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Summary

In this paper, we introduce an iteration process to approximate a fixed point of a con-
tractive self-mapping. The comparison theorem indicates that our iteration process
is faster than the other existing iteration processes in the literature. We also obtain
convergence and stability theorems of this iterative process for a contractive self-
mapping. Numerical examples show that our iteration process for approximating a
fixed point of a contractive self-mapping is faster than the existingmethods. Based on
this process, we finally present a new modified Newton-Raphson method for finding
the roots of a function and generate some nice polynomiographs.
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1 INTRODUCTION

The relationship between approximating fixed points of a contractive type operator and that of solving a corresponding nonlinear
equation is very close. The fixed point theory is helpful to solve problems that have applications in chemistry, economics,
engineering and game theory, etc. Consequently, there has been active research in approximating fixed points, both theoretical
and practical, of various contractive type operators. Let T ∶ K → K be a selfmap, where K is a non-empty subset of real
numbers. If T (x) = x, then x ∈ K is said to be a fixed point of T . In recent years, many fixed point iterative processes for
a contractive mapping have been studied by researchers e.g., Piri et al.21 and Thakur et al.24. The Picard iteration process is
defined as follows:

x1 = x0 ∈ K,
xn+1 = Txn, n ∈ ℕ.

}

(1)

If a fixed point problem is defined by a nonexpansive mapping, then the Picard iteration process (1) fails to approximate the
solution. In 1953, Mann16 provided an iterative process to approximate the solution of a fixed point problem defined by non-
expansive mapping. But the iterative process given by Mann16 is not applicable for a Lipschitzian pseudo-contractive operator.
Later in 1974, Ishikawa12 solved this problem by introducing an iterative process to obtain the convergence of a Lipschitzian
pseudo-contractive operator. In 2000, Noor18 introduced a three-step iteration process and claimed that Mann16 and Ishikawa12
iterations as special cases of that iteration process. Noor18 defined the iteration process as following:

x1 = x0 ∈ K,
zn = (1 − cn)xn + cnTxn,
yn = (1 − bn)xn + bnT zn,

xn+1 = (1 − an)xn + anT yn, n ∈ ℕ,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2)
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where {an}, {bn} and {cn} are in (0,1). In 2007, Agarwal et al.2 established the following iteration process,

x1 = x0 ∈ K,
yn = (1 − bn)xn + bnTxn,

xn+1 = (1 − an)Txn + anT yn, n ∈ ℕ,

⎫

⎪

⎬

⎪

⎭

(3)

where {an} and {bn} are in (0, 1) and proved that the process (3) convergences faster than the Mann16 iteration process for
contraction mappings. In 2014, Abbas and Nazir1 again introduced a three step iteration process which is faster than all of
Picard (1), Mann16 and Agarwal et al. processes (3). Furthermore, they applied this result to obtain the solutions of constrained
minimization problems and feasibility problems.
The importance of the coefficients {an}, {bn} and {cn} in the convergence rate of these processes has been given by Fathollahi

et al.9. In fact, if 1 − an < an, 1 − bn < bn and 1 − cn < cn for all n ∈ ℕ, then the iteration process given by Abbas and
Nazir1 converges faster than the iteration processes proposed by Picard (1), Mann16, Ishikawa12, Noor18 and Agarawal et al.2
for contractive mappings. In 2016, Thakur et al.24 introduced the following three-step iteration process:

x1 = x0 ∈ K,
zn = (1 − bn)xn + bnTxn,
yn = T ((1 − an)xn + anzn),

xn+1 = T yn, n ∈ ℕ,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4)

where {an} and {bn} are in (0,1). In 2019, Piri et al.21 first posed the following question:
Is it possible to develop an iteration process whose rate of convergence for contractive maps is faster than the iteration process
(1.7) and the other iteration processes?
And then they attempted to answer the above question by introducing a new iteration process and proving that their iteration
process converges faster than the iteration processes given in Abbas and Nazir1 and Thakur et al.24 for contractive mappings
when 1 − an < an, 1 − bn < bn and 1 − cn < cn for all n ∈ ℕ. The main objective of this paper is to study the same question (as
mentioned above) again.
To this end, the paper is sectioned as follows. We introduce a new iterative process for approximating a fixed point of a

contractive mapping and propose a new modified Newton-Raphson method for finding the roots of a function in Section 3
after setting up the background in Section 2. Our iteration process uses four steps, which is a novel process from the existing
iteration processes in the literature16,21 for approximating a fixed point. Moreover, we analyze the convergence and stability of
the proposed iteration process and compare the rate of convergence with the existing processes. The comparison results indicate
that our iteration process is faster than that of Piri et al.21 process. We illustrate this through different numerical examples. All
of the above facts are discussed in Section 3 and Section 4. Finally, some nicely generated polynomiographs are obtained using
the new modified Newton-Raphson method in Section 5, which is helpful for the textile industry as well as for those who are
interested in polynomiographs.

