A NEW EXTENSION OF QUANTUM SIMPSON’S AND QUANTUM NEWTON’S
TYPE INEQUALITIES FOR QUANTUM DIFFERENTIABLE CONVEX FUNCTIONS

MUHAMMAD AAMIR ALI**, HUSEYIN BUDAK?2, AND ZHIYUE ZHANG3

ABSTRACT. In this paper, we prove two identities involving quantum derivatives, quantum integrals, and
certain parameters. Using the newly proved identities, we prove new inequalities of Simpson’s and Newton’s
type for quantum differentiable convex functions under certain assumptions. Moreover, we discuss the
special cases of our main results and obtain some new and existing Simpson’s type inequalities, Newton’s
type inequalities, midpoint type inequalities and trapezoidal type inequalities.

1. INTRODUCTION

Thomas Simpson has evolved essential techniques for the numerical integration and estimation of definite
integrals taken into consideration as Simpson’s rule during (1710-1761). Nevertheless, a comparable approxi-
mation became utilized by J. Kepler nearly earlier than 10 decades, so it’s also called Kepler’s rule. Simpson’s
rule consists of the 3-point Newton-Cotes quadrature rule, so estimation primarily based totally on 3 steps
quadratic kernel is every so often known as Newton-type results.

1) Simpson’s quadrature formula (Simpson’s 1/3 rule)

/: Fl)do ~ 221 [f(nl) +4F (’“;””) + f(@)] .

2) Simpson’s second formula or Newton-Cotes quadrature formula (Simpson’s 3/8 rule).

2 - 2 2
/ Flo)de ~ 21 {]-‘(m) +3F <”13+””2) +3F <””1§””2) + f(@)} .

There are a huge variety of estimations associated with those quadrature rules withinside the literature,
certainly considered one among them is the subsequent estimation called Simpson’s inequality:

Theorem 1. Suppose that F : [k1, ka] — R is a four times continuously differentiable mapping on (K1, ka),
and let ||f(4) ||Oo = sup }.7-'(4) (:c)| < 00. Then, one has the inequality

z€(K1,k2
]. .F(Hl)+f(lig) I€1+/€2 ]. /'M2 ]. (4) 4
| Ay TS A2 _ < _
’3 [ 2 2P Ko — 1 ), Flz)dz| < 5255 H]: Hoo(@' f1)

In recent years, many writers have focused on Simpson’s type inequality in various categories of mappings.
Specifically, some mathematicians have worked on the results of Simpson’s and Newton’s type in obtaining a
convex map, because convexity theory is an effective and powerful way to solve a large number of problems
from different branches of pure and applied mathematics. For example, Dragomir et al. [15] presented
the new Simpson’s inequalities and their applications in quadrature formulas for numerical integration. In
addition, some inequalities of Simpson’s type of s-convex functions were determined by Alomari et al. in [6].
Subsequently, Sarikaya et al. note the variance of Simpson’s type inequality based on convexity in [34]. For
the further studies of this area, one can consult [17,21,32].
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On the other hand, in the field of g-analysis, many researchers have carried out various studies due to
a high demand for mathematics involving quantum calculation modelling. This is the reason why Euler
began this stage in the development of what we now know as g—calculus and which also serves as a bridge
between mathematics and physics. Mathematical areas such as combinatorics, number theory, hypergeometric
functions, orthogonal polynomials, and areas of other sciences such as mechanics, quantum theory, and theory
of relativity, have received the applications of g—calculus [18-20,22,24]. Examining the published literature,
Euler appears as the first to give some results in this area due to the introduction of the parameter ¢ in the
work on infinite series presented by Newton. In the book of Ernst T. [18], about the history of g-calculus,
it is read that Jackson was the first to develop and systematize this area; in 1908-1909, Jackson defined the
general ¢g-integral and g¢-difference operator [22]. In 1969, Agarwal described the g-fractional derivative for the
first time [1]. During the years 1966 and 1967 the analogue of the fractional integral of Riemman-Liouville
appeared in the g—calculus setting, this is found in the work published by Al-Salaam [7] . Rajkovic in [33]
introduced a Riemman-type definition from a generalization of the definition of g—Riemman integral; and
Tariboon introduced ., Dy-difference operator [8]. Recently, in 2020, Bermudo et al. introduced the notion
of "2 D, derivative and integral [10].

In classical analysis, integral inequalities are of particular interest, among them are Simpson’s inequality,
Ostrowski’s inequality, Chebyshev’s inequality, and others no less important. All of them have been translated
using the g-calculus tools and have been, in some cases using convexity criteria. Many mathematicians have
made studies in this area. [2-5,8,9,12-14, 20, 23, 25-31, 35, 38, 39].

