following initial-boundary value problem (IBVP)

−�1x = b, (10)
� = D("(ux) − "̄S), (11)
St = −c( ̂ ′(S) − "̄ ⋅ � − �Sxx)|Sx| (12)

for (t, x) ∈ (0,∞) × Ω. The periodic boundary and initial conditions are

u|x=a = u|x=d ,
)u
)x

|x=a =
)u
)x

|x=d , (13)

S|x=a = S|x=d ,
)S
)x

|x=a =
)S
)x

|x=d , (14)

S(0, x) = S0(x), x ∈ Ω. (15)
Next, we denoteHm

per(Ω) (W
m,p
per (Ω)) the Sobolev spaces with periodic boundary conditions, X′ denotes the dual space of X.

Because of 1
2
(y|y|)′ = |y|, (12) is equivalent to

St −
c�
2
(Sx|Sx|)x − c(� ⋅ "̄ −  ̂ ′(S))|Sx| = 0,

then the definition of weak solutions to IBVP (10)-(15) as follows.

Definition 1. Let S0 ∈ L2(Ω), b ∈ L∞(0, Te;L2(Ω)). A function (u, �, S) with

u ∈ L∞(0, Te;H2
per(Ω)), � ∈ L∞(0, Te;H1

per(Ω)), (16)

S ∈ L∞(0, Te;H1
per(Ω)), (17)

is a weak solution to IBVP (10)-(15) if (10), (11), (13) are satisfied weakly, and if for all ' ∈ C∞0 (−∞, Te;C
∞
per(Ω)),

(S,'t)QTe
− c�
2
(Sx|Sx|, 'x)QTe

+ c((� ⋅ "̄ −  ̂ ′(S))|Sx|, ')QTe
+ (S0, '(0))Ω = 0. (18)

The main result of this article is

Theorem 1. For all S0 ∈ H1
per(Ω) and b ∈ L

2(QTe) with bt ∈ L
2(QTe), there exists a weak solution (u, �, S) to IBVP (10)-(15),

which in addition to (16)-(18) satisfies
St ∈ L

4
3 (QTe), �t ∈ L

4
3 (QTe), (19)

Sx|Sx| ∈ L
4
3 (0, Te;W

1, 4
3

per (Ω)), Sx ∈ L
8
3 (0, Te;L∞(Ω)), (20)

|Sx|Sxt ∈ L1(0, T e; (H2
per(Ω))

′). (21)

Alber and Zhu proved the existence of weak solutions in one space dimension if u satisfies Dirichlet boundary condition, S
satisfy Dirichlet boundary condition16 and Neumann boundary condition17, then they studied the global existence of viscosity
solutions to this new phase-field model with u and S both satisfy Dirichlet boundary conditions18. They introduced a little
parameter � > 0 to regularize term |Sx| in (12), then it can be approximated as a uniformly parabolic equation, when S is
given, u satisfies Dirichlet boundary condition, u and � can be expressed in terms of S, then (10)-(15) can be reduced to a single
equation. However, we can’t reduce (10)-(15) into a single equation when u and S both satisfy periodic boundary conditions,
then the method in the above paper is not applicable. The theoretical analyses for this new phase-field model from various
aspects we refer to19,20,21,22,23. The above results for this new phase-field model with elastic effect, however, do not consider the
numerical simulations.
In our previous work24, we omitted the effect of elasticity, that is, without equations (10) and (11), and proved the existence and

large-time behavior of weak solutions with u and S both satisfy periodic boundary conditions, furthermore, chose MnNi alloys
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as the prototype materials to study the microstructure evolution of martensitic transformation by employing that model. We have
validated that the martensite variants distribute randomly with the shape of little pieces and exhibit no directionality. However,
due to the difference of lattice parameters between austenite and martensite phases, elastic stress will be generated during
martensitic transformation, and the elastic strain energy is the most important factor for determining the evolution direction of
martensite variants. In present study, we add elastic strain energy to the total free energy and discover that the different variants
appear alternately and form a self-accommodation twinned substructure, furthermore, the martensite variants arrange along
diagonal with plate-like shape. These results are consistent with the results obtained by applying the Allen-Cahn model when
we use the identical material parameters, but it takes less time to achieve its equilibrium state in the Alber-Zhu system.
The main difficulties of theoretical proofs and numerical simulations come from the term |Sx| in (12), because of this term,

equation (12) is degenerate, and it is not differentiable with respect to Sx.
The remaining Section 2 and Section 3 are devoted to the proof of Theorem 1. We prove the existence of local solutions

to IBVP (10)-(15) by using iteration method combining with Aubin-Lions lemma and weak compactness lemma in Section 2.
Since the estimates in Section 2 only for a sufficiently small time t0, so we drive uniform a priori estimates in Section 3 then that
imply the global solutions exist for any time Te. At last, we choose actual material parameters and perform a series of numerical
simulations by employing this new phase-field model to demonstrate the microstructure evolution of martensitic transformation
in MnNi alloys.