2 PRELIMINARIES

In this section, we recall some definitions and results to be used in establishing the main results. Let K be a normed space and
T be a mapping from K into itself, i.e., T ∶ K → K . Let F (T ) = {x ∈ K ∶ Tx = x}. Then T is called �-Lipschitzian if there
exists a constant � > 0 such that ‖Tx − T y‖ ≤ �‖x − y‖ for all x, y ∈ K . Furthermore, if � ∈ (0, 1) then a �-Lipschitzian
is called a contraction while it is called nonexpansive if � = 1 and quasi-nonexpansive mapping if F (T ) is non-empty and
‖Tx− x∗‖ ≤ ‖x− x∗‖ for all x ∈ K and x∗ ∈ F (T ). The set of fixed points F (T ) is nonempty for a nonexpansive mapping T ,
if K is closed bounded and convex subset of a uniformly convex Banach space.
In 2010, Bosede and Rhoades7 introduced the general class of contractive-like operators to prove strong convergence and

stability results for Picard-Mann hybrid iterative process as follows

d(x∗, T y) ≤ �d(x∗, y), (5)

where 0 ≤ � < 1. In a real normed linear space (5) is equivalent to

‖x∗ − T y‖ ≤ �‖x∗ − y‖,
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or,
‖T y − x∗‖ ≤ �‖y − x∗‖, (6)

where 0 ≤ � < 1. We frequently use (6) to establish the strong convergence and stability of our proposed iteration process. In a
Banach space K , a sequence {xn}∞n=0 ⊂ K converges strongly to a if and only if ‖xn − a‖ → 0 as n→∞.
The following definition is about the rate of convergence due to Berinde5 which is helpful to verify that the iteration process

(8) converges faster than the existing iteration processes.

Definition 1 (Berinde5 and Definition 9.1,4). Let {an}∞n=0, {bn}
∞
n=0 be two sequences of positive numbers that converge to a

and b, respectively. Assume that there exists
lim
n→∞

|an − a|
|bn − b|

= l.

i) If l = 0, then it is said that the sequence {an}∞n=0 converges to a faster than the sequence {bn}
∞
n=0 to b.

ii) If 0 < l <∞, then we say that the sequences {an}∞n=0 and {bn}
∞
n=0 have the same rate of convergence.

iii) If l = ∞, then the sequence {bn}∞n=0 converges faster than {an}
∞
n=0.

Stability results for several iteration processes for certain classes of nonlinear mappings are established by several
authors6,20,22,23. Harder and Hicks11 demonstrated the importance of investigating the stability of various iteration processes
for various classes of nonlinear mappings. In10, some applications of stability results to first order differential equations are
discussed. We next recall the definition of T -stable and almost T -stable.

Definition 2. Let K be a normed linear space and T be a self map of K , i.e., T ∶ K → K . Suppose that x0 ∈ K and
xn+1 = f (T , xn) defines an iteration process which yields a sequence of points {xn} in K . Let F (T ) = {x ∈ K|Tx = x} ≠ �
and that {xn}∞n=0 converges strongly to x∗ ∈ F (T ). Further, assume that {yn}∞n=0 is a sequence in K and {�n} is a sequence in
[0,∞) given by �n = ‖yn+1 − f (T , yn)‖.

i) If lim
n→∞

�n = 0 implies that lim
n→∞

yn = x∗, then the iteration process defined by xn+1 = f (T , xn) is said to be T -stable or stable
with respect to T .

ii) If
∞
∑

n=0
�n <∞ implies that lim

n→∞
yn = x∗, then the iteration process defined by xn+1 = f (T , xn) is said to be almost T -stable.

Clearly, any T -stable iteration process is almost T -stable, but an almost T -stable iteration process may fail to be T -stable.
Osilike20 gave an example showing that an iterative process which is almost T -stable but not T -stable.

3 MAIN RESULTS

This section is threefold. In the first part, we formulate a new iterative process for finding a fixed point of a contractive mapping.
The second part deals with the convergence and stability of the proposed iteration process. Comparison results for the rate of
convergence of the proposed process with Piri et al. and all other possibilities are discussed in the third part.

3.1 Formulation of faster iteration process
In 2019, Piri et al.21 introduced the following iteration process:

y0 = x0 ∈ K,
un = T ((1 − bn)yn + bnT yn),
vn = T un,

yn+1 = (1 − an)T un + anT vn, n = 0, 1, 2, ⋯ ,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(7)

where {an} and {bn} are in (0,1). The same authors21 proved that the iteration process (7) converges faster than the iteration
processes given by Abbas and Nazir1 and Thakur et al.24 for contractive mappings when 1−an < an, 1−bn < bn and 1−cn < cn
for all n ∈ ℕ.
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Now it is an obvious question that ‘Is it possible to develop an iteration process which converges faster than the iterative
process (7)?’
This is answered next by introducing the following iteration process:

x0 ∈ K;
un = T ((1 − cn)xn + cnTxn);
vn = T ((1 − bn)un + bnT un);
wn = T ((1 − an)vn + anT vn);
xn+1 = Twn, n ∈ ℕ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(8)

where {an}∞n=0, {bn}
∞
n=0 and {cn}

∞
n=0 are sequences in [0, 1]. Let us also consider the following other cases of (8).

