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ABSTRACT. We consider a parameter identification problem associated with a quasi-linear elliptic
Neumann boundary value problem involving a parameter function a(-) and the solution u(-), where
the problem is to identify a(-) on an interval I := g(T") from the knowledge of the solution u(-) as
g on T, where T' is a given curve on the boundary of the domain © C R3 of the problem and g
is a continuous function. The inverse problem is formulated as a problem of solving an operator
equation involving a compact operator depending on the data, and for obtaining stable approximate
solutions under noisy data, a new regularization method is considered. The derived error estimates
are similar to, and in certain cases better than, the classical Tikhonov regularization considered in
the literature in the recent past.
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1. INTRODUCTION

Let © be a bounded domain in R? with C*! boundary. Consider the problem of finding a weak
solution u € H'(Q) of the partial differential equation

(1.1) —V.(a(u)Vu) =0 in Q
with boundary condition
(1.2) a(u)% =j on 09,

where a € H'(R) and j € L*(99). It is known that such a solution u exists if a > ko > 0 a.e. for
some constant ko and [, j = 0 (see [10], [7]). It is also known that, under an additional assumption
that j € WI=1/P2(9Q) with p > 3, u € C*(Q) (cf. [4]). One can come across this type of problems
in the steady state heat transfer problem with w being the temperature, a the thermal conductivity
which is a function of the temperature, and j the heat flux applied to the surface.
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2 M. THAMBAN NAIR AND SAMPRITA DAS ROY

In this paper we consider one of the inverse problems associated with the above direct problem,
namely the following;:

Problem (P): Let v :[0,1] — 9Q be a C*- curve on 9 and T be its range, that is, T' := ([0, 1]).
Given g : T — R such that goy € C*([0,1]) and j € W=1/P)P(0Q) with p > 3 and [,,j =0, the
problem is to identify an a € HY(R) on I := g(T') such that the corresponding u satisfies (1.1)-(1.2)
along with the requirement

(1.3) u=g onl.

It is known that, with only the knowledge of u = g on I, the parameter a can be identified uniquely
only on I (cf.[2]). In the following we shall use the same notation for a for a € H*(R) and its restriction
a, € H'(I).

We shall see that Problem (P) is ill-posed, in the sense that the solution a|, does not depend
continuously on the data g and j (see Sections 2). To obtain a stable approximate solution for
Problem (P), we use a new regularization method which is different from some of the standard ones
in the literature. We discuss this method in Section 3.

The existence and uniqueness of the solution for Problem (P) is known under some additional
conditions on 7 and g, as specified in Section 2 (c.f. [2, 4]). In [7] and [4] the problem of finding
a stable approximate solution of the problem is studied by employing Tikhonov regularization with
noisy data. In [7], with the noisy data g°, in place of g, satisfying ||g — g‘$||L2(p) < 4, convergence rate
lla — a®|| g1 (1) = O(V/$) is obtained whenever a € H4(I) and its trace is Lipschitz on <2, where a’ is
the approximate solution obtained via Tikhonov regularization. In [4], the rate [la—a%||12(1) = O(V/6)
is obtained without the additional assumption on a. Moreover, here the noisy data j° belonging to
W=1/rr(9Q) with p > 3, and satisfying |j — j6||L2(BQ) < 4, is also considered along with the noisy
data g% as considered in [7]. It is stated in [4] that “the rate O(v/§) is possible with respect to
H'-norm, provided some additional smoothness conditions are satisfied”; however, the details of the
analysis is missing.

Under our newly introduced method, we obtain the above type of error estimates using appropriate
smoothness assumptions. In particular we prove that, if g; € R is such that I = [go, ¢1] and if a(g1)
is known or is approximately known, and the perturbed data j° and ¢® belong to W1=/7?(9Q) for
p > 3 and C1(T), respectively, satisfying

17— °llr2e) <6, g — ¢°llwreqr) <6,

then the convergence rate is O(\/S) with respect to L?-norm. With additional assumption that the
exact solution is in H3(I) we obtain a convergence rate O(6%/3) with respect to L?-norm. Again,
in particular, if g o is in H*([0,1]), the rate O(6%*/3) with respect to L*-norm is obtained under a
weaker condition on perturbed data ¢°, namely, ¢° € L(T) with |g — g‘5||Lz(p) < 4. Also, in the new
method we do not need the assumption on g° made in [4] which is ¢%(I") C g(I'). Thus some of the
estimates obtained in this paper are improvements over the known estimates, and are also better than
the expected best possible estimate, namely 0(53/ %), in the context of Tikhonov regularization, as
mentioned in [4].

The paper is organized as follows: In Section 2 we present a theorem which characterize the solution
of the inverse Problem (P) in terms of the solution of the Laplace equation with an appropriate Neu-
mann condition. Also, the inverse problem is represented as the problem of solving a linear operator
equation, where the operator is written as a composition of three injective bounded operators one of
which is a compact operator, and prove some properties of these operators. The new regularization
method is defined in Section 3, and error estimates with noisy as well as exact data are derived. In
Section 4 we present error analysis with some relaxed conditions on the perturbed data. In Section
5 a procedure is described to relax a condition on the exact data and corresponding error estimate
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is derived. In Section 6 we illustrate the procedure of obtaining a stable approximate solution to
Problem (P).