2. PRELIMINARIES OF ¢-CALCULUS AND SOME INEQUALITIES

In this section, we first present some known definitions and related inequalities in g-calculus. Set the
following notation(see, [24]):

1 _ n
], = 1_qq —l4q+¢+..+¢"" qe(0,1).
Jackson [22] defined the ¢-Jackson integral of a given function F from 0 to ko as follows:
oo
(2.1) /f(x) dex = (1—q) ke Z q"F (k2q"), where 0 < g < 1
n=0

provided that the sum converges absolutely. Moreover, he defined the ¢g-Jackson integral of a given function
over the interval [k, k2] as follows:

l!f(x) dqx zo/]:(x) dqx —0/.7:(1‘) dgx .

Definition 1. [36] The g, -derivative of mapping F : [k1, k2] — R is defined as:

F () = Flgz+ (1 —q) k1)
= , X K.
=0~ o
If x = k1, we define o, DyF (k1) =limg_., x, DgF () if it exists and it is finite.

(2.2) w1 DgF ()

Definition 2. [10] The ¢"2-derivative of mapping F : [k1, k2] — R is defined as:

_ Flez+ (1 —q)re) = F () v 4k
1—q)(ka—2) -

If & = ko, we define "> D F (ko) = limg ., "2DgF (x) if it exists and it is finite.
Definition 3. [36] The q., -definite integral of F : [k1, k2] — R on [k1, ko] is defined as:

Dy F (x)

1
/.7:(1‘) wdgt = (1—q) (k2 — K1 Zq]:q ko + (1 —¢") k1) = (k2 — K1 /.7-' (1 =7) K1+ TR2) dyT .
n=0 0

Alp et al. [8] proved the following ¢,,-Hermite-Hadamard inequalities for convex functions in the setting
of quantum calculus:
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Theorem 2. If F : [k1, k2] — R is a convex differentiable function on [k1, ko] and 0 < ¢ < 1. Then we have

qr1 + Ko 1 i qF (k1) + F (k2)
(2.3) f( [2]q > < pr— /.7-"(:17) w g < [2]q .

In [8] and [28], the authors established some bounds for the left and right hand sides of the inequality
(2.3).

On the other hand, in [10], Bermudo et al. gave the following definition and obtained the related Hermite-
Hadamard type inequalities:

Definition 4. [10] The ¢"2-definite integral of F : [k1, k2] — R on [k1, k2] is defined as:

- 1
/F(m) "2dee = (1—q) (/—ig—ﬁ:l)Zq”}"(q"m—|—(1—q")f£2 (ko — K1 /.7-" Th1 + (1 —7T) Ka) dg7 .
n=0 0

Theorem 3. [10] If F : [k1, k2] — R is a convex differentiable function on [k1,ke] and 0 < g < 1. Then,
q-Hermite-Hadamard inequalities are given as follows:

K1+ qK 1 7 o F (k1) + ¢F (K2)
(2.4) }'( o 2> - @_m/f(x) dyz < ) 2)

From Theorem 2 and Theorem 3, one can obtain the following inequalities:

Corollary 1. [10] For any convex function F : [k1, k2] — R and 0 < ¢ < 1, we have

(2.5) F (‘W) +F (m [;q@) < - i p /]—"(x) kg + /]—"(m) 2dgr 5 < F(k1)+F (k)

121, q

and

(2.6) f<%1;-f€2> < o 21*111 ]2}'(37) 1 dg +7F(:ﬁ) R2dex p < w

In [11], Budak proved the left and right bounds of the inequality (2.4).

The primary goal of this study is to show a few new generalizations of Simpson’s and Newton’s inequalities
for quantum differentiable convex functions in the setting of quantum calculus. This is the number one
motivation of this paper. The thoughts and techniques of the paper may also open new venues for similar
studies on this field.

3. CRUCIAL IDENTITIES

In this section, we prove three different identities to obtain the main results of this paper.
Let’s start with the following useful Lemma.

Lemma 1. If F : [k1, k2] C R — R is a g, -differentiable function on (k1, k2) such that ., DyF is continuous
and integrable on [k1, ka|, then we have the following identity:

B AF )+ 1= F )+ -0 F () - L [T ) e

2
= (K2 — K1) [/O

where ¢ € (0,1).

[N

1
(gr = A) 5y DgF (the + (1 —7) K1) dgT +/1 (g7 — u)m D,F (ke + (1 — 7) K1) dgT

2

Proof. From Definition 1, we have

F(rha+ (1 —7)k1) — F(qrha + (1 — g7) ml).