2 EXISTENCE OF LOCAL SOLUTIONS

Assume that t0 is a sufficiently small constant and ‖Ŝ‖L∞(0,t0;H1
per (Ω))

≤ K , K is related to the norm of initial value. We first
replace S by Ŝ in (11), we have proved that, for a given Ŝ, IBVP (10)-(15) has a solution global in time by Galerkin method24.
Then we replace Ŝ by Sn−1, IBVP (10)-(15) becomes

−�n1x = b, (22)
�n = D("(unx) − "̄S

n−1), (23)
Snt = −c( ̂

′(Sn) − "̄ ⋅ �n − �Snxx)|S
n
x| (24)

for (t, x) ∈ (0,∞) × Ω. The periodic boundary and initial conditions are

un|x=a = un|x=d ,
)un

)x
|x=a =

)un

)x
|x=d , (25)

Sn|x=a = Sn|x=d ,
)Sn

)x
|x=a =

)Sn

)x
|x=d , (26)

Sn(0, x) = Sn0 (x), x ∈ Ω. (27)
We next perform uniform a priori estimates independent of n. We choose for every n a function Sn0 ∈ C

∞
per(Ω) such that

‖Sn0 − S0‖H1
per (Ω)

→ 0, n→∞, (28)

where S0 ∈ H1
per(Ω) is the initial data given in Theorem 1. Then we get the following results.

Theorem 2. For all b ∈ L2(Qt0) with bt ∈ L2(Qt0), there exists a local solution (u, �, S) to IBVP (10)-(15) for t ∈ [0, t0]
satisfies

St ∈ L
3
2 (Qt0), �t ∈ L

3
2 (Qt0), (29)

Sx|Sx| ∈ L
3
2 (0, t0;W

1, 3
2

per (Ω)), Sx ∈ L3(0, t0;L∞(Ω)), (30)

|Sx|Sxt ∈ L1(0, t0; (H2
per(Ω))

′). (31)

In what follows, the norm of L2(Ω) is denoted by ‖ ⋅ ‖ and the letter C is a universal positive constant independent of n. In
order to prove Theorem 2, we need the following conclusions.
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Lemma 1. There holds for any t ∈ [0, t0]

1
2
‖Sn‖2 + c�

8

t0

∫
0

‖Snx‖
3
L3(Ω)d� + C ∫

Qt0

(Sn)2k+2|Snx|d(�, x) ≤ C. (32)

Proof. Multiplying (24) by Sn, applying the relationship |Snx|S
n
xx =

1
2
(Snx|S

n
x|)x and integrating the resulting equation with

respect to x over Ω, we have

(Snt , S
n) + c�

2
(Snx|S

n
x|, S

n
x) − c"̄(�

n
|Snx|, S

n) + c( ̂ ′(Sn)|Snx|, S
n) = 0. (33)

From the elliptic regularity theory for (22)-(23), thanks to the Sobolev embedding theorem, we obtain ‖�n‖L∞(Qt0
) ≤ CK . Using

the definition of  ̂(S) in (6), invoking the Young inequality and Hölder’s inequality, that for all t ∈ [0, t0]
1
2
d
dt

||Sn||2 + c�
2
‖Snx‖

3
L3(Ω) + 2c(k + 1)A0 ∫

Ω

(Sn)2k+2|Snx|dx

≤ C ∫
Ω

2k+1
∑

i=1
|Ai||S

n
|

2k+2−i
|Snx|dx + c|"̄|∫

Ω

|�n||Snx||S
n
|dx

∶= C ∫
Ω

2k+1
∑

i=1
|Ai||S

n
|

2k+2−i
|Snx|dx + I, (34)

where

I ≤ c|"̄|‖�n‖L∞(Ω) ∫
Ω

|Snx||S
n
|dx

≤ C ∫
Ω

K|Snx||S
n
|dx

≤ C‖1‖L3(Ω)‖K(Snx)
1
2
‖L6(Ω)‖(Snx)

1
2Sn‖

≤ CK6�‖Snx‖
3
L3(Ω) + �C ∫

Ω

(Sn)2|Snx|dx + C� . (35)

Then (34), (35) and the Young inequality imply
1
2
d
dt

||Sn||2 + c�
2
‖Snx‖

3
L3(Ω) + 2c(k + 1)A0 ∫

Ω

(Sn)2k+2|Snx|dx

≤ C ∫
Ω

2k+1
∑

i=1
|Ai||S

n
|

2k+2−i
|Snx|dx + CK

6�‖Snx‖
3
L3(Ω) + �C ∫

Ω

(Sn)2|Snx|dx + C�

≤ �C ∫
Ω

(Sn)2k+2|Snx|dx + C� ∫
Ω

(�|Snx|
3 + C�)dx

+ CK6�‖Snx‖
3
L3(Ω) + �C ∫

Ω

(Sn)2|Snx|dx + C� , (36)

let � and � be small enough, then
1
2
d
dt

||Sn||2 + c�
4
‖Snx‖

3
L3(Ω) + c(k + 1)A0 ∫

Ω

(Sn)2k+2|Snx|dx

≤ �C ∫
Ω

(Sn)2|Snx|dx + CK
6�‖Snx‖

3
L3(Ω) + C� , (37)
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let � = c�
8CK6 be sufficiently small, so that c�

4
− CK6� = c�

8
> 0, then from (37) we get

1
2
d
dt

||Sn||2 + c�
8
‖Snx‖

3
L3(Ω) + C ∫

Ω

(Sn)2k+2|Snx|dx ≤ C� . (38)

Integrating (38) with respect to t from 0 to t0, we assert that

1
2
‖Sn‖2 + c�

8

t0

∫
0

‖Snx‖
3
L3(Ω)d� + C ∫

Qt0

(Sn)2k+2|Snx|d(�, x)

≤ 1
2
‖Sn(0)‖2 + C�t0 ≤ Ct0 ≤ C. (39)

Although the constant C� , which is related toK may be very large, but when we multiply a sufficiently small t0, then the uniform
boundedness can be guaranteed. Thus, the proof of Lemma 1 is completed.