2. OPERATOR THEORETIC FORMULATION

Throughout the paper we denote by I the range of the function g : I' — R, and write it as
I = [go, g1], that is go and g; are the left and right end-points of the closed interval g(~([0, 1])).
The following theorem, proved in [4], helps us to identify the solution of Problem (P).

Theorem 2.1. Let j, g and ~ be as specified in Problem(P). Then, Problem(P) has a unique solution
a € HY(I), and it is the unique a € H'(I) such that

9(v(s))
(2.1) v(y(s)) = / a(t)dt Vs e|[0,1],
90
where v € C*(Q) is the unique function which satisfies
(2.2) —Av=0 inQ,
ov .
(2.3) Eoi j on 99
and

(2.4) /Qv = 0.

It is known that if j € W!=Y/PP(9Q) for p > 3, then v satisfying (2.2)-(2.3) belongs to W?2P(9Q),
and

(2.5) 07 [[w2e 0y < Cllillrza0)

for some constant C' > 0 (see Theorem 2.4.2.7 and 2.3.3.2 in [3]).

In view of Theorem 2.1, the inverse Problem (P) can be restated as follows: Given j and g as in
Problem (P), let v € C*(Q) be the function satisfying (2.2), (2.3) and (2.4). Then, a € H(I) is the
solution of Problem(P) if and only if

g(v(s))
/ a(t)dt = v(1(s)), s €[0,1].

go
The above equation can be represented as an operator equation
(2.6) Ta = v’ o,
where v7 is the solution of (2.2)-(2.4) and the operator T : L?(I) — L?[0, 1] is defined by

g(v(s))
(2.7) (Tw)(s) = / w(t)dt, we L*(I),scl0,1].

9o
Theorem 2.2. The operator T defined in (2.7) is an injective compact operator of infinite rank. In
particular, T : H'(I) — L?[0,1] is a compact operator of infinite rank.
Proof. Note that for every w € L?(I) and for every s,7 € [0, 1], we have

(Tw)(s) = (Tw)(7)] < [wllz2(n)|(g 0 7)(5) = (g0 7)(7)]"/2.
Since g o 7y is continuous, the set {Tw : ||w||r2(;) < 1} is equicontinuous and uniformly bounded in
C[0,1]. Hence, T is a compact operator from L?(I) to C[0,1]. Since, the inclusion C[0,1] C L?[0,1]
is continuous, it follows that T': L?(I) — L?[0,1] is also a compact operator. We note that T is
injective. Hence, T is of infinite rank. (Il
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It is to be observed that the compact operator T defined in (2.7) depends on g. Thus, the problem
of solving operator equation (2.6) based on the data (g,j) is non-linear as well as ill-posed.

In order to consider our new regularization method for obtaining stable approximate solutions, we
represent the operator 7" in (2.6) as a composition of three operators, that is,

T =T315Th,
where, for r € {0,1},
Ty :H'(I) = H™NI), Ty:H"(I)— L*(I), Ts:L*(I)— L*([0,1])

are defined as follows:

(2.8) Ti(w)(r) = /Tw(t)dt, we H(I), 7€l
(2.9) To(w) = w, weHTYI),
(2.10) Ts(w) = wogor, we L*1).

Clearly, 11,15, T5 are linear operators and

g(7(s))
(T3TThw)(s) = / w(t)dt = (Tw)(s), se€0,1].

90

Here, we used the convention that HO(I) := L?(I).
By the above representation of T', the operator equation (2.6) can be split into three equations:

(2.11) T5(¢) = v/ on,
(2.12) Tr(b) = ¢,
(2.13) Ti(a) = b

To prove some properties of the operators 11,15, T3, we specify the requirements on j, g and v, namely
the following.

Assumption 2.3. Let j € W-V/P)2(9Q) with p > 3 and Joqd = 0. Let v :[0,1] = 9Q be a C'-
curve on 9Q and g : I' — R be such that g € C*(T),

(2.14) C, <l'(s)] <C) Vse0,1],

(2.15) Cy <lg'(v(s))I = Cy Vs €[0,1],
for some positive constants C,, C’, Cy and Cy.

Next we state a result from analysis which will be used in the next result and also in many other
results that follow.

Lemma 2.4. Let hy and he be two continuous functions on intervals J1 and Jy respectively, such that
ho(J2) = Jy. Also, let hly be continuous with hly # 0. Then, we have the following.

. hi(y)
/ i (ha(w))d = / Ty ()]

We shall also make use of the following proposition.

Proposition 2.5. Let Cy, C, C; C!, be as in Assumption 2.3. Then for any w € L2(1),

(2.16) CgCW/O w(g(v(s)))]*ds < /Ilw(y)IZdy < C;C;/O w(g((s)))[*ds.
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Proof. By Lemma 2.4 and the inequalities (2.14) and (2.15) in Assumption 2.3, we have

- w(y)|? 1
w(g st_/ dy < /w 2d 5
[, wtaton TG o T = G0 S, T
| \dy—/\w PG @lds <04, [ oo Pas.
go
From the above, we obtain the required inequalities in (2.16). (]

Theorem 2.6. Let r € {0,1}, and let
Ty : H'(I) — H™TNI), Ty:H"(I)— L*(I), Ts:L*(I)— L*(]0,1])

be defined as in (2.8), (2.9) and (2.10), respectively. Then, Ty is a compact operator, and for every
w e L*(I),

(2.17) lwll gy < 1T (w) ey < (14 Vg1 = go)llwll a1y
(2.18) CyC | Ts(w)|| 21y < lJwllz2(ry < CoC I Ts(w)llL2((0,1)).