x0 ∈ K;
un = T ((1 − cn)xn + cnTxn);
vn = T ((1 − bn)un + bnT un);
wn = T (anvn + (1 − an)T vn);
xn+1 = Twn, n ∈ ℕ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(9)

x0 ∈ K;
un = T ((1 − cn)xn + cnTxn);
vn = T (bnun + (1 − bn)T un);
wn = T ((1 − an)vn + anT vn);
xn+1 = Twn, n ∈ ℕ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(10)

x0 ∈ K;
un = T ((1 − cn)xn + cnTxn);
vn = T (bnun + (1 − bn)T un);
wn = T (anvn + (1 − an)T vn);
xn+1 = Twn, n ∈ ℕ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(11)

x0 ∈ K;
un = T (cnxn + (1 − cn)Txn);
vn = T ((1 − bn)un + bnT un);
wn = T ((1 − an)vn + anT vn);
xn+1 = Twn, n ∈ ℕ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(12)

x0 ∈ K;
un = T (cnxn + (1 − cn)Txn);
vn = T ((1 − bn)un + bnT un);
wn = T (anvn + (1 − an)T vn);
xn+1 = Twn, n ∈ ℕ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(13)

x0 ∈ K;
un = T (cnxn + (1 − cn)Txn);
vn = T (bnun + (1 − bn)T un);
wn = T ((1 − an)vn + anT vn);
xn+1 = Twn, n ∈ ℕ,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(14)
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x0 ∈ K;
un = T (cnxn + (1 − cn)Txn);
vn = T (bnun + (1 − bn)T un);
wn = T (anvn + (1 − an)T vn);
xn+1 = Twn, n ∈ ℕ.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(15)

3.2 Convergence and stability results
In this subsection, we prove that the proposed iteration process (8) converges and T-stable. The next result confirms that the
proposed iteration process is convergent.

Theorem 1. Let (K, ‖ ⋅ ‖) be a real normed linear space and T ∶ K → K be a contractive mapping with a contraction factor
� ∈ (0, 1) and a fixed point x∗ satisfying (6). Let {xn}∞n=0 be a sequence defined by (8), where {an}

∞
n=0, {bn}

∞
n=0 and {cn}

∞
n=0 are

convergent sequences in [0, 1] and
∞
∑

n=0
an <∞,

∞
∑

n=0
bn <∞ and

∞
∑

n=0
cn <∞. Then {xn}∞n=0 converges strongly to x

∗.

Proof. From Equation (8), we have
‖un − x∗‖ = ‖T ((1 − cn)xn + cnTxn) − x∗‖.

Thus,
‖un − x∗‖ ≤ � ‖(1 − cn)xn + cnTxn − x∗‖.

due to Equation (6). On arranging suitably right hand side of the above inequality, we get

‖un − x∗‖ ≤ � ‖(1 − cn)(xn − x∗) + cn(Txn − x∗)‖
≤ �

[

(1 − cn)‖xn − x∗‖ + cn‖Txn − x∗‖
]

.

Again, with the help of (6), we obtain

‖un − x∗‖ ≤ �
[

(1 − cn)‖xn − x∗‖ + cn�‖xn − x∗‖
]

.

Thus,
‖un − x∗‖ ≤ (� − cn� + cn�2)‖xn − x∗‖. (16)

Similarly, we can obtain
‖vn − x∗‖ ≤ (� − bn� + bn�2)‖un − x∗‖, (17)

and
‖wn − x∗‖ ≤ (� − an� + an�2)‖vn − x∗‖. (18)

Now, from Inequalities (16), (17) and (18), we get

‖wn − x∗‖ ≤ (� − an� + an�2)(� − bn� + bn�2)(� − cn� + cn�2)‖xn − x∗‖. (19)

Now, from Equation (19), we obtain

‖xn+1 − x∗‖ = ‖Twn − x∗‖
≤ �‖wn − x∗‖
≤ �4(1 − an + an�)(1 − bn + bn�)(1 − cn + cn�)‖xn − x∗‖

≤ �4+4
n
∏

k=n−1
(1 − �k + �k�)(1 − �k + �k�)(1 − 
k + 
k�)‖xn−1 − x∗‖

≤ �4+4+4
n
∏

k=n−2
(1 − �k + �k�)(1 − �k + �k�)(1 − 
k + 
k�)‖xn−2 − x∗‖

⋮

≤ �4(n+1)
n
∏

k=0
(1 − �k + �k�)(1 − �k + �k�)(1 − 
k + 
k�)‖x0 − x∗‖ (20)
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Since
∞
∑

n=0
an <∞,

∞
∑

n=0
bn <∞,

∞
∑

n=0
cn <∞, and � ∈ [0, 1), so

∞
∑

n=0
anbn <∞,

∞
∑

n=0
bncn <∞,

∞
∑

n=0
cnan <∞,

∞
∑

n=0
anbncn <∞ and

thus

lim
n→∞

�4(n+1)
n
∏

k=0
(1 − �k + �k�)(1 − �k + �k�)(1 − 
k + 
k�)

= lim
n→∞

�4(n+1) lim
n→∞

n
∏

k=0
(1 − �k + �k�)(1 − �k + �k�)(1 − 
k + 
k�)

= 0.