Lemma 2. There holds for any t ∈ [0, t0]
1
2
‖Snx‖

2 + c�
2 ∫
Qt0

|Snx|(S
n
xx)

2d(�, x) + C ∫
Qt0

(Sn)2k|Snx|
3d(�, x) ≤ C. (40)

Proof. Multiplying (24) by−Snxx and integrating by parts with respect to x, where we take the boundary conditions into account,
that for all t ∈ [0, t0]

(Snt ,−S
n
xx) − c�(|S

n
x|S

n
xx,−S

n
xx) − c"̄(�

n
|Snx|,−S

n
xx) +

c
2
(( ̂ ′(Sn))x, Snx|S

n
x|) = 0,

that is
1
2
d
dt

||Snx||
2 + c� ∫

Ω

|Snx|(S
n
xx)

2dx + c"̄∫
Ω

�n|Snx|S
n
xxdx +

c
2 ∫
Ω

 ̂ ′′(Sn)|Snx|
3dx = 0.

Using (6) and invoking the Young inequality and Hölder’s inequality, we obtain
1
2
d
dt

||Snx||
2 + c� ∫

Ω

|Snx|(S
n
xx)

2dx + c(k + 1)(2k + 1)A0 ∫
Ω

(Sn)2k|Snx|
3dx

≤ c|"̄|∫
Ω

|�n||Snx||S
n
xx|dx + C ∫

Ω

2k
∑

i=1
|Ai||S

n
|

2k−i
|Snx|

3dx

≤ C ∫
Ω

K|Snx||S
n
xx|dx + C ∫

Ω

(�(Sn)2k + C�)|Snx|
3dx

≤ C‖(Snx)
1
2
‖‖K(Snx)

1
2Snxx‖ + C ∫

Ω

(�(Sn)2k + C�)|Snx|
3dx

≤ C� + C ∫
Ω

(Snx)
2dx + CK2� ∫

Ω

|Snx|(S
n
xx)

2dx

+ �C ∫
Ω

(Sn)2k|Snx|
3dx + CC� ∫

Ω

|Snx|
3dx, (41)

let � = c�
2CK2 , � =

c(k+1)(2k+1)A0
2C

be small enough, so that c� − CK2� = c�
2
> 0, c(k + 1)(2k + 1)A0 − �C = c(k+1)(2k+1)A0

2
> 0,

then (41) becomes
1
2
d
dt

||Snx||
2 + c�

2 ∫
Ω

|Snx|(S
n
xx)

2dx + C ∫
Ω

(Sn)2k|Snx|
3dx ≤ C‖Snx‖

2 + C‖Snx‖
3
L3(Ω) + C� . (42)

Invoking (32) and the differential form of Gronwall’s inequality, one can easily conclude (40).

It follows from estimates (32) and (40) that Sn ∈ L∞(0, t0;H1
per(Ω)). From the elliptic regularity theory for (22)-(23) and the

Sobolev embedding theorem, we obtain
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Lemma 3. There hold for any t ∈ [0, t0]

‖un‖L∞(0,t0;H2
per (Ω))

+ ‖�n‖L∞(0,t0;H1
per (Ω))

≤ C, (43)

‖Sn‖L∞(Qt0
) + ‖un‖L∞(Qt0

) + ‖�n‖L∞(Qt0
) ≤ C. (44)

Lemma 4. There hold for any t ∈ [0, t0]
‖|Snx|S

n
xx‖L

3
2 (Qt0

)
≤ C, (45)

‖Snx|S
n
x|‖L

3
2 (0,t0;W

1, 32
per (Ω))

≤ C, ‖Snx‖L3(0,t0;L∞(Ω)) ≤ C. (46)

Proof. By the interpolation technique and (40). For some 1 ≤ p < 2, pq = 2 and 1
q
+ 1

q′
= 1 we yield that

∫
Qt0

(|Snx||S
n
xx|)

pd(�, x) = ∫
Qt0

|Snx|
p
2
|Snx|

p
2
|Snxx|

pd(�, x)

≤ (∫
Qt0

|Snx|
pq′

2 d(�, x))
1
q′ (∫
Qt0

|Snx|
pq
2
|Snxx|

pqd(�, x))
1
q

≤ (∫
Qt0

|Snx|
p
2−p d(�, x))

2−p
2 (∫
Qt0

|Snx||S
n
xx|

2d(�, x))
p
2

≤ C(∫
Qt0

|Snx|
p
2−p d(�, x))

2−p
2 . (47)

It follows from (32) that if p satisfies p
2−p

≤ 3, i.e. p ≤ 3
2
, then the right-hand side of (47) is bounded, when p = 3

2
, we obtain (45).