In particular, Th and T3 are bounded operators with bounded inverse from their ranges.

Proof. Since H'(I) and H?(I) are compactly embedded in L?(I) (cf. [6]), T is a compact operator
of infinite rank. Now, let w € H'(I) and 7 € I. Then

T

T(w)() < [ [w(®)]dt < [[wllz2)vgr = g,

g0
so that
1Ty (w)lL2(r) < |lwllr2(r) Vg1 — o-
Hence, using the fact that (71 (w))’ = w and (T1(w))” = w’, we have
lwllzzry < 171 (w)llp2y + lwllzzy < (1 + Va1 — go)llwl|pe(n

so that

wllzzry < N (w)llary < 1+ Vo1 — go)llwllzz,

wll vy < |T1(w)|[ g2y < (1 + Va1 — go)llwll (1),
Thus, (2.17) is proved.

By the inequalities in (2.16) we obtain

(2.19) CoOy | T3(w)ll 20,1y < lwllz2(ry < CoCLIIT3(w)ll L2 (10,17)
for every w € L2(I). The inequalities in (2.17) and (2.19) also show that Ty and T3 are bounded
operator with bounded inverse from their ranges. (]

3. THE NEW REGULARIZATION

We know that Problem (P) is ill-posed. We may also recall that the operator equation (2.6) is
equivalent to the system of of operator equations (2.11)-(2.13), wherein equation (2.12) is ill-posed,
since Ty is a compact operator of infinite rank. Thus, in order to regularize (2.6), we shall replace
the equation (2.12) by a regularized form of it using a family of bounded operators T§*, & > 0, which
approximates the compact operator 75 in norm.

Note that Ty : H2(I) — L?(I) is defined by

Ty(w) =w, we H*(I).
We consider T as a perturbed form of Ty, namely, Ts' : H?(I) — L?(I), defined by
(3.1) T3 (w) = w—aw”, w e H*(I)

for each o > 0.
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Theorem 3.1. For a > 0, let T§* : H?(I) — L?(I) be defined as in (3.1) Then,

1T @) ary < max{l, a}wlgz,  w € H(I).
In particular, TS is a bounded operator with ||T§'|| < max{l,«}. Further,

ITs¥ —To] =0 as «a—0.
Proof. We observe that, for any w € H?(I),
175" (W)l L2 (1) = llw — aw” |21y < llwllz2ry + allw”| g2y < max{1, a}l|w]|zzn)-

Thus, T3' is a bounded operator with | 75| < max{l, a} for all & > 0. Further,

(T3 = T2) (W)l L2y = llow” || 2(r) < aflwll ()
Hence, we also have ||Tg* — Tz|| — 0 as o — 0. O

In order to define a regularization family for 75, we introduce the space

(3.2) W = {w € H*(I) : w(go) = 0, w'(g1) = 0}.
Note that, for w € H2(I), w € W if and only if

w(t) = /t £(s)ds

go

for some & € H'(I) satisfying £(g;) = 0. We prove that W is a closed subspace of H2(I) and T§' as
an operator from W to L?(I) is bounded below with respect to H2(I) norm.

Proposition 3.2. The space W defined in (3.2) is a closed subspace of H*(I) and
(T5'w)" = Q(I3)",
where Q : H2(I) — H?*(I) is the orthogonal projection onto W.

Proof. Let (w,) in W be such that w,, — wy in H?(I) for some wo € H*(I). By a Sobolev imbedding
Theorem (cf. [6]), H?(I) is continuously imbedded in the space C1(I) with C'-norm. Therefore,
wo € CY(I), and

ilel]?ﬂwn(t) —wo(t)| + |wy, (t) —wi(t)|} = 0 as n — oc.

Also,
[wn(g0) — wo(go)| < ilelg{lwn(t) —wo(t)| + [wy (t) —wo(t)[} VneN

and
|wy,(91) — wh(g1)] < iul;{l’wn(t) —wo(t)] + [wy,(t) —wp(t)]} Yn €N,
€
Thus, since w,, € W, in particular
[wo(go)l = lim wy(go) =0 and  |wy(gr)] = lim wy,(g1) = 0.

Hence wy € W. Thus W is closed. Now, let Q : H?(I) — H?(I) be the orthogonal projection onto
W. Then, for y € L?(I) and w € W we have,

(QUTS) " (y), wy g2y = (¥, (T5)Qw) 21y = (y, (T5' Iw)w) 21y = ((T5'Iw) "y w) 2 (1)
Hence we have (T$*|w)* = Q(T5)*. O

Let us see some other properties of the space YW which shall be used in order to construct the
regularization method.
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Proposition 3.3. Let a > 0. Let L : H*(I) — H?(I) be defined by

t—g1 t—g1

e(ﬁ)+e(ﬁ)]
)

t—go _/t—gg
L) _ )

g1

—90) —(21790) 0—91
Va + e Vo

6(90\;&91) + 67(9\/a

La(t) = 2'(g1)Vex [

( + z(go) [
e
for every x € H*(I), t € I. Then we have the following.
(i) For any x € H*(I), Lx € C=(I) C H*(I), a(Lz)" = Lz and Lz € N(T$).
(ii) L is a bounded linear operator.
(iii) The map id — L is a projection onto W, where id is the identity map on H*(I).