Using this in the inequality (20), we get
lim
n→∞

‖xn+1 − x∗‖ ≤ 0.

Since ‖ ⋅ ‖ is always nonnegative, so
lim
n→∞

‖xn+1 − x∗‖ = 0.

Due to the applicability importance (see Harder10, Harder and Hicks11) of stability result, we next prove that the process (8)
is T-stable.

Theorem 2. Let (K, ‖ ⋅ ‖) be a real normed linear space and T ∶ K → K be a contractive mapping with a contraction factor
� ∈ (0, 1) and a fixed point x∗ satisfying (6). Let {xn}∞n=0 be a sequence defined by (8), where {an}

∞
n=0, {bn}

∞
n=0 and {cn}

∞
n=0 are

convergent sequences in [0, 1] and
∞
∑

n=0
an <∞,

∞
∑

n=0
bn <∞ and

∞
∑

n=0
cn <∞. Then {xn}∞n=0 is T -stable.

Proof. Let us consider the iterative process (8). Given that T is a map with a fixed point x∗ satisfying (6), i.e.,

‖T y − x∗‖ ≤ �‖y − x∗‖.

Suppose that {yn}∞n=0 is a sequence inK and {�n} is a sequence in [0,∞) given by �n = ‖yn+1−f (T , yn)‖. To show the iteration
process defined by (8) is said to be T -stable, we need to show that lim

n→∞
�n = 0 implies that lim

n→∞
yn = x∗.

Let yn+1 = T yn, then

�n = ‖yn+1 − T yn‖
≤ ‖yn+1 − x∗‖ + ‖x∗ − T yn‖.

So, by using (6) we have
�n ≤ ‖yn+1 − x∗‖ + �‖yn − x∗‖.

Thus, if lim
n→∞

yn = x∗ then limn→∞ �n = 0. Conversely, suppose limn→∞ �n = 0. Since,

‖yn+1 − x∗‖ ≤ ‖yn+1 − T yn‖ + ‖T yn − x∗‖.

So, we get
‖yn+1 − x∗‖ ≤ �n + �‖yn − x∗‖

by using (6). Further, due to (20) the above inequality reduces to

‖yn+1 − x∗‖ ≤ �n + �4n+1
n−1
∏

k=0
(1 − �k + �k�)(1 − �k + �k�)(1 − 
k + 
k�)‖x0 − x∗‖.

Since lim
n→∞

�n = 0,
∞
∑

n=0
an < ∞,

∞
∑

n=0
bn < ∞,

∞
∑

n=0
cn < ∞ and � ∈ [0, 1), so lim

n→∞
‖yn+1 − x∗‖ = 0, i.e., lim

n→∞
yn = x∗. Thus,

{xn}∞n=0 is T -stable.
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3.3 Comparison results
In this subsection, we first prove that the proposed iteration process (8) converges faster than the iteration process proposed by
Piri et al.21 which is faster than1 and (4). To support our analytical result, we provide a numerical example using MATLAB
software.

Theorem 3. Let (K, ‖ ⋅ ‖) be a real normed linear space. Let T ∶ K → K be a contractive mapping with a contraction factor
� ∈ (0, 1) and a fixed point x∗ satisfying (6). Suppose that {xn}∞n=0 and {yn}

∞
n=0 are sequences defined by (8) and (7), respectively,

where {an}∞n=0, {bn}
∞
n=0 and {cn}

∞
n=0 are in [0, 1] and

∞
∑

n=0
an <∞,

∞
∑

n=0
bn <∞ and

∞
∑

n=0
cn <∞. Then the iteration process {xn}∞n=0

converges x∗ of T faster than {yn}∞n=0.

Proof. From Theorem 1, we have

‖xn+1 − x∗‖ ≤ �4(n+1)
n
∏

k=0
(1 − �k + �k�)(1 − �k + �k�)(1 − 
k + 
k�)‖x0 − x∗‖. (21)

And from the iteration process (7), we have

‖un − x∗‖ = ‖T ((1 − bn)yn + bnT yn) − x∗‖
≤ �(1 − bn)‖yn − x∗‖ + �bn‖T yn − x∗‖.