Next we are going to prove Snx|S
n
x| ∈ L

3
2 (Qt0), then one can easily obtain that S

n
x|S

n
x| ∈ L

3
2 (0, t0;W

1, 3
2

per (Ω)).
Applying the Poincaré inequality of the form: ‖f − f̄‖Lp(Ω) ≤ ‖fx‖Lp(Ω), where f̄ ∶= 1

|Ω|
∫Ω f (x)dx, and |Ω| denotes the

measure of Ω, we choose p = 3
2
, f = Snx|S

n
x|, then obtain

t0

∫
0

‖Snx|S
n
x|‖

3
2

L
3
2 (Ω)

d� ≤ C

t0

∫
0

‖(Snx|S
n
x|)x‖

3
2

L
3
2 (Ω)

d� + C

t0

∫
0

‖Snx|Snx|‖
3
2

L
3
2 (Ω)

d�

≤ C

t0

∫
0

‖(Snx|S
n
x|)x‖

3
2

L
3
2 (Ω)

d� + C

|Ω|
1
2

t0

∫
0

d�

≤ C

t0

∫
0

‖(Snx|S
n
x|)x‖

3
2

L
3
2 (Ω)

d� + C, (48)

which implies, by (45), that
Snx|S

n
x| ∈ L

3
2 (0, t0;W

1, 3
2

per (Ω)). (49)

The Sobolev embedding theorem implies that Snx|S
n
x| ∈ L

3
2 (0, t0;L∞(Ω)), that is Snx ∈ L

3(0, t0;L∞(Ω)).

Lemma 5. There hold for any t ∈ [0, t0]
‖Snt ‖L 3

2 (Qt0
)
+ ‖�nt ‖L 3

2 (Qt0
)
≤ C, (50)

‖|Snx|S
n
xt‖L1(0,t0;(H2

per (Ω))′)
≤ C. (51)

Proof. We know
Snt = c(�S

n
xx + "̄ ⋅ �

n −  ̂ ′(Sn))|Snx|. (52)
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It follows from (44) that
max
Qt0

|c("̄ ⋅ �n −  ̂ ′(Sn))| ≤ C, (53)

which implies that ‖ S‖L∞(Qt0
) ≤ C . It thus follows from (32), (40), (45) and (53) that Snt ∈ L

3
2 (Qt0), then we differentiate (22)

formally with respect to t and use bt ∈ L2(Qt0), we have �
n
t ∈ L

3
2 (Qt0).

To prove (51) we show that there is a constant C , which is independent of n, such that

(|Snx|S
n
xt, ')Qt0

≤ C‖'‖L∞(0,t0;H2
per (Ω))

(54)

for all ' ∈ L∞(0, t0;H2
per(Ω)).

Integrating by parts to get

(|Snx|S
n
xt, ')Qt0

= (−(|Snx|')x, S
n
t )Qt0

= (Snt ,−
Snx
|Snx|

Snxx')Qt0
+ (Snt ,−|S

n
x|'x)Qt0

∶= I1 + I2. (55)

Applying estimates (32), (40), (52), (53) and the Young inequality, we obtain

|I1| = |(Snt ,−
Snx
|Snx|

Snxx')Qt0
|

= |(c"̄ ⋅ �n − c ̂ ′(Sn) + c�Snxx,−S
n
xS

n
xx')Qt0

|

≤ ‖'‖L∞(Qt0
) ∫
Qt0

|c"̄ ⋅ �n − c ̂ ′(Sn)||Snx||S
n
xx| + c�|S

n
x|(S

n
xx)

2d(�, x)

≤ C‖'‖L∞(Qt0
) ∫
Qt0

|Snx||S
n
xx| + |Snx|(S

n
xx)

2d(�, x)

≤ C‖'‖L∞(Qt0
)(� ∫

Qt0

|Snx|
2d(�, x) + � ∫

Qt0

|Snx|(S
n
xx)

2d(�, x) + C�)

≤ C‖'‖L∞(0,t0;H2
per (Ω))

. (56)

And estimates (32), (40), (52), (53) and Hölder’s inequality imply

|I2| = |(Snt ,−|S
n
x|'x)Qt0

|

= |((c"̄ ⋅ �n − c ̂ ′(Sn))|Snx| + c�|S
n
x|S

n
xx,−|S

n
x|'x)Qt0

|

≤ C‖'x‖L∞(Qt0
) ∫
Qt0

|Snx|
2 + |Snx|

2
|Snxx|d(�, x)

≤ C‖'x‖L∞(Qt0
)

t0

∫
0

(∫
Ω

|Snx|
2dx + ‖|Snx|

1
2
‖L∞(Ω)‖|S

n
x|

1
2Snxx‖‖S

n
x‖)d�

≤ C‖'x‖L∞(Qt0
)

t0

∫
0

‖|Snx|
1
2
‖L∞(Ω)‖|S

n
x|

1
2Snxx‖d�

≤ C‖'x‖L∞(Qt0
)(

t0

∫
0

‖|Snx|
1
2
‖

2
L∞(Ω)d�)

1
2 (

t0

∫
0

‖|Snx|
1
2Snxx‖

2d�)
1
2

≤ C‖'‖L∞(0,t0;H2
per (Ω))

, (57)

here, we also used (46). Then estimates (55)-(57) yield the desired estimate (51).

Next we study the convergence of Sn as n→∞ by the a priori estimates established in the previous part. We shall show that
there is a subsequence, which converges to a weak solution to IBVP (10)-(15) for t ∈ [0, t0].
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It follows from (32), (40) and (50) that
‖Sn‖

W
1, 32
per (Qt0

)
≤ C. (58)

Hence, we can select a subsequence of Sn, not relabeled, satisfies

‖Sn − S‖
L
3
2 (Qt0

)
→ 0, Snx ⇀ Sx, Snt ⇀ St, (59)

where the weak convergence is in L
3
2 (Qt0).