Proof. Clearly, L is a linear operator, and for any € H?(I), we have Lz € C>(I) C H?*(I) and
a(Lz)" = Lz. To show that L is continuous, let (x,,) be a sequence in H?(I) such that ||z, —z|| g2y —
0 for some # € H?(I). By a Sobolev imbedding Theorem (cf. [6]), H2(I) is continuously imbedded
in the space C''(I) with C'-norm, and so we have |z, (go) — z(go)| — 0 and |z},(91) — 2'(g1)| — O
as n — oo. Using this, it can be shown that L is continuous. Now again by definition of L, for any
x € H%(I) we have

(x —Lx)(90) = (90) — La(go) = x(go) — x(g0) = 0,

(z— L)' (1) = 2'(g1) — (La)'(g1) = 2'(g1) — 2'(91) = O,
so that (id — L)(z — Lz) = v — Lx — L(x — Lz) = © — Lz. Hence, using the definition of the space W,
we have id — L is a projection onto W. (]

We shall use the notation
(3.3) Cr = |lid — L],
where L is the bounded operator as in Proposition 3.3.

Theorem 3.4. Let 0 < a < 1. Then, for every w € W,

(3.4) 175" (W)l z2(1) = ellw| m2(r)
(3.5) 175 (W)l 2y > Vallwllm 1)
Proof. First we observe, by integration by parts, that for wi,wy € W, [; wiwy = — [, wiw}). Hence,

for every w € W,

g1
178 @)y = / I—
go

g1 5 9 g1 9 g1
/ |lw]® 4+ « / [w”|* — 2a/ ww'
9o 9o 90

g1 g1 g1
_ / |w|2+a2/ |w”|2+2a/ |w/|2'
go go go
Since 0 < a < 1, for every w € W,

g1 5 5 g1 9 g1 9 5 9
12 !/
/ m|+a/)mw+na/ w2 > a?||wl 3,
go g0 go

o 2 2 o 112 o 712 2
/ M-Hx/lwl+m/ w2 > w2 .
go go go

This completes the proof: ([

At this point let us note that, by (3.4), T§* is is bounded below on W. Henceforth, we shall use the
same notation for Ts* and its restriction to W, that is,

(3.6) Ts'(w) =w—aw”, weWw
and the adjoint of this operator will be denoted (T¥*)*.
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In the following, we use the notations R(S) and N(S) for the range and null space, respectively, of
the operator S.

Lemma 3.5. Let Hy and Hs be Hilbert spaces and let S : Hy — Hy be a bounded linear operator with
closed range. Then,

(3.7) R(S*S) = R(S™)
Suppose, in addition, that there exist ¢ > 0 such that ||Sxz|| > c||z| for all x € Hy. Then
(3.8) |S*Sz|| > ®||lz| Va € Hi,

Further, if || - |lo is any norm on Hy and if cog > 0 is such that ||Sz|| > col|z||o for all x € Hy, then
1
(3.9) 15T yllo < vl Yy e Hs,

where ST := (8*S)~1S*, the generalized inverse of S.

Proof. Clearly, R(S*S) C R(S*). Now, let x € R(S*), and let y € Hy be such that z = S*y. Let
y1 € N(S*) and y, € N(S*)* be such that y = y; + yo. Hence, x = S*y,. Since R(S) is closed,
N(S*)t = R(S). Hence, there exists 2o € H; such that yo = Sxs. So, x = S*Swzy € R(S*S). Thus,
R(S*) C R(S*S). Thus, we have proved (3.7).

Next, suppose that there exist ¢ > 0 such that ||Sxz| > c||z|| for all « € Hy. Then for every z € Hy,

15* Sz || |zl > (S* Sz, 2)m, = [1Sz]|* = |||,

Thus, we obtain (3.8).

By (3.8), R(S*S) is closed and S*S has a bounded inverse from its range and hence, by (3.7),
(8*S)~15* is well defined as a bounded operator from Hy to H;j. Since R(S) is closed, it is known
that for every y € Hs, there exists x € Hy such that

(3.10) (§*S)z =S"y and Sz = Py,
where P : Hy — Hs is the orthogonal projection onto R(S) = R(S), and this z is unique since S
and S*S are bounded below (see, e.g. [8]). Now, assume that || - ||o is any norm on Hj such that

[|Sz|| > collz||o for all & € Hy for some ¢y > 0. For y € Ho, if x is as in (3.10), then

K on—1 ook 1 1 1
[(S*S) 1S yllo = llzllo < —[ISz]| = =[Pyl < —Ilyll.
Co €o Co

Thus, we obtain (3.9). O
Corollary 3.6. Let 0 < a < 1 and TS be as in (3.6). Then for every y € L*(I),
o\ * oy — 1 Q| * 1
(3.11) I L) () Ylazay < —lylleza),
ay* oy 1 A% 1
(3.12) I(T5)"15) (T5) yllaray < ﬁ”y”LQ(I)v

Proof. Taking Hy = W and Hy = L?(I) in Lemma 3.5, the inequalities in (3.11) and (3.12) follow
from (3.9) by taking the norm || - [o as || - |[g2(s) and || - || g1 (1) respectively, on W and by using (3.4)

and (3.5), respectively. |
Let R, : L?>(I) — W for a > 0 be defined by
o\ ¥ o _1 o\ ¥
(3.13) Ro = ((13')(13)) (13)", a>0.