Using (6), we obtain
‖un − x∗‖ ≤ �(1 − bn + bn�)‖yn − x∗‖. (22)

Again,
‖vn − x∗‖ ≤ �‖un − x∗‖. (23)

From the inequalities (22) and (23), we obtain

‖vn − x∗‖ ≤ �2(1 − bn + bn�)‖yn − x∗‖. (24)

Thus,

‖yn+1 − x∗‖ = ‖(1 − an)T un + anT vn − x∗‖
≤ (1 − an)‖T un − x∗‖ + an‖T vn − x∗‖.

So, by (6) we get

‖yn+1 − x∗‖ ≤ �(1 − an)‖un − x∗‖ + �an‖vn − x∗‖
≤ �(1 − an)‖un − x∗‖ + �2an‖un − x∗‖
≤ �2(1 − an + �an)(1 − bn + bn�)‖yn − x∗‖

≤ �2+2
n
∏

k=n−1
(1 − �k + �k�)(1 − �k + �k�)‖yn−1 − x∗‖

≤ �2+2+2
n
∏

k=n−2
(1 − �k + �k�)(1 − �k + �k�)‖yn−2 − x∗‖

⋮

≤ �2(n+1)
n
∏

k=0
(1 − �k + �k�)(1 − �k + �k�)‖y0 − x∗‖. (25)

Now, from (21) and (25), we get

lim
n→∞

‖xn+1 − x∗‖
‖yn+1 − x∗‖

≤ lim
n→∞

�2(n+1)
∏n

k=0(1 − �k + �k�)(1 − �k + �k�)(1 − 
k + 
k�)‖x0 − x
∗
‖

∏n
k=0(1 − �k + �k�)(1 − �k + �k�)‖y0 − x∗‖

.

Since � ∈ [0, 1) and lim
n→∞

∏n
k=0(1 − �k + �k�)(1 − �k + �k�)(1 − 
k + 
k�)‖x0 − x

∗
‖

∏n
k=0(1 − �k + �k�)(1 − �k + �k�)‖y0 − x∗‖

is finite, so

lim
n→∞

‖xn+1 − x∗‖
‖yn+1 − x∗‖

≤ 0.
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Since norm is always nonnegative, so we have
lim
n→∞

‖xn+1 − x∗‖
‖yn+1 − x∗‖

= 0. (26)

Thus, according to Definition 1, the sequence {xn}∞n=0 converges faster than the sequence {yn}
∞
n=0 to x

∗ of T .

Example 4. Let K = ℝ be equipped with the usual norm, S = [1, 100] and T ∶ S → S be an operator defined by Tx =
√

x2 − 8x + 40 for all x ∈ S. Clearly, T satisfies the condition (6) with � ∈ [0.5222, 0.9987] and it has a unique fixed point
x∗ = 5. For an = bn = cn =

1
n + 1

and initial guess x0 = u0 = 100, Table 1 shows that the iteration process (8) converges to
x∗ = 5 faster than Piri et al.21, Abbas and Nazir1, Thakur et al.24, Agarwal et al.2, Noor18, Ishikawa12 and Mann16 iteration
processes.

Iter. No. New Piri et al. Abbas and Nazir Thakur et al. Agarwal et al. Noor Ishikawa Mann
21 1 24 2 18 12 16

0 100 100 100 100 100 100 100 100
1 61.53465240 76.82555349 65.22010055 76.80500512 80.64650216 45.87226874 76.77142088 92.24983745
2 29.95872996 57.74286091 45.83187441 60.56062946 68.17385182 19.71446003 62.41025099 86.45364694
3 6.34560401 40.27202015 30.19017675 46.32601089 57.60276004 3.69753086 50.62967387 81.31419107
4 5.00000000 24.09125893 16.80016240 33.20801737 47.95207180 5.43890614 40.13702847 76.50801026
5 5.00000000 10.24895074 6.90614284 21.10613921 38.89293762 4.89416519 30.50413567 71.90638287
6 5.03154112 4.98586742 10.70365598 30.31151617 5.02146996 21.62285045 67.44561483
7 5.00000966 5.00006353 5.31470505 22.22193567 4.99633144 13.66307816 63.09002316
8 5.00000000 4.99999981 5.00031901 14.80634426 5.00054327 7.43129928 58.81809687
9 5.00000000 5.00000000 5.00000016 8.67076527 4.99992921 4.98110388 54.61639739
10 5.00000000 5.00000000 5.41288802 5.00000823 5.00139958 50.47657456
11 5.00000000 5.00683588 4.99999914 4.99991168 46.39382695
12 5.00008432 5.00000008 5.00000481 42.36612508
13 5.00000122 4.99999999 4.99999977 38.39390645
14 5.00000002 5.00000000 5.00000001 34.48013547
15 5.00000000 5.00000000 5.00000000 30.63073679
16 5.00000000 5.00000000 26.85552346
⋮ ⋮
33 5.00000005
34 5.00000001
35 5.00000000
36 5.00000000

TABLE 1 Comparison Table an =
1

n + 1
, bn =

1
n + 1

and cn =
1

n + 1

The convergence behaviour of these iteration processes are represented in the Figure 1 .