(3.2) Do (Tha + (1= 7) k) = (1—a) (k2 —r1)7
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Using the fundamental properties of quantum integrals and from equality (3.2), we obtain that
1 1

(3.3) /0E (gr = A) 5, DgF (tha+ (1= 7) k1) dgm + (g7 — 1), DgF (tha+ (1= 7) K1) dgT

B

—

/2 (L= A) xi DgF (Tha + (1 —7) K1) dgT —|—/ (g — ,u)ﬁ1 DyF (ko + (1 — 7) K1) dgT
0 0

_ _ P (rha+ (1= 1) k1) = F(qrha + (1= g7) K1)
= (u )\)/ (1—¢q) (k2 — kK1) T
F(rha+ (1 —=7)k1) — F(qrhe + (1 — q7) K1)
+q/ (1—q) (ke — k1)
P (rha 4+ (1= 7) k1) = F (qrrz + (1= g7) £1)

dgT

dgT

— d,T.
’ (1=q) (ke —kK1)T a’
From Definition 3 we have the following relations
F(rha+ (1 —=7)k1) — F(qrha + (1 — q7) K1)
3.4 i
34) / (=) (2 — )7 "
1 n+1 qn+1
= [;yr(mﬁ(l—)m) Zf< n2+(1— 5 )m)}
- 1 K1+ Ko
= ry — 1 |:.7: ( 5 ) f(ﬁl):| 3
F(rha+ (1 —7)k1) — F(qrhe + (1 — q7) K1)
3.5 i
(35) / (= q) (s —r) T q
Sl [F (ko) — F (K1)]
and
(1— 1—
(3.6) YF(tha + (1= 7) k1) — F (qTro 4+ (1 — q7) ml)qu

(1—q) (k2 — K1)

— Zq ]_- q H2+(1—q "il an]_— 7L+1K2+(1_qn+1) Iil)‘|

k2 = k1 Ln=0 n=0
1 - n n n 1 - n n n
i > q"Flq H2+(1—q)fﬂ)—gzq F(q" k2 + (1= q") k1)
n*O n=1
1
= — Zq"fqﬁfr(l—q)m —QZq”fq%er(l—q)fﬁH j—"(@)]
27 M Ln=0 n=0

1 1 2
= 7}’ - T f Hld *
Ko — K1 | ¢ (52) q (/‘432 — /4/1) /;11 (LL') qx:|

By substituting the computed integrals (3.4)-(3.6) in (3.3), we obtain the required identity (3.1) and the
proof is completed. U

Remark 1. In Lemma 1, if we choose A = % and p = %, then we obtain [37, Lemma 3].
Remark 2. In Lemma 1, if we choose A = p = ﬁ, then we obtain [35, Lemma 8.1].

Corollary 2. In Lemma 1, if we choose A =0 and p = 1, then we obtain the following new identity

K1+ Ko 1 k2
f( : )—@_m/m F@) wdg

1 1
= (kg — K1) [/ g7 k1 DgF (Tho + (1 — 7) K1) dgT Jr/ (g7 — 1)}@1 DyF (the + (1 —7) k1) dgT
0 1

2
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Remark 3. In Lemma 1, if we take the limit ¢ — 17, then we have [16, Lemma 2.1 for m = 1].

Lemma 2. If F : [k1, k2] C R — R is a g, -differentiable function on (k1, k2) such that ., DyF is continuous
and integrable on [K1, ka|, then we have the following identity:

(3.7) AF () + (1 — N) F <2”13+“2> V) F <””1g2””2) F =) F () = L — /:f(x) o dge

2
3

: (T — 1) 1, DgF (Tho + (1 — T) k1) dgT
3

= (k2 — K1) [/Oé(qr)\) w1 DgF (TR + (1 —17) Kl)quJr/

3

1
—|—/ (qr — V) o, DgF (Tha + (1 —T) K1) qu]
where ¢ € (0,1).

Proof. From the fundamental properties of quantum integrals, we have

1 2

/ (qT = A) y DgF (Tha + (1 —7) K1) dgT —l—/ (gT — 1) ki DgF (ke + (1 — 7) K1) dgT
0

1
3

1
—1—/2 (T — V) g, DgF (Tha + (1 — 7) K1) dgT

3

Wl
o

= / (b—2A) Kqu}'(Tﬁ;g—l—(l—T)m)qu—i—/ (v — 1) w, DgF (Tha + (1 —7T) k1) dgT
0 0

1
—|—/ (gT —v) gy DgF (Tho + (1 — T) k1) dgT.
0

If the same steps in the proof of Lemma 1 are applied for the rest of this proof, we can obtain the desired
identity (3.7). O

Remark 4. If we take A = %, W= %, and v = % in Lemma 2, then we obtain [17, Lemma 2].

Remark 5. If we take A\=pu=v = [2% , in Lemma 2, then we obtain [35, Lemma 8.1].

Corollary 3. If we take the limit ¢ — 1~ in Lemma 2, then we obtain the following new identity

)\}'(m)Jr(u—)\)]—"(%lgW) +(u—u)f<’“§2’”> + (1= 1) F (ha) — — /’:2_7-'(x)da:

R2 — R1

2
3

= (kg — K1) [/03(T—A)f’(Tﬁg—}-(l—T)lﬁl)dT-l-/l (1—p)F (the + (1 — 7) k1) dr

3

2

3

1
+/ (1—v)F (tha+(1—71) nl)d'r}

For brevity, let us prove another lemma that will be used frequently in the main results.