We note that, by Corollary 3.6, R, is a bounded operator from L?(I) to W (with respect to the norm
Il - lz2(r)), for each a > 0. Since (7> — T5")(w) = aw”, we have
(3.14) RoTow —w = aRq(w").

Next, we prove that {R,}a>0, defined as in (3.13), is a regularization family for 75 : W — L2(I).
Towards this aim, we first prove the following theorem.
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Theorem 3.7. For a > 0, let R, be as in (3.13), and let Cr, be as in (3.3). Then the following
results hold.

(i) ||RQT2w||H2(1) < 2||w||H2(1) for allw e W.
(ii) ||RaT2w — wHHz(I) < (1 + CL)a||w"||Hz([) fOT all w in WnN H4(I)
(iii) [[RaTow — w|gr(ry < vVallw”| g2y for all w in W.
Proof. (i) Let w € W. By (3.14), we have
[RaTow| 21y = [|[w — [w — RaTo(w)] || m2(ry = [lw + aRa(w”) |2 (r)-
Hence, using (3.11),
[RaTow| 21y < wllaz(ry + al| Ra(w)l g2y < w2y + 1wz
Thus, ||RaTow| g2y < 2[|w|| 21y for every w € W.
(ii) Let w € WN H4(I). Let us note that w” is in the domain of Ty and hence is in H?(I) (may

not be in W). By Proposition 3.3, w”’ — Lw” € W and Lw” € N(T5'). Thus, using the above fact,
along with the fact that w” is in the domain of Ty, by (3.14) and (i) above, we have

|RoTow — w2y = afRa(w”)| a2

04||RaT2(w”)HH2(I)

o[ Ra[T5'(w") + aw]|| 21y

|| Ra (W) || 121y + | RaTs (W )| 1121y

&®|[Ro(w"")[| 21y + el RaTs' (Lw”) + R T5'[(id — L) (w")]|| 21y
& || Ro(w"")[| 21y + el RaT5'[(id — L) (w")] || 21y

= ?|Ra(w") 20y + all(id — L) (w") |2 (ny

< afllw |2y + | (id — L) (w") | g2 (n))-

Now, since [|w""||2(r) < |w” || g2(ry and ||(id — L)(w")|| g2y < CL||w” || m2(r), we obtain the required
inequality.

(iii) For w € W, using (3.12), we have ||R,Tow — w||gi (1) = a|Ra(w”)||g1y < Vealw”||L2-
Thus, the proof is complete. O

IN

Lemma 3.8. The space W N H4(I) is dense in W.

Proof. Let w € W. Since H*(I) is dense in H?(I) as a subspace of H?(I) (cf. [6]), there exists a
sequence (wy,) in H*(I) such that

(3.15) lwn — w2y =0 asn — 0.
Now, define P : H2(I) — W by
P(w)(t) = w(t) — w(go) — w'(g1)(t — go), w € H*(I) andteI.

Since H2(I) is continuously imbedded in C*(I) (cf. [6]), (3.15) implies that |w,,(go) — w(go)| — 0 and
|w),(91) —w'(g1)] — 0 as n — 0. Thus, as I is bounded we have

(3.16) | P(wn) — P(w)|| g2y — 0 asn— 0.
Again by definition of P and W we have Pw, € W N H*(I) and Pw = w. Hence from (3.15) and
(3.16) we have the proof. O

Theorem 3.9. Let w € W, and let {Ra}a>0 be as in (3.13). Then
|RoTow — w||g2(ry =+ 0 as o — 0.

In particular, {Ra }ta>0 s a regularization family for Ty.
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Proof. By Theorem 3.7, (R,T3) is a uniformly bounded family of operators from W to W and
|RaTow—w|| g2(ry — 0 as a — 0 for every x € WNH*(I). Since WNH*(I) is dense in W (see Lemma
3.8), by a result in functional analysis (see Theorem 3.11 in [8]), we obtain ||RoTow — w||g2(r) — 0 as
a — 0 for every w € W. Thus {R,}a>o0 is a regularization family for T5.

Throughout, we assume that ap € H'(I) is the unique solution of Problem (P). Thus, equations

(2.11)-(2.13) have solutions namely, ¢y, by and ag, respectively. That is,
(3.17) T3(¢) = vion,

(3.18) Tr(bo) = Co,

(319) T1 (CLO) = bo.

Having obtained the regularization family {R,}a>0 for Ts as in (3.13), we may replace the solution
by of the equation (2.12) by

ba = RQCO.
Thus, we may define the regularized solution a, for Problem (P) as the solution of (2.13) with by
replaced by b,. Thus the regularized solution a,, for Problem (P) is defined along the following lines:

(3.20) T5(¢) = /o,
(3.21) (T3)" T3 (ba) = (T5")"Co,
(3.22) Ti(aa) = ba.

Since b, € W C R(T1), each of the above equations has unique solution. In fact {y = Tyby with
bp = Thag, where ag is the unique solution of (2.6). Note that, the operator equation (3.21) has a
unique solution because T%' is bounded below, and (3.22) has a unique solution as T} is injective with
range W, and b, € W. Hence we have, a,(¢g1) = 0. Thus to obtain convergence of {a,} to ap as
a — 0, it is necessary that ag(g1) = 0. Therefore, in this section, we assume that,

(3.23) ao(g1) = 0.
We shall relax this condition in Section 5, by appropriately redefining regularized solutions.
3.1. Error estimates under exact data. For a > 0, let a,, be defined via equations (3.20)-(3.22).