Theorem 3. (Aubin-Lions)26 LetB0, B, B1 be Banach spaces which satisfy thatB0, B1 are reflexive and thatB0 →→ B → B1,
here →→ denotes the compact embedding. For 0 ≤ p0, p1 ≤∞, define

W = {f |f ∈ Lp0(0, t0;B0), f ′ =
df
dt

∈ Lp1(0, t0;B1)}.

(i) if 1 ≤ p0 <∞, p1 = 1, then the embedding ofW into Lp0(0, t0;B) is compact.

(ii) if p0 = ∞, 1 < p1 ≤∞, then the embedding ofW into C([0, t0];B) is compact.

Lemma 6. (Weak compactness lemma)27 Let (0, t0)×Ω be an open set inℝ+×ℝn. Suppose functions gn, g are inLq((0, t0)×Ω)
for any given 1 < q <∞, which satisfy

||gn||Lq((0,t0)×Ω) ≤ C, gn → g a.e. in (0, t0) × Ω.

Then gn converges to g weakly in Lq((0, t0) × Ω).

Lemma 7. There exists a subsequence of Snx , not relabeled, satisfies

Snx → Sx, a.e. in Qt0 , �n → �, a.e. in Qt0 , (60)

Snx|S
n
x| ⇀ Sx|Sx|, weakly in L

3
2 (Qt0), (61)

Snx|S
n
x| → Sx|Sx|, strongly in L

3
2 (0, t0;L2(Ω)), (62)

as n→∞.

Proof. We choose p0 =
3
2
and

B0 = W
1, 3
2

per (Ω), B = L2(Ω), B1 = (H2
per(Ω))

′.
These spaces satisfy the assumptions of Theorem 3. Since estimates (49) and (51) imply that the sequenceSnx|S

n
x| is uniformly

bounded in Lp0(0, t0;B0) and (Snx|S
n
x|)t is uniformly bounded in L1(0, t0;B1), then there is a subsequence, still denoted by

Snx|S
n
x|, which converges strongly in Lp0(0, t0;B) = L

3
2 (0, t0;L2(Ω)) to a limit function G ∈ L

3
2 (0, t0;L2(Ω)). Consequently,

we can select another subsequence, denoted in the same way, converges pointwise almost everywhere in QTe . Letting f (S
m
x ) =

Smx |S
m
x |, using the mapping y → f (y) ∶= y|y| that has a continuous inverse f−1 ∶ ℝ → ℝ, we deduce that the sequence

Smx → f−1(Smx ) converges pointwise almost everywhere to f−1(G) in QTe . Applying the uniqueness of the weak limit, we infer
that Smx → Sx converges pointwise almost everywhere in QTe . From this we also obtain that the sequence |Smx | → |Sx| and
Smx |S

m
x | → Sx|Sx| converges pointwise almost everywhere in QTe .

Note that the estimate Snx|S
n
x| ∈ L

3
2 (0, t0;W

1, 3
2

per (Ω)) and the Sobolev embedding theorem imply thatW
1, 3
2

per (Ω) ⊂ L
3
2 (Ω), we

can also obtain that ||Snx|S
n
x|||L

3
2 (Qt0

)
≤ C , using Lemma 6, Snx|S

n
x| converges to Sx|Sx|weakly inL

3
2 (Qt0), that is,G = Sx|Sx|.

Hence, (62) follows.
Similarly, we choose p0 = ∞, p1 =

3
2
and

B0 = H1(Ω), B = L2(Ω), B1 = L
3
2 (Ω).

It thus follows from (43), (50) and Theorem 3 that there exist a subsequence of �n, not relabeled, and a function � ∈
C([0, t0];L2(Ω)), such that �n converges strongly to � in C([0, t0];L2(Ω)), and converges pointwise almost everywhere in Qt0 .
Hence, (60) follows.
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We now prove that (u, �, S) is a weak solution to IBVP (10)-(15) for t ∈ [0, t0]. If we multiply (24) by a test function
' ∈ C∞0 (−∞, t0;C

∞
per(Ω)), and integrate the resulting equation over Qt0 , we obtain

(Sn, 't)Qt0
− c�
2
(Snx|S

n
x|, 'x)Qt0

+ c(("̄ ⋅ �n −  ̂ ′(Sn))|Snx|, ')Qt0
+ (Sn0 , '(0))Ω = 0. (63)

For t ∈ [0, t0], (18) follows from this relation if we show that

(Sn, 't)Qt0
→ (S,'t)Qt0

, (64)

(Snx|S
n
x|, 'x)Qt0

→ (Sx|Sx|, 'x)Qt0
, (65)

(("̄ ⋅ �n −  ̂ ′(Sn))|Snx|, ')Qt0
→ ((� ⋅ "̄ −  ̂ ′(S))|Sx|, ')Qt0

, (66)

(Sn0 , '(0))Ω → (S0, '(0))Ω, (67)
for n→∞.
Now, (64) is a consequence of (59) and (65) is obtained from Lemma 7, to verify (66) we note that (40), (53) and (60) imply

‖("̄ ⋅ �n −  ̂ ′(Sn))|Snx|‖L2(Qt0
) ≤ C, (68)

("̄ ⋅ �n −  ̂ ′(Sn))|Snx| → (� ⋅ "̄ −  ̂ ′(S))|Sx|, almost everywhere in Qt0 . (69)
Then by Lemma 6

("̄ ⋅ �n −  ̂ ′(Sn))|Snx| ⇀ (� ⋅ "̄ −  ̂ ′(S))|Sx|, weakly in L2(Qt0), (70)
and (67) follows from (28). We thus complete the proof that (u, �, S) is a weak solution to IBVP (10)-(15) for t ∈ [0, t0].