Lemma 3. The following quantum integrals holds for X\, pu,v > 0:

8% A
: i, 2 172
(3.8) My = / lgT — Al dg7 =
0 A
2~ 4[g}qv q <2,
3
% - 4[2%(15 q < [,
! 8u+5 3
(3.9) sy = /1 lam —pldgm = ¢ Gt — %, HSa=2p
2
3q ©
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2)\2 A
3 o, Topr, 8 4> 3\
(3.10) s = / lgT — A dgT =
A
’ 3~ opL q < 3X,
3
%"3@qv q<,
3
2
(3.11) Q14 :/1 lgm7 — p|dgm = 185[2]4;54 — 1, 37;; <q<3p,
3
a%q"%v q > 3u,
v 5
37 9[21’ q<v,
' 1802413 .
(312) 915:/2 |qT—U|qu: lé[;]q Q_%/’ VSQS%’,
3
5 v 3v
o2l ~ 5 7> %
23 A
3 oot o 9> 2N
(3.13) 0 = / Tlgr — N d,m =
’ 3 T q <2\
4[2]q 8[3]q’ = )
%
(3.14) Q = /0 (1—7)|qr — A dy7
= Qu—-O
8N4+ A 2\
7], Q_f—ﬁ_m, q > 2\,
A A+
2 4[2]3 + s[g}q’ q<2A,
1
(315) Qg = / T |q7— _ ﬂ| qu —
1
2
3 7
ﬁ o ﬁ’ q < My

2u° 5 9
= ﬁ—ﬁ‘Fﬁ’ p<q<2p,

q

7 3
s, A 172
1
(3.16) Q = / (L—1)lgm — pldgm =
2
= 912_93
s 3ute) | Tq <
2 7 4], ' 8@l,’ =
8u>+5q+5u _ 3 9 2
= Lt s, e, RSeS 2w
3putq) _ p 7q

a2, 2 8@, q>2p,



(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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22 g A
5 @8, T2, el 47 3A,
Q5 :/ Tlqr — A dgT =
0 A
oI, 27Fs]qv q < 3,
3
Q6 = / (1—1)|qm — N dy7 =
0
= Q13 —-0Q5
8N 4A+g A g 2\
9[2], 3~ 2msl, el ¢ > 2],
A A
3~ 9[2]3 + 27?3](1’ q < 2A,
7 3
3[5]q - 27[g}qv q<%,
%
213 5 3
Q; = /1 Tlqr — pldyT = [Q}Q#[S]q - g[gi + 3[§}q7 4 < q < 3p,
3
7
27[§]q - 3[*2‘]q, q > 3pu,
2
3
0 = [ a-n)lar-aldyr
3
= 914 — Q7
+ 7 3
- g[zﬁ + 27[§]q> q<,
_ 1802455 _ g _ 2 3u
- o], 3B, T @6 2 =4S 31k,
+ 7
S, — 5wl q> 3u,
5v 19
9[2], 27[31’ q<v,
' 20° 13 35 3
v v v
Qg :/2 T|qr — v|dyT = BLEL oL, 27[3q]q, v<qg< ¥,
3
19 5 3
7Bl o, q> 3,
1
Qg = / (1_7—)|qT—V‘qu
3
= Q5 —
v 5(q+v) 19
3 9%2](1 + 27[31, q<v,
_ ) 18Y%413¢413v sy 35 20 3v
= 9[2], 3 2703, 2,5, v<q< %
5(q+v) 19 3
9%2]: —3- 27[317 q> .
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Proof. Case I: Let ¢ > 2.
By the definition g-integral, we have

-

Q0 = /2T|q7'—/\|dq7'
0

[N

2
— /qT()\—qT)qu—i—/ T(A—gqr)dgT
0 )

1
2

= 2/ T()\—qT)qu+/ T(A—gqr)dgT
0 0

Case I: Let g < 2.
From definition quantum integral, we get

Q /é lgr — A d /é A —qr)dyr = —— 9
= T|qT — T= T(A—gqr)d,T = — .
o U AR, 8,
This gives the proof of the equality (3.13). The others can be calculated in similar way. (]

4. SIMPSON’S TYPE INEQUALITIES FOR QUANTUM INTEGRALS

In this section, we prove a new generalization of quantum Simpson’s inequalities for quantum differentiable
convex functions via quantum integrals.

Theorem 4. We assume that the given conditions of Lemma 1 hold. If the mapping |, DyF| is convex on
[K1, k2], then the following Simpson’s type inequality holds:

(4.1) '/\}"(m)+(1—u)}"(/@g)+(u—)\)}"<m;r@) - @im /:f(x) wr

< (2 = R1) (D + D) [, Do F (K2)] + (2 + Q) |, Do F (81)]]

where Q1-Q4 are given in (3.13)-(3.16), respectively.