Also, let ag be the unique solution to Problem(P) satisfying (3.23). Then, we look at the estimates
for the error term (ag — a,) in both L?(I) and H(I) norms in the following theorem.

Theorem 3.10. The following results hold.

(1) llao — aallmr(y = 0 as o — 0.

(2) flao = aallz2(r) < Valagllz -
(3) If ag € H3(I), then with Cy, is as in (3.3), |lap — aollmny < (1+ Cp)allabllm(r)-

Proof. By our assumption, ag(g1) = 0. Therefore, by definition of T} and the space W, we have
bo = T1(ap) € W. Now let us first observe that, by the definition of b,

T1(ag) — Ti(aa) = bo — ba = bo — RaCo = by — RaTabo.
Hence, by the inequality (2.17), for r € {0, 1}, we have,
(3.24) llao = aallmr(1) < [[T1(ao) — Ti(aa)lmr+1(ry = [[bo — RaTaboll -+ (1),

and hence, by Theorem 3.9, |lag — aa||z1 (1) — 0 as a — 0. Thus we have proved (1).
Also, since by € W, from (3.24) and Theorem 3.7(iii), we have

lao = aallz2ry < [ T1(ao) = T1(aa) |l (r) = bo — RaTobollar(ry < Vellbglirzry = vallagllzz(r)-

which proves (2). Now, let ag € H3(I). Then by € H*(I). Since by € W, we have by € W N H*(I).
Hence proof of (3) follows from (3.24) and Theorem 3.7 (ii). O
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3.2. Error estimates under noisy data. In practical situations the observations of the data j and
g may not be known accurately and we may have some noisy data instead. In this section we assume
that the noisy data ¢° and j° are such that

(3.25) gFecil), FPewVrreQ), p>3
satisfying

(3.26) 19 = g°llwroery < e,

(3.27) 1 = 3°l200) <6

for some known noise level € and §, respectively. At this point let us note that a weaker condition
on perturbed data j°, for example j° € L?(09), is not very feasible to work with, in this problem.
This is because, in that case the corresponding solution 0" of (2.3)-(2.4) with j° in place of j, is
not continuous and hence its restriction on I' does not make sense. In practical situations if such a
perturbed data arise we may work with its appropriate approximation which is in W1=1/ PP(9Q) with
p > 3. For the perturbed data ¢, in the next section we consider the case when it is in a more general
space which is L?(T).
Corresponding to the data j,7° as above, we denote

(3.28) =17 o, fjé =l 0.

Lemma 3.11. Let vo be a C' curve on R? and let Ty = {(z,70(z)) € R? : dy < z < dy} for some
do,dy in R with dy < dy. Then

(3.29) loll oo < N, Ve H'(®),

Proof. Let w € C°(R?). Then, using Holder’s inequality we have

dy
oy = [ )Pz = [0 s
dy
_ /d l (muﬁ (w(a, 1)) dt)]dw
dy oo b
_ /d < G TCF (x7t))dt> dx
~ 2 - wa 2 X
</YO(ZE xt|dt+Lo(w)|at( (z,t)] dt)d

IN
s\
° by

< wll7a gy + [IV0l|72ge)
< wl gey-
Hence, C°(R?) being dense in H'(R?), we have the proof. O

Lemma 3.12. Let w € HY(09Q) and v be a curve on 0Q such that |y'(t)| is bounded away from 0 as
in (2.14). Then there exists Cy > 0 such that

lw oyl L2(0,1)) < Collwl| a1 (a0)-

Proof. Let w € H'(99). Since Q is with C! boundary,

(3.30) [wll 100 Z [will 711 (r2)
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for some elements wy, wa, -+, wy, € HY(R?) (cf. [3], [6]). Also, there exists a set {1, ,0.,} of
diffeomorphisms from some neighbourhoods in 92 to R?, which satisfies
(3.31) lw oVl 2o,y = Y llwi © 05 0¥l L2(0,1))-
i=1
For any i € {1,---,m}, since o; is a diffeomorphism o; o v is a curve in R?. Since |y/| is bounded

away from 0, there exists constant C-, > 0 such that |y/(¢)] > C, for all ¢t € [0, 1]. Also, as o}(T") is
compact and o; is one-one there exists constant C, > 0 such that |o}(z)] > C, for all z € v([0,1])
and 1 <i < m. Hence, by Lemma 2.4 and (3.31), we obtain

[[w o '7||L2([() 1)) = Z |w; 00 0 7||L2( 0,1]) \/W Z H"JZHL2 (o:(I))

i=1
Hence, using (3.29) and (3.30), we get

1
[|w OV||L2<[0 1]) E ||Wz||H1 R2) = 7Hw||H1(BQ)-
V C C’Y \/ 7

This completes the proof. (I
Proposition 3.13. Let j € W!=1/PP(0Q). Let v’ € Wl’f’(Q) be the solution of (2.3)-(2.4) with j in
place of j, such that it satisfies (2.1). Then there exists C., > 0 such that