3 UNIFORM A PRIORI ESTIMATES

This section is devoted to derive some uniform a priori estimates for a arbitrarily positive constant Te.

Theorem 4. There hold for any t ∈ [0, Te]
‖S‖L∞(0,Te;H1

per (Ω))
≤ C, (71)

‖u‖L∞(0,Te;H2
per (Ω))

+ ‖�‖L∞(0,Te;H1
per (Ω))

≤ C, (72)

∫
QTe

( S − �Sxx)2|Sx|d(�, x) ≤ C, (73)

∫
QTe

|Sx|S
2
xxd(�, x) ≤ C. (74)

Proof. Differentiating the energy  ∗ in (4), and according to the symmetry of �, we get
d
dt ∫

Ω

 ∗(", S, Sx)(t, x)dx

= ∫
Ω

∇" ⋅ "t +  SSt + �SxSxtdx

= ∫
Ω

� ⋅ uxt +  SSt − �SxxStdx

= ∫
Ω

( S − �Sxx)St + b ⋅ utdx

= −c ∫
Ω

( S − �Sxx)2|Sx|dx + ∫
Ω

b ⋅ utdx. (75)
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Integrating (75) with respect to t from 0 to Te obtains

∫
Ω

 ∗(", S, Sx)(t, x)dx + c ∫
QTe

( S − �Sxx)2|Sx|d(�, x)

= ∫
Ω

 ∗(", S, Sx)(0, x)dx + ∫
QTe

b ⋅ utd(�, x)

= ∫
Ω

 ∗(", S, Sx)(0, x)dx + ∫
Ω

budx − ∫
Ω

b(0, x) ⋅ u(0, x)dx − ∫
QTe

bt ⋅ ud(�, x), (76)

then, we obtain, by (7)-(9)

∫
Ω

 ∗1 (", S, Sx)(t, x)dx + c ∫
QTe

( S − �Sxx)2|Sx|d(�, x)

≤ |∫
Ω

 ∗2 (S)(t, x)dx| + |∫
Ω

 ∗(", S, Sx)(0, x)dx| + |∫
Ω

b ⋅ udx|

+ |∫
Ω

b(0, x) ⋅ u(0, x)dx| + |∫
QTe

bt ⋅ ud(�, x)|. (77)

From S0 ∈ H1
per(Ω) and the elliptic regularity theory for elliptic system (10)-(11), we obtain

‖u0‖H2
per (Ω)

≤ C, (78)

noting b ∈ L2(QTe) with bt ∈ L
2(QTe) and the Sobolev embedding theorem, there is a constant C such that

‖b(t)‖ ≤ C, (79)

for all t ∈ [0, Te]. Then we use Hölder’s inequality get that

|∫
Ω

b(0, x)u(0, x)dx| ≤ ‖b(0)‖‖u(0)‖ ≤ C. (80)

It follows from the definition of  ∗ in (4) and the assumption for S0 together with estimate (78) that

|∫
Ω

 ∗(", S, Sx)(0, x)dx| ≤ C. (81)

Next we let b = (∫ x
a bdy)x and ∫

d
a bdy = 0. Invoking the definition of "(ux), we find, owing to (79)

|∫
Ω

budx| = |∫
Ω

(

x

∫
a

bdy)uxdx| ≤ ‖

x

∫
a

bdy‖‖ux‖ ≤ �‖"‖2 + C� ,

|∫
QTe

btud(�, x)| = |

Te

∫
0

∫
Ω

(

x

∫
a

bdy)tuxdxd�|

≤ ‖(

x

∫
a

bdy)t‖L2(QTe )
‖ux‖L2(QTe )

≤ C

Te

∫
0

‖"‖2d�, (82)

we also used b ∈ L2(QTe) with bt ∈ L
2(QTe), then (∫

x
a bdy)t ∈ L

2(QTe).
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Thanks to the Young inequality

|∫
Ω

 ∗2 (S)(t, x)dx| ≤ ∫
Ω

2k+2
∑

i=1
|Ai||S

n
|

2k+2−idx

≤ C ∫
Ω

(�S2k+2 + C�)dx

≤ �C ∫
Ω

S2k+2dx + C. (83)

Let � and � be sufficiently small, by (76)-(83) and (8) we arrive at

∫
Ω

 ∗1 (", S, Sx)(t, x)dx + c ∫
QTe

( S − �Sxx)2|Sx|d(�, x) ≤ C

Te

∫
0

‖"‖2d� + C. (84)

For the term ‖"‖2, we use (8) find that

‖"‖2 ≤ 2‖"̄S‖2 + 2‖" − "̄S‖2

≤ CA0 ∫
Ω

S2k+2 + 1
2
D(" − "̄S) ⋅ (" − "̄S)dx

≤ C ∫
Ω

 ∗1 (", S, Sx)(t, x)dx. (85)

Then from (84) and (85), we obtain

∫
Ω

 ∗1 (", S, Sx)(t, x)dx + c ∫
QTe

( S − �Sxx)2|Sx|d(�, x)

≤ C(1 +

Te

∫
0

∫
Ω

 ∗1 (", S, Sx)(t, x)dxd�). (86)

Applying the Gronwall inequality in the integral form we conclude that there exists a constant C such that for every t ∈ [0, Te]
Te