Proof. Taking the modulus in Lemma 1 and using the convexity of |.;, D, F|, we obtain

'/\.7-"(/431) + (1 — p) F (k2) —|—(u—A)}“<“1 ‘;“2> _ ,{2151 Lf2f(x) 11 A

1 1
< (2= w) | [ lar =Nl DyF (rwa+ (1= s dyr + [ a7 = bl o Dy (72 + (1= ) ) dyr
0 3
3 1
< (k2 — K1) [MDq}'(ngﬂ {/ TlgT — )\|dq7+/ T|gT — u|dq7}
0 3
B 1
+H1qu<m>|{/ (1=)lar = Mdyr+ [ =1 |q¢—u|quH
0 3
= (K2 = K1) [(R1 + Q3) [, DgF (k2)| + (2 + Q) |, DgF (51)]]
which completes the proof. O

Remark 6. If we take the limit ¢ — 1~ in Theorem 4, then we have [16, Theorem 2.1 for s =m = 1].

Remark 7. If we assume A = p = ﬁ in Theorem /4, then we obtain [35, Theorem 4.1].
q
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Corollary 4. In Theorem 4, if we choose A = 0 and p = 1, then we obtain the following midpoint type

imequality
K1+ Ko 1 2
_ ood
() - [ @ e

3 2¢° +2q—1
< o [ e

mmfmm]

q q

5
6

1 K1+ Ko 1 "2
6[]:(&1)+.7-'(/<52)+}'( 5 ﬂ"fz—ﬁl/m F(x) xdgx

< (Re = ) [0 + Q3) |y D F (R2)| + (25 + Q1) |sy Dy F (k1]

Corollary 5. If we assume A = % and p = 2 in Theorem /, then we obtain the following inequality

where
2 1 1
1 1 216.12], 131, + S[g]q Taap,r 34 L,
Q*{:/ T qT—g d,T =

1 1
0 212, *s[g]q’ 0<g=g3,

1

2

Q5 = / (1—7)|gr — =|dg7
0

q

7 2 1
2.2, + ﬁ iz ~ 8Bl, ~ 216.12,0]," 3 <g¢<l,

1 1 L
ﬁ_m_ﬁ—’—ﬁ’ 0<qg<3y,
\ ! 5
QB = T\9T — 6 qu:
3
15 7 5
R, s 0<g<32,
250 25 9 5
216.2] 3], ~ 24.[2], + 8[31’ g Sg<1,

1
Q; = / (1—7)|gr — =|dym =
%
5 15 3 7 5
1z T 2, 4[21 + 8[31’ 0<g¢<5,
50 5 25 15 9 250 5
216.[2], + ﬁ 242, T 12 T 8[31 T 216.2],18],7 6 <g¢<l

which is given by Tung et al. in [87, Theorem 1], the coefficients of |, DyF (k2)| and |, DgF (Kk1)| in this
inequality are more modified than the inequality of Tunc et al..

Theorem 5. We assume that the given conditions of Lemma 1 hold. If the mapping |., DF|™*, p1 > 1 is
convex on [Kk1, Kka], then the following Simpson’s type inequality holds:
+ 1 "
(4.2) Pf@ﬂ+@—@f@ﬁ+@—ﬂf<m2@)— / F (@) pydgr
Ro — Ry K1

1—-L 1
s(mmﬂﬁﬁwmmDﬁwmm+%MDJm0M“

-1 1
+m¢wmm0Jmm“+mMDﬁwMMm}

where Q11, Q12 and Q1-Qy are given in (3.8), (5.9), and (3.13)-(3.16), respectively.
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Proof. Taking the modulus in Lemma 1 and using the power mean inequality, we have

’Af(m) + (1= p) F(ke) +(u>\)f</<c1 +n2) B mim /:F(x) k1 dq®

2

1
1 = /41 o1
< (k2 — K1) (/ QT—)\|qu> (/ lgT — Al |y DgF (Th2 + (1 = 7) "il)‘p1 dq7'>
0 0

1 =5 1 P1
+</ qT—quT> (/ qr—m|mef<m2+<1—r>m>“dqr>

Pr1
By using the convexity of |,,, D, F|"*, we have

Af(m)+(1u)f(@w(uA)f(”l;”?) L /@}'(az),ﬂdqx

1

< (ke — kK1) (/ QT—quT)
0

x (wqﬂwm / 71g7 — M dg7 + | Dy F (1) / <1—r>|qr—Aqu>
0 0

1— L

1 P1
+</ qT—mqu)

1 1 P1
><<me5’:(f€2)|p1 / 71g7 — sl g7 + e D (k)" / (1-7) IQT—MquT>

2 2

- 1
- {Qn " Q1 |y Do F (R2)|” 4 Qo |, Do F (k1)]P1) 71

1--L 1
—|—Q12 " (Q3 |N1Dq'7:(’i2)|p1 + |H1Dq~7:(ffl)|pl)m:|

and the proof is completed.
Remark 8. If we take the limit ¢ — 1~ in Theorem 5, then we have [16, Theorem 2.8 for s =m = 1].
Remark 9. If we assume A\ = p = ﬁ in Theorem 5, then we obtain [35, Theorem 4.2].