Next, we prove that when 1 − an < an, 1 − bn < bn and 1 − cn < cn for all n ∈ ℕ, the iteration process (8) converges faster
than that of all other possibilities, i.e., the processes (9)-(15).

Theorem 5. If 1 − an < an, 1 − bn < bn and 1 − cn < cn for all n ∈ ℕ, then the case (8) converges faster than (9), (10), (11),
(12), (13), (14) and (15).

Proof. For the iteration process (8), we have

‖un − x∗‖ ≤ �(1 − (1 − �)cn)‖xn − x∗‖,
‖vn − x∗‖ ≤ �(1 − (1 − �)bn)‖un − x∗‖,
‖wn − x∗‖ ≤ �(1 − (1 − �)an)‖vn − x∗‖, and

‖xn+1 − x∗‖ ≤ �4(1 − (1 − �)an)(1 − (1 − �)bn)(1 − (1 − �)cn)‖xn − x∗‖.

Since an, bn and cn are in
(1
2
, 1
)

, so

1 − (1 − �)cn <
1 + �
2

, (27)

1 − (1 − �)bn <
1 + �
2

, (28)
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and
1 − (1 − �)an <

1 + �
2

. (29)
Using (27), (28) and (29) in (27), we get

‖xn+1 − x∗‖ ≤ �4(1 + �)3

23
‖xn − x∗‖

≤ �2×4(1 + �)2×3

22×3
‖xn−1 − x∗‖

≤ �3×4(1 + �)3×3

23×3
‖xn−2 − x∗‖

⋮

≤ �4(n+1)(1 + �)3(n+1)

23(n+1)
‖x0 − x∗‖. (30)
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Consider the iteration process (9), i.e.,
y0 = x0 ∈ K;
un = T ((1 − cn)yn + cnT yn);
vn = T ((1 − bn)un + bnT un);
wn = T (anvn + (1 − an)T vn);
yn+1 = Twn, n ∈ ℕ.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

We then have

‖un − x∗‖ ≤ �(1 − (1 − �)cn)‖yn − x∗‖,
‖vn − x∗‖ ≤ �(1 − (1 − �)bn)‖un − x∗‖,

and

‖wn − x∗‖ = ‖T (anvn + (1 − an)T vn) − x∗‖
≤ �‖anvn + (1 − an)T vn − x∗‖
= �‖an(vn − x∗) + (1 − an)(T vn − x∗)‖
≤ �an‖vn − x∗‖ + �(1 − an)‖T vn − x∗‖
≤ �an‖vn − x∗‖ + �2(1 − an)‖vn − x∗‖
= �(� + (1 − �)an)‖vn − x∗‖
≤ �(1 + (1 − �)an)‖vn − x∗‖.

So,

‖yn+1 − x∗‖ ≤ �4(1 + (1 − �)an)(1 − (1 − �)bn)(1 − (1 − �)cn)‖yn − x∗‖
≤ �4(1 − (1 − �)an + 2(1 − �)an)(1 − (1 − �)bn)(1 − (1 − �)cn)‖yn − x∗‖.

(31)

Since an ∈
(1
2
, 1
)

, so

1 − (1 − �)an + 2(1 − �)an ≤ 1 − 1 − �
2

+ 2(1 − �)

= 5 − 3�
2

. (32)

Using (27), (28) and (32) in (31), we get

‖yn+1 − x∗‖ ≤ �4(1 + �)2(5 − 3�)
23

‖yn − x∗‖

≤ �2×4(1 + �)2×2(5 − 3�)2

22×3
‖yn−1 − x∗‖

≤ �3×4(1 + �)3×2(5 − 3�)3

23×3
‖yn−2 − x∗‖

⋮

≤ �4(n+1)(1 + �)2(n+1)(5 − 3�)n+1

23(n+1)
‖y0 − x∗‖. (33)

From (30) and (33), we have

lim
n→∞

‖xn+1 − x∗‖
‖yn+1 − x∗‖

≤ lim
n→∞

�4(n+1)(1 + �)3(n+1)

23(n+1)
⋅

23(n+1)

�4(n+1)(1 + �)2(n+1)(5 − 3�)n+1

= lim
n→∞

( 1 + �
5 − 3�

)n+1

= 0.

Thus, the iteration process (8) is faster than (9). Similarly, we can show that the iteration process (8) is also faster than (10),
(11), (12), (13), (14) and (15).
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Example 6. Let K = R be equipped with the usual norm, S = [1, 15] and T ∶ S → S be an operator defined by Tx = 2
3
x + 3

2
for all x ∈ S. Clearly, T satisfies the condition (6) with � ∈ [0.5222, 0.9987] and it has a unique fixed point x∗ = 4.5. For
an = bn = cn =

1
n + 1

and initial guess x0 = u0 = 15, Table 2 shows that the iteration process (8) converges to x∗ = 4.5 faster
than the iteration processes (9), (10), (11), (12), (13), (14) and (15).