∫
0

∫
Ω

 ∗1 (", S, Sx)(t, x)dxd� ≤ C. (87)

From (8) we conclude that
|S|2 + �

2
|Sx|

2 ≤ C( ∗1 (", S, Sx) + 1) ≤ C, (88)
then we arrive at (71) and (73). From (88) and apply elliptic regularity theory for system (10)-(11) again, then u and � satisfy
(72). To prove (74), we use inequality (a + b)2 ≤ 2a2 + 2b2 to get

�2 ∫
QTe

|Sx|S
2
xxd(�, x) ≤ 2∫

QTe

( S − �Sxx)2|Sx|d(�, x) + 2∫
QTe

|Sx|| S |
2d(�, x)

≤ C + 2‖ S‖2L∞(QTe ) ∫
QTe

|Sx|d(�, x)

≤ C + C ∫
QTe

|Sx|
2d(�, x)

≤ C.

Repeating the steps in Section 2, we have estimates (19)-(21). The framework of the proof is presented as follows.
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(i) It follows from (71), (73) and Lemma 4 that

‖|Sx|Sxx‖L 4
3 (QTe )

≤ C, (89)

‖Sx|Sx|‖
L
4
3 (0,Te;W

1, 43
per (Ω))

≤ C, ‖Sx‖L 8
3 (0,Te;L∞(Ω))

≤ C. (90)

(ii) Similar to Lemma 5, we have
‖St‖L 4

3 (QTe )
+ ‖�t‖L 4

3 (QTe )
≤ C, (91)

‖|Sx|Sxt‖L1(0,Te;H2
per (Ω)′)

≤ C. (92)

Remark 2. We do not have the estimate for ‖Sx‖L3(QTe )
in this section, we just have ‖Sx‖L2(QTe )

≤ C , therefore, the value of p
in Lemma 4 is no longer equal to 3

2
but equal to 4

3
.

Therefore, we complete the proof of the existence of solutions global in time.

4 PHASE-FIELD SIMULATIONS

We are going to perform a series of numerical simulations for the Alber-Zhu model in two-dimensional space, and compare the
results by applying the Allen-Cahn system. We choose the Mn-12.6at.%Ni alloys as the prototype materials, which are subjected
to a martensitic transformation from cubic structure to tetragonal structure. Different phase-field simulations are performed as
follows.

(i) The phase transformation is triggered by random nucleation of the order parameter. We investigate the microstructure
evolution of martensitic transformation in the Allen-Cahn and the Alber-Zhu systems.

(ii) The periodic function as initial value. We are concerned about the characters of martensitic transformation in the Alber-
Zhu system.

4.1 Simulation parameters
The following material parameters are used28: the thermodynamic equilibrium temperature T0=465K; the latent heat Q =
5 × 107J∕m3; the interfacial energy coefficient � = 1.25 × 10−10J∕m; the misfit strain

"̄ =
(

0.03 0
0 −0.03

)

.

The similar elastic constants for different phases are taken into account, Young’s modulusE = 1.11×1011Pa and Poisson’s ratio
� = 0.15. Parameters are divided by Q to obtain their dimensionless form. Then the dimensionless elastic modulus of material

D =
⎛

⎜

⎜

⎝

2322.98 409.938 0
409.938 2322.98 0
0 0 956.522

⎞

⎟

⎟

⎠

,

the reduced mobility coefficient is assume as c∗ = 1, and the dimensionless interfacial energy coefficient �∗ is chosen as
3.66×10−5, therefore, the length scale of the computational grid increment l = 0.26μm. We use a square computational domain,
and a simulation cell have number of grid pointsNx = Ny = 128.
In this study, we neglect inertia effects and do not consider the volume forces, which imply b = 0, and choose  ̂(S) is a

six-order Landau polynomial as follows
 ̂(S) =

A1
2
S2 −

A2
4
S4 +

A3
6
S6,

where the coefficients A1, A2 and A3 are positive constants and can be expressed as: A1 = 32ΔG⋆, A2 = 4A1 −12ΔGm(T ) and
A3 = 3A1 − 12ΔGm(T ). ΔG⋆ is the energy barrier which is shown as ΔG⋆ = Q(2.867 × 10−4T − 0.1223) and ΔGm(T ) is the
driving force of martensitic transformation, which is expressed by ΔGm(T ) =

Q(T−T0)
T0

. This study we choose T=427K, then the
dimensionless chemical energy parameters A∗1 = 0.0039, A

∗
2 = 0.9961, A

∗
3 = 0.9923 and reduced barrier ΔG

∗ = 1.21 × 10−4.
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4.2 The initial value is random nucleation of the order parameter
The phase-field simulation can reveal the process of minimizing Gibbs free energy. In two-dimensional martensitic transforma-
tion of MnNi alloys, there are two kinds of martensite variants (variant1 and variant2), we use one order parameter S represent
the change in crystal structure. As can be seen from Figure 1, there are two wells at S = 1 and S = −1 correspond to stable
martensite variant1 and variant2, respectively, and the value S = 0 corresponds to metastable austenite phase. The system trans-
form from metastable austenite phase to stable martensite phase has to overcome the energy barrier ΔG∗ that can be seen in the
figure (the area within the rectangular region marked in the figure is magnified and presented in the bottom), we can change the
value of A∗1, A

∗
2 and A

∗
3 by adjusting the temperature T , thus change the value of the energy barrier.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

S

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

̂

ψ
(
S
)

−0.10 −0.05 0.00 0.05 0.10

∆G⋆

FIGURE 1 Diagram of variation of chemical free energy  ̂(S) with respect to order parameter S.