Corollary 6. If we assume A = % and = % in Theorem 5, then we obtain the following inequality

1 K1+ Ko 1 w2
6[}"(%1)—#}"(&2)—%}"( 5 ﬂ_ﬁz—ffl/m F () wdqx

1—-L 1
< (mm){@l (] |ny D F (2) " + Q3 [, Do F (k1)[71) 7

1-L kN
+ Oy " (5 [ny Do F (k)™ + 2 ImeF(m)lpl)pl}

where QF — Q) are given in Corollary 5 and

2 11
1 1 36[2], + 4[g]q — 13 3<¢<l
@12/ qr—g dyT =
1 1
0 ﬁ74[g]qa O<Q§§a
5 3 5
1 5 ﬁ*zx[zﬁqv 0<qg<g,
@2:/ QT*E dyT =
i 50 5 15 5
2 36[2] +4[2% -1 g =q¢<]
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which is given by Tung et al. in [37, Theorem 3], the values of ©1, Oy and the coefficients of |, Dy F (r2) [

and |, Dy F (51)["* in this inequality are more modified than the inequality of Tung et al..

Corollary 7. In Theorem 5, if we choose A\ = 0 and p = 1, then we obtain the following midpoint type

imequality

K1 + Ko 1 2
F(5) -t [, 7@ e

=5 q(Bl,+a)\"
< (ka— 1) (&) s Do ()| —o— + |, Dy F ()" Q

813, 812, [3l,

A b, 613, —Tq[2], (1 3¢ 6B, -Tq
+ <4[2]q> <|me.7'- (k2)] W + ‘me}— (k1) (2 _ _

Theorem 6. We assume that the given conditions of Lemma 1 hold. If the mapping |, Dy F|"*

convex on k1, ka|, then the following Simpson’s type inequality holds:

(4.3) 'Af(m)+(1—u)f(@)ﬂu—x)f(”l*“)— ! /w]—'(m) eyt

2 K92 — K1 K1

s DoF (52)[”* (24 + 1) |, Dy F (50)[™ ) "

< (r o) | ( 1p) 10

q q

1
2 (310 DoF ()" (24— 1) | Do ()" ™
Ql 1 1

i ( im, 1

q q

where pyt +rit =1 and

1

1 1
2
Qe = / lg7 = A" dy7, Q7 = / lgm — p|™ dgT.
0 3

Proof. Taking the modulus in Lemma 1 and using the Hélder inequality, we have

‘)\}‘(m) W) F (k) + (u—)\)}'(m ;*’“2> - mim /R'jzf(x) o dye

1

< (ke — K1) </ lgm — A" dq7'> (/ ks DgF (Th2 + (1 — 1) k1) | dq7'>
0 0
1 VAR oy
+ (/ lgT — p|™ qu> (/ iy DgF (T2 4 (1 = 7) 51)["! qu>

,p1 > 11s
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Applying the convexity of |, D,F|"*, we have

‘A]—'(Hl) (= ) F(ka) + (u—mr(“l ‘2“‘2> - H;m /:Qf(m) w2 dy

1

1
} g : ; a
< (ke — K1) (/ lgm — A" dq7> (KquF(Hg)VDl / TdgT + |y DgF (k)P / (1-7) dq7'>
0 0 0
1 1
1 T 1 1 P1
+ (/1 lgm — p|™ dq7'> <|,~@1D,1-,]:(/<;2)|p1 ‘K TdgT + |,i1Dq]-"(/<cl)|p1 ﬁ (1-71) d,ﬂ)
3 2 3
1
1
=y |,{qu‘7: (”2)‘111 (2¢+1) ‘me]: ("‘31>|p1 "
= (k2 — K1) | Q45 (
412], 412],
1
_~_er§ 3|me}‘(,{2)|p1 + (2 — 1)|H1Dq]:("@1)‘p1 "
4[2], 4[2],
and the proof is finished. O

Remark 10. If we take the limit ¢ — 1~ in Theorem 6, then Theorem 6 becomes [16, Theorem 2.2 for
s=m=1].

Corollary 8. If we assume A = % and = % in Theorem 6, then we obtain the following inequality
1 K1+ Ko 1 2
§lren e (22 - s [ F @) e

21 DyF (52)[” | (2q+ 1) |, DyF (50)[* )™
< (mr)|0F <| T (" | @14 1) DT () )
q q

1

+ @i% 3|N1Dq'7:(’§2)|p1 + (2¢—1) |f€1Dq~7:("£1)|p1 "
4[2], 4[2],
where
B 1] 1 5|
O3 = /0 qT — 6 dg7, ©4 = A qT — 6 dqT.