Iter. No. New (8) (9) (10) (11) (12) (13) (14) (15)

0 15 15 15 15 15 15 15 15
1 4.57681756 4.80727023 4.80727023 5.72908093 4.80727023 5.72908093 5.72908093 9.41632373
2 4.50189673 4.51770281 4.51770281 4.66522624 4.51770281 4.66522624 4.66522624 6.04211160
3 4.50006424 4.50119919 4.50119919 4.52238497 4.50119919 4.52238497 4.52238497 4.91785273
4 4.50000252 4.50008732 4.50008732 4.50302714 4.50008732 4.50302714 4.50302714 4.60494084
5 4.50000011 4.50000662 4.50000662 4.50040820 4.50000662 4.50040820 4.50040820 4.52515739
6 4.50000000 4.50000052 4.50000052 14.50005490 4.50000052 4.50005490 4.50005490 4.50584445
7 4.50000000 4.50000004 4.50000004 4.50000737 4.50000004 4.50000737 4.50000737 4.50132736
8 4.50000000 4.50000000 4.50000099 4.50000000 4.50000099 4.50000099 4.50029635
9 4.50000000 4.50000000 4.50000013 4.50000000 4.50000013 4.50000013 4.50006529
10 4.50000002 4.50000002 4.50000002 4.50001423
11 4.50000000 4.50000000 4.50000000 4.50000307
12 4.50000000 4.50000000 4.50000000 4.50000066
13 4.50000014
14 4.50000003
15 4.50000001
16 4.50000000
17 4.50000000

TABLE 2 Comparison Table an =
1

n + 1
, bn =

1
n + 1

and cn =
1

n + 1

4 A COMPARISON BY USING THE BASINS OF ATTRACTION

In this section, we present an empirical comparison of some iteration processes for fixed points approximation of Newton’s
iteration operator by using the basins of attraction for the roots of some complex polynomials.
The well-known Newton method for finding roots of a complex polynomial p is given by the formula:

zn+1 = zn −
p(zn)
p′(zn)

, for n = 0, 1, 2,⋯ . (34)

If we consider f (z) = z − p(z)
p′(z)

, we may rewrite the Newton iteration as the fixed-point iteration

zn+1 = f (zn). (35)

If this iteration converges to a fixed point z of f , then

z = f (z) = z −
p(z)
p′(z)

. (36)

So, p(z)
p′(z)

= 0, i.e., p(z) = 0. Thus, z is a root of p(z). Now, using the iteration process (8) in (35), we get

z0 ∈ K;
un = f ((1 − cn)zn + cnf (zn));
vn = f ((1 − bn)un + bnf (un));
wn = f ((1 − an)vn + anf (vn))

= (1 − an)vn + anf (vn) −
p((1 − an)vn + anf (vn))
p′((1 − an)vn + anf (vn))

;

zn+1 = f (wn) = wn −
p(wn)
p′(wn)

,

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(37)
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If the sequence {zn}∞n=0 (the orbit of the point z0) converges to a root z∗ of the polynomial p then we say that z0 is attracted
by z∗. The attraction basin of the root z∗ of the polynomial p is the set of all starting points z0 which are attracted by z∗. We
consider that the iteration method converges if the absolute value |

|

p(zn)|| of the polynomial is less than 10−8 in a maximum of
13 iterations.
We compute theAverageNumber of Iterations (ANI) required for convergencs per initial converging points andConvergence

Area Index (CAI)
CAI =

Number of converging points
Total number of grid points

.

We compare the iteration processes by using Newton’s operator and apply the iteration processes above for finding the roots
of complex polynomials

P3(z) = z3 − 1,
P5(z) = z5 − 1, and
P7(z) = z7 + z5 + z6 + z5 + z4 + z3 + z2 + z.

by assuming � = 0.99, � = 0.99, and 
 = 0.99. To generate the basins of attraction for the roots of the polynomials P3, P5 and
P7, we consider the square domain D3 = [−2, 2] × [−2, 2], D5 = [−5, 5] × [−5, 5] and D7 = [−5, 5] × [−5, 5], respectively,
centered at the origin in the complex plane. We divide each of these square domains in to 500 × 500 grids. By using Newton’s
operator N(z), we generate the sequence {zn}, n = 1, 2, 3, ⋯ corresponding to an iteration process, starting at each grid
point z0. If the sequence {zn}, n = 1, 2, 3, ⋯ approaches a root of polynomial with accuracy of 10−8 in a k ≤ 13 number of
iterations, then the converging point z0 is colored in a color assigned to k, otherwise the point is colored in white. The basins of
attraction for different iteration processes are presented in Figure 1, Figure 2 and Figure 3.