1o o Yl 2013y < Co 1l L2 (00)-
Proof. Since j is in W=1/P2(9Q), we know that vi € W2P(Q) (cf. [3]) and
(3.32) v/ w2 () < Csllillr2(a0)
for some constant C5 > 0 (see inequality 2.5). By trace theorem for Sobolev Spaces (cf. [3]), and by

continuous imbedding of W2=1/P):P(9()) into WP(852), we have v?|sq € W21/PP(9Q) C WLP(9Q)
and

(3.33) v

|8Q||W1vp(8ﬂ) < C6HUj|BQ||W2—1/p,p(aQ) < C7||Uj||W2«P(Q)

for some constants Cg, C7 > 0.
Since p > 3, we have Uljm € H'(09) and, there exists constant Cg > 0 such that

! Il o0) <Cs||“ lwir(a0)-

|8Q EXS)

Thus, using (3.32), (3.33) and with v‘as2 in place of w in Lemma 3.12 we have,

17 o vlaaoay < —mme I o) S —m ] o) < Collillom
) C(,C’A/ loc CUCA/ loc
where C,, = C3C7C5/+/C,C.,. 0

Corollary 3.14. Let j be as in Assumption 2.3 and j° satisfy (3.25) and (3.27). Let f and fj(; be
as in (3.28). Then

(3.34) 17— fj5||L2([0,1}) < C,9,
where C, > 0 is as in Proposition 3.13.
Proof. By Proposition 3.13 we have
17 = £ | z2qoap < Colli = 7°llz2 a0y < Cyd.
Hence, ||f7 — fj6||L2([0,1D < C}(S. O
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Lemma 3.15. Fore >0,

(3.35) Cy—e <" (VNI < Cy +e,

where Cy and Cy are as in (2.15). In particular, if 0<e < Cy/2 then
C g

(3.36) 79 < |g*'(v(9))| < 2C; Vs € [0,1].

Proof. For any s in [0, 1], we have

9" (v () = 19" (¥(5)) = 9% (¥(s))] < 1g™ (V()] < 197" (7)) — 9" (v ()] + g (v(5))]-

Since |g'(v(s)) — g°' (7(s))| < llg — g% [lwr.(r) < €, by (2.15), we obtain (3.35). The relations in (3.36)
are obvious by the assumption on €. O

Remark 3.16. Since, 7' satisfies (2.14), and, (¢°)" satisfies (3.36) for ¢ < C,/2, ¢°(T') is a non-
degenerate closed interval, that is, I. := ¢°(I") = [g§, ¢] for some g§, g5 with g§ < ¢5. &

The following lemma will help us in showing that I N I. is a closed and bounded (non-degenerate)
interval.

Lemma 3.17. Let ¢1, ¢o be in C([€1,&2]) for some & and & in R, and let n > 0 be such that

(3.37) 61 = D2l Lo fer.€01) < 7

Let I} := ¢1([&1,&2]) = [a1,b1] and Iz := ¢2([€1,&2]) = [az, ba] for some ay, b1, ag and be in R. We
assume that Iy and I are non-degenerate intervals, that is, a1 < by and as < by, and

(3.38) 2n < min{(b; — az), (b2 — az2)}.
Then
(3.39) max{|a; — as|, |by — b2|} <

and Iy N Iy = [a,b] is a non-degenerate interval, that is, a < b.

Proof. Suppose a1 < by and ay < by. Since a1 = ¢1(81),a2 = P2(s2),b1 = d1(8]),b2 = @a(sh), for
some s1, S2, §1, 84 € [£1,&2], and since a1 < @1(s2), a2 < Pa(s1),b1 > P1(sh) and by > Pa(s)), we obtain

(3.40) lar — aa| < ||¢1 — B2l Lo (ler,e2) < M5
(3.41) b1 — ba| < |61 — P2l Lo (it 60)) < -
Thus, (3.39) is proved. }
To prove the remaining, let us first consider the case a3 < as. Then, I; N Is = [ag,b], where

b := min{bs, by }. Note that, by (3.38) and (3.40), we have
by —az = (by —a1) — (a2 —a1) 2 2n —n =1

Thus, by > as, and also, as by > as we have,

L NIy =[ag, b with b> ay.
Next, let a1 > ao. In this case, Iy N [y = [alj)], where b := min{by, b1 }. Note, again by (3.38) and
(3.40), that
bg—al :(bg—ag)—(al—ag) 2277—77:7’].

Thus, by > aq, and also, as by > a1 we have,

1Nl = [al,b] with B> ai.

Hence, combining both the cases, we have the proof. [l
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Remark 3.18. Let s; and s in [0, 1] be such that go = g(v(s0)) and g1 = g(y(s1)). Let us recall that
I :=[go,91] and I. := [g§, g5]. Since g and g¢° are in C(T"), we have g oy and ¢° o are in C''([0,1]).
Also,
lgoy—g®ovllLeoay < g — g llwrem <e
Thus, by Lemma 3.17, we have
l90 =95l <& and [g1 —gi| <e.