5. NEWTON’S TYPE INEQUALITIES FOR QUANTUM INTEGRALS
Some new generalized versions of quantum Newton’s inequalities for quantum differentiable convex func-

tions are offered in this section.

Theorem 7. We assume that the given conditions of Lemma 2 hold. If the mapping |, DyF| is convex on
[k1, k2], then the following Newton’s type inequality holds:

(5.1')XF(&1)+(M—A)}'<M> +(y—u)f<"“+2"””2) + (1= 0) F () — — /:f(x) ey

3 3 Ro — R1
< (k2 = K1) [(Q5 + Q7 + Q) [, Do F (52)| + (26 + Qs + Qo) |w, Dy F (k1)]]

where Q5-Q19 are given in (3.17)-(3.22), respectively.

Proof. If we consider Lemma 2 and apply the same method that used in the proof of Theorem 4, then we
can obtain the desired inequality (5.1). O

Remark 11. If we assume A\ = p=v = ﬁ in Theorem 7, then we obtain [35, Theorem 4.1].
q
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Corollary 9. If we take the limit ¢ — 1~ in Theorem 7, then we obtain the following Newton’s type inequality

A]—'(m)—k(u—)\)}'(%;@) +(y—u)f("“22“2> (1= ) F (ka) — — /:}'(x)dx

R2 — R1

< (2 = k1) (25 + Q7 + Q) |, Do F (k)| + (2 + Q5 + Do) |, DgF (k1)]
where
5 A1
Qf = —ANdr=— - —
5 /OT|T =35 1
Q*—/é(l ) /\‘d_18/\2+)\+1 28 X
6=/, s T 18 81 3’
g o 5p 1
97/})) T|QT*H|dT:§*T8+§
3 1842 + 5 + 5y 18
98=Au—ﬂV—umf=B—u—9—3,
1 3
. v 13v 35
Qg—/%TlT—V|dT—3—]8+&I-,
1 2 3
. 8 +13+13v Sv 35 v
Qlo—/§(1—7)|7'—ud7'— 18 R TR
Remark 12. If we take A = %, W= %, and v = % in Theorem 7, then we obtain the following inequality
1 2/431 + Ko K1+ 2/<62 1 2
= —_— —_ — ol d
‘8 {f(n1)+3.7:< 3 >+3.7:< 3 >+]~“(/€2)] s F () w,dqx
< (k2 = K1) [(O5 4 O7 4 O9) |, DgF (K2)| + (O + O + O10) |, DgF (k1))
where ) ) 5
1 1 256.2], 3], + 27?3][1 T 84S L,
@5:/ T qr—g dgT =
1 3
0 722, 27?3]; 0<g=3,
1
3
O = / (I1—71)|gr — 5|dgT =
0
1 1o, og 1

1 1
PRI 7 S 27?3]q ~ oserl,E, 4 <4< L,

1 1 .
ﬂ_ﬁ‘wg]ﬁz?é]q’ 0<g<i,
1 7 3
3 @—ﬁ, 0<g<3,
@7:/ qu—_,dq,r_
1 L s ,
3 T, o, T, 1 Sa<l
5 1
Os = / (L=7)|qm — 5| dqT
i 2
1 7 3
s~ 3, o, toam 0<q<3,

5
oy, o, w2 A, $Se<h

35 _19¢q

7
1 72[2], ~ 276l 0<g<g,
@9:/7'q7'77dq7':
2 343 91 35 7
: 256[2],[3],  72[2], + 27[31) 5§ <g<l,
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[a-

7 5 7 19 7
24 — 9[21 ~ 70, + 27[31’ 0<g<y,

O10

49 13¢ 91 35 _ 35 343
3R], TR, T

7
72[2], 24~ 27[3], ~ 25612 [3]," 8 <g<l

which is given by Erden et al. in [17, Theorem 1] but in our inequality the coefficients of |, DyF (k2)| and
|y DgF (k1)| are in modified form.

Theorem 8. We assume that the given conditions of Lemma 2 hold. If the mapping |., DyF|™*, p1 > 1 is
conver on K1, Kka], then the following Newton’s type inequality holds:

3 3 K2 — K1

(5.#)\]—'(&1)+(u—>\)}'<2mw> +(u—u)f<’“+2”2) (1= 1) F (ko) — — /:f(x) r

1—-L N
<<m—mﬂQJW%upﬁvw“+%MDﬁmmwm
17% P1 Py
007 (9 | Do (2)[" + Qs | Do F (1)) 77 )

1

1— ) 1
Q05 ™ (Qo [y Do F (R2) " + Qo |H1qu(%1)|pl)m]

where Q5-Q19 and Q13-Q15 are given in (3.17)-(3.22) and (3.10)-(3.12), respectively.