Iter. process P3(z) P5(z) P7(z)

Picard 6.7123 10.1230 9.6542
Mann 7.7480 10.5106 9.7818
Ishikawa 5.9831 8.1091 8.7698
Noor 5.3938 6.9599 7.1229
Agrawal 4.2044 6.4647 7.7119
Thakur 2.7437 4.5348 5.1621
Abbas and Nazir 2.9730 4.7298 5.3641
Piri 2.3814 3.7565 4.1351
New 1.3612 2.3155 2.5330

TABLE 3 ANI for iteration processes and the test polynomials

Iter. process P3(z) P5(z) P7(z)

Picard 0.9328 0.6572 0.2475
Mann 0.9064 0.4470 0.1734
Ishikawa 0.9917 0.9024 0.9796
Noor 0.9993 0.9600 0.9988
Agrawal 0.9969 0.9333 0.9854
Thakur 0.9999 0.9804 0.9994
Abbas and Nazir 0.9999 0.9793 0.9993
Piri 1 0.9929 1
New 1 0.9998 1

TABLE 4 CAI for iteration processes and the test polynomials
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FIGURE 2 The basins of attraction for the roots of the polynomial P3(z).

5 APPLICATIONS

Now recall that a n× nmatrix Π = (�ij) is a matrix whose rows and columns form a permutation of the identity matrix. To each
matrix Π, we associate a complex polynomial in the following way. To the location (i, j) in Π, we set Θij :

Θij = i + ji, (38)

where i =
√

−1.
Next, to the matrix Π, we further define a n×nmatrix Π = (�ij) as �ij = �j,(n+1−j). This matrix is analogous to the transpose,

except that i-th row of Π corresponds to the i-th column of Π but written from the bottom up. Finally, for the matrix Π = (�ij)
the complex polynomial pΠ can be defined as15:

pΠ(z) = Π�ij=1(z − Θij). (39)
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FIGURE 3 The basins of attraction for the roots of the polynomial P5(z).

Example 7. Let Π be a 3 × 3 permutation matrix and create Π:

Π =
⎡

⎢

⎢

⎣

1 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

, Π =
⎡

⎢

⎢

⎣

0 1 0
0 0 1
1 0 0

⎤

⎥

⎥

⎦

.

The complex polynomial associated to the matrix Π is as follows:

pΠ(z) = (z − (1 + 2i))(z − (2 + 3i))(z − (3 + i)),
= z3 − (6 + 6i)z2 + 25iz + (19 − 17i).

Its polynomiographs are presented in Figure 5 . It is easily seen that localization’s of ones in permutation matrix Π correspond
to the images of polynomiographs. Polynomiographs obtained via Mann and Ishikawa iterations for different �, � are quite
different in comparison to the Picard iteration. All the images have been obtained for � = 0.00000001 and k = 13.

Doubly stochastic matrices have all non-negative elements and the sum of the entries of each row and column equals 1.
According to Birkhooff-von Neumann theorem17 any double stochastic matrix A can be represented as a convex combination
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FIGURE 4 The basins of attraction for the roots of the polynomial P7(z).

of permutation matrices:

A =
k
∑

i=1
�iΠi, (40)

where
∑k
i=1 �i = 1 and �i ≥ 0 for i = 1, ⋯ , k.

The corresponding complex polynomial pA to a doubly stochastic matrix A can be defined as follows;

pA(z) = Πaij>0(z − aijΘij), (41)

where matrix A to A is constructed in a similar way as matrix Π to Π.

Example 8. Let A be a double stochastic matrix defined as following:

A =

[

1
4

3
4

3
4

1
4

]

= 1
4

[

1 0
0 1

]

+ 3
4

[

0 1
1 0

]

.
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FIGURE 5 Polynomiographs of the permutation matrix Π, for different values of �, � and 
 using Piri and New iteration

The corresponding complex polynomial pA to the matrix A has the following form:

pA(z) =
(

z −
3(1 + i)
4

)

(

z − 1 + 2i
4

)(

z − 2 + i
4

)

(

z −
3(2 + 2i)

4

)

.

pA(z) = z4 − (3 + 3i)z3 + (95i∕16)z2 + (153∕64 − 153i∕64)z − (45∕64)
Polynomiographs for a double stochastic matrix A are presented in Figure 6 .

6 CONCLUSION

The main contributions of our work are summarised hereunder.

1. We have introduced a novel iteration process to approximate a fixed point of contractive type mappings.

2. We have compared the rate of convergence of our iteration process with the iterative processes (7) proposed by Piri et
al.21 to approximate fixed point. The comparison result indicates that the iteration process (8) is faster than the process
(7) which is faster than the process given by Abbas and Nazir1 and Thakur et al. (4).

3. Numerical examples show that:

(a) For a contractive mapping, the iteration process (8) is faster than those of existing processes, i.e., the ones proposed
by the processes (1)-(4), (7).

(b) The iteration process (8) is also faster than all other possibilities of (8), i.e., the processes (9)-(15).
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