The temporal microstructure of the martensite phase in MnNi alloys for the Allen-Cahn and the Alber-Zhu systems are pre-
sented in Figure 2. The simulation domain is a square plate 33.28μm×33.28μm in dimension, the periodic boundary conditions
are used for both order parameter S and displacement field u. Where the white regions represent the austenite phase, the red and
blue regions represent martensite variant1 and variant2, respectively, and other regions represent the phase interfaces.

Allen-Cahn

Alber-Zhu

FIGURE 2 Evolution of martensite phase during the martensitic transformation in the Allen-Cahn and the Alber-Zhu systems
at dimensionless time t∗=0, 10, 60, 800.
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A random distribution of the order parameter is given as the initial value to trigger the nucleation of martensite phase for
both the Allen-Cahn and the Alber-Zhu systems. In order to minimize the elastic strain energy so as to minimize the total
free energy, variant1 and variant2 generally interact with each other and generate self-accommodation twinning domains, the
formation of twinning domains are realized by the alternate appearance of variant1 and variant2. The final plate-like martensite
phase and the growth of martensite phase along the diagonal have been conformed by the theory of martensite transformation29

and crystallographic theory30. It can be clearly seen from Figure 2 that the martensite variant1 and variant2 have formed in the
Alber-Zhu system at t∗ = 10, however, the martensite in the Allen-Cahn system is still at nucleation stage. This indicates that
the nucleation of martensitic transformation in the Alber-Zhu system takes place in a shorter time than that in the Allen-Cahn
system.
The change of various energies with respect to chemical free energy, interfacial energy, elastic strain energy and total energy

in the Allen-Cahn and the Alber-Zhu systems are shown in Figure 3. These free energies show the similar tendency, at the early
stage of evolution, the order parameter S → 0 to minimize the total free energy by minimizing the elastic strain energy, while
the chemical energy increases, when the chemical energy increases to a certain extent, the systems tend to reduce the chemical
energy, this means S → −1 or S → 1, so the martensite phase begins to grow up. The interfacial energy decreases dramatically
at the early stage, then increases slowly due to the growth of martensite phase, finally, it reduces to its equilibrium value. The
total free energy decreases throughout the evolution process. But one can easily see that those free energies of the Alber-Zhu
system change faster than that of the Allen-Cahn system and approach their equilibrium values within a shorter time. It means
that the Alber-Zhu system can approach its equilibrium state within a shorter time than that for the Allen-Cahn system.

Allen-Cahn Alber-Zhu

FIGURE 3 The change of chemical free energy, interfacial energy, elastic strain energy and total energy with dimensionless
time t∗ in the Allen-Cahn and the Alber-Zhu systems.

4.3 The periodic function as initial value
Next, we attempt to study the effect of initial value on martensitic transformation in the Alber-Zhu system. Here we choose
a periodic function as the initial value, which is expressed by S(r) = 0.9 sin(( r−r0

L
)2 ∗ 8�), where r0 is the center point of

simulation region, r is the position of the point and L is the width of simulation region. The values of the order parameter at
each node are uniquely determined by that function, which is different from the random distribution of the order parameter.
As can be seen from Figure 4, at the beginning of phase transition, in order to minimize the elastic strain energy, the value of

the order parameter tends to 0 which means the decay of martensite nuclei. The direction of reduction is dominated by elastic
strain energy, which is similar to the random nucleation of the order parameter. In the local region, the martensite variants
originally distributed along [110] and [1̄10] directions keep the same direction during the decayed process, while the order
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t∗ = 0 t∗ = 2 t∗ = 200 t∗ = 1200

FIGURE 4 Evolution of martensite phase during the martensitic transformation in the Alber-Zhu system.

parameter in other regions gradually tend to 0 along those two directions. Then, due to the chemical free energy of the system
decreases, the value of the order parameter tends to 1 or -1, and martensite nucleates again at the junction of some variant along
[110] and [1̄10] directions, and grows along those two directions. Before the dimensionless time t∗ = 1200, there are two kinds
of polytwinned martensite plates with (110) and (1̄10) twin planes, in the following evolution, the polytwinned plate with (1̄10)
twin plane disappears gradually, there only exists one kind of polytwinned plate with (110) twin plane at last.
In our past work, we chose the same initial function, but did not consider the elastic effect. We have come to the conclusion

that the martensite phase distributes along the initial path in an annulus at last. However, when we introduce the elastic strain
energy, the final microstructure is no longer an annulus, but forms the plate-like martensite phase, which distributes along the
diagonal, and generates self-accommodation twinning domains. It is similar to the random distribution of the order parameter
as initial value. This again indicates that the elastic strain energy plays a dominant role in the evolution direction of the system.

5 CONCLUSIONS

(i) We prove the the existence of global solutions of the Alber-Zhu model with periodic boundary conditions, and perform
the numerical simulations by applying this model. The numerical results imply that there show the same microstructure
with the identical material parameters under the Allen-Cahn and the Alber-Zhu systems, but it takes less time to achieve
its equilibrium state in the Alber-Zhu system.

(ii) The elastic strain energy has the important influence on the evolution direction of microstructure, in order to minimize
the elastic strain energy of the system, self-accommodation twinning domains along the diagonal are finally generated for
both random nucleation of the order parameter and periodic function as initial value.
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