Proof. 1f we apply the steps used in the proof of Theorem 5 and taking into account Lemma 2, we can obtain
the required inequality (5.2). O

Corollary 10. If we take the limit ¢ — 1= in Theorem 8, then we obtain the following Newton’s type
imequality

‘A]-'(m)+(u—/\)]-"<2m+@) +(y—u)f("°1+2”°2> b (1) F (ha) — — /KTQ}"(x)dx

3 3 Ko — K1

1--L 1
<<@mﬂ@JW%MDJwMM+%MDJmMMm
1-3- * P1 * Py
0157 (9 s Dy (52) P + Q4 oy Dy F (1)) )

1--L L
+015 " (Q5 [, Dy F (k2)|” + Qi ImeF(m)’”)“]

where Q-Q7F, are defined in Corollary 9 and

-

3 1 A
@1:/ T = Ndr =X+ —— -2,
S 9[2], 3

2

3 18 +5
912:/ |7 — pldr = & -
1 18

3

1 2
18v* +13  5v
@13/§ |771/|d7f718 -3
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Remark 13. If we take A = %, W= %, and v = % in Theorem 8, then we obtain the following inequality

1 2K1 + Ko K1 + 2K 1 2
o () (55 ] - [

1—-L a1
< (ke — Hl) [614 " (95 |H1Dq~7: (“2)|p1 + O |H1Dq]: ("Ql)‘pl)p1
17% P1 Py
01577 (O 1 Dy (k2)|™* + O | Dy F (1)) 77 )
1— L ) 1
+016 " (Og |y DyF (K2)|”* + O1o |H1qu(/€1)|pl)pl]

where O5-O1¢ are given in Remark 12 and

b L S cg<t,

1 1 3R], TR, 24
914:/ qng dyT = ) ,
0 24 9[3]{17 0<(I§g7
1 3
2 1 6~ 3@l 0<g<iy,
le:‘/l 73 AT = 1 5q 103
3 2[2]q+9[2]q_§7 159<1,
7 5 7
1 7 ﬂ_9[2%q7 0<g¢<y,
Q —/ qr — = | d,T =
16 = =
2 8 1 49 13q 35 7< 1
3 o Tog, — 2 §S4<

which is given by Erden et al. in [17, Theorem 4] but the values of ©14-O15 and the coefficients of |, Dy F (k2)|"*,
lks DgF (51)["* are in more modified form.

Remark 14. If we assume A\ =y =v = ﬁ in Theorem 8, then we obtain [35, Theorem 4.2].

Theorem 9. We assume that the given conditions of Lemma 2 hold. If the mapping |, Dy F"*, p1 > 1 is
conver on K1, K], then the following Newton’s type inequality holds:

EF ) + =N F (2 ) 7 (22 ) w0 F e - e [T F @) i

3 K2 — K1
21 DyF (52)[” | (3¢ +2) o, DoF (k)] \ ™"
< (/%2—:%1) Ql8 <| ;[25 2)‘ ( )lg[Q]q 1)|

q q

1

+Ql%é <f<e1Dq‘7:("€2)|p1 + q|R1Dq]:(H1)|pl>p1

302], 3[2],

2 (5] DF (k)| (3¢ = 2) |, DoF (1) \ ™
+%0< oL, 92

q q

where pyt +r7t =1 and

1 2 1

3 3
le = / |qT — )\|’I"1 dq’r, ng = \/1' |qT — ‘u,‘rl qu, QQO = /2 |qT — l/‘r1 qu.
0 3 3

3

Proof. If we apply the steps used in the proof of Theorem 6 and taking into account Lemma 2, we can obtain

the required inequality (5.3). O
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Remark 15. If we take A = %, W= %, and v = % in Theorem 9, then we obtain the following inequality
1 2 2 1 2
S F )+ 3F (2 L gp (FLEER) L p )| - 7/ F(2) o dga
8 3 K2 — K1 Jg,

1

< (he—n) |00 (IMDBf[Qﬁf@)I . (3q+2)|gl[§qf(m)| ) '

q q

?Cmmfmm“+mmmfwMM>“

I 1) 312

q q

2 (5] DF (5a)* (3¢ — 2) |wy Do F (k1) \ ™
+@9< opl, 9[2

q q

where

7|
qr — <

qr — = 3 d,T

8 75

1" §
qu, 918 = ‘/1
3

%
@172/
0

which is given by Erden et al. in [17, Theorem 2] but the values of ©17-O19 are in more modified form.

1 1 1
9 qu, @19 :é

6. CONCLUSIONS

We conclude our work by mentioning that here, we gave the extension of quantum Simpson’s and quantum
Newton’s inequalities for quantum differentiable convex functions under certain parameters in the setting of
quantum calculus. It is important to mention that our results transformed into some new and known results
by considering the limit ¢ — 1~ and by different variations of the involved parameters in our main results.
We strongly believe that it is an interesting and new problem for the upcoming researchers who can obtain
similar inequalities for other kinds of convexity and quantum integrals.
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