0)/4, we have

)
= 197 (v(s0)) — 9" (v(s1))]

> g1 = gol — lg(v(s0)) — g"(v(s0))| — |g(v(s1)) — g°(7(s1))]
> e —2|lg = g°llwre(r)

4e — 2e = 2¢,

Hence, taking € < (g1 —
(91 — 95)

V

and thus, 2¢ < min{(g1 — go), (¢5 — ¢5)}. Hence by Lemma 3.17, I N I, is a closed and bounded
non-degenerate interval. Let us denote this interval by I.. Thus,

(3.42) L =1N1 = [, 3]
for some gg, g7 € R with g§ < gf. Also, by Lemma 3.17 we have,
lgo = 96| < lgo — g5l <& and [g1 — g7 < g1 —gi] <e. %
Next, we shall make use of the following lemma whose proof is given in the appendix.
Lemma 3.19. There exists a constant C' > 0 such that for any closed interval J,

1Yl < Cullyllmr )
where Cy := Cmax{3, (2|J| + 1)}. In particular, for any interval Jy such that Jy C J,

(3.43) 1Yo (0) < Cullyllz (o)-
If y € WH°(J;) then using (3.43) we obtain

e < €002 | [ 2+ [ @02] < (€020 (Wl + 1 ]
Jo Jo
Thus

(3.44) 1yllz20) < VIolllYll L (tase) < 1J0IV2C5 [yllwros (o),
and additionally if y” € L*(J;), then

2
||l/H%2(J0) < |Jol (CJ1)2(||yH%°°(J0)JrHy,”%OO(JO))

IN

3
ol (Cr Y {13 gy + 10 Wy + 18y + 19 e
Ao (o) N Bym

IN

which implies

(3.45) 111 2(0) < 21901 (C,) 1y w2 ()

Lemma 3.20. Let Ji and Jo be closed intervals such that Jo C Ji and let Cj, be as in Lemma 3.19.
Let y € H%(Jy), then we have the following.

) yllz2n\z) < V205 lyllwree 1T\ l.
(ii) Ify” € L*>°(J1) then

191122 () < 2(C) 2 Nllwzeoe (1 \ Jo] /2.
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Proof. Let J; = [a,b] and Jy = [c,d] for some a < b and ¢ < d. If J; = Jy then J; \ Jo = 0, and in
that case the result holds trivially. So let us consider the cases when either a < ¢ or d < b, or both
holds. Without loss of generality let us assume that a < c and d < b . Let y € H?(J;). Then by
(3.43) y and y' are in L°°(Jy). Thus taking Jy = [a, c] in (3.44) we have

191l 22 (facty < (¢ = V205 [lyllwros o) < (¢ = a)V2Cs [yllwroe )
and taking Jy = [d, b] in (3.44) we have
Iyllz2 a0y < (0= V20, [yllwres sy < (b= V205, [yllwie()-
Hence we have (i). Next, additionally if, y” € L°(J;), having Jy = [a, c] in (3.45) we obtain
1yll 22 (ta,e) < 2(c = @)**(C ) [y lwaos qae) < 2(e = a)**(C ) lyllwaoo )
and having Jy = [d,b] in (3.45) we obtain
Iyll 2@y < 200 = &)/ 2(C)2llyllwaa < 200 = d)*/*(C )2 [[yllwe ()
Hence we have (ii). O

Lemma 3.21. Let ¢1, ¢o, I, I and n be as in Lemma 3.17 satisfying all the assumptions there.
Then, for any interval I3 C Iy NIy and y € C*(Iy)

(3.46) ’ [(61()) = y($2(OPAE < [y (1) |61 = D1l (e, )

Assume, further, that ¢1,¢s € C([&1,&]) satisfying |p1' ()] > Cp, and |¢2'(§)| > Cy, for some
constants Cy,,Cys, > 0. Then, fory € H?*(I)

2V2

EY 1)

C¢1

(3.47) ly o d1 =50 0l paqies e < Crllvllmary (161 = Ball2age, e +

where o
—— [ we)© i £elénél
yod2d) '_{ 0 if €elen6l\ 6 &,

with [51,52] = (¢2)"Y([1 N I) and Ct is as in Lemma 3.19.

Proof. By Lemma 3.17 we have I; N I3 to be a closed non-degenerate interval. Let I3 be an interval in
I, N I5. Then for y € C*(I;) using fundamental theorem of calculus and Holder’s inequality we have

$2(€)) 2
[ wor(@) —vierenras = / [ /¢ . y<9>de] ¢

IN

/I 1912 1|61 (6)) — 62(6)) P

N

2 2
< Hy/HLOC(Il)H(rbl - ¢2HL2([€1,§2])'

Hence we have (3.46). Next, let I NI be equal to [da, b~2] for some d and by in R, with ds < by. Since
P2 € CH([&1,&)]) and |2’ (€)] > Cp, > 0, ¢2 is invertible from its image and the inverse is continuous.
Thus (¢2) " (1 N I) = [51,52] for some [51,52] C [£1,&2]. Also, by the properties of ¢, we have,
¢1([§~1,§~2]) = [d1, b~1] for some d; and by in I, with d@; < by. Thus using Lemma 3.17 with [a7, l;l] and
[da, b~2] in place of I; and I respectively, we have |a; — da| < n and |b~1 — b~2| <n. Hence, using Lemma
3.17 and definition of ay and b~2 we have,

(348) |CL1 —a]| < |a1 —d2| + |CL~2 —CL~1| < ‘a1 —a2| + |CL~2 —CL~1| < 2n,

(3.49) b1 — by| < |by — ba| + by — by| < [by — ba| + |ba — b1| < 21
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Thus by definition of y:@, we have

— 2 &
(350)  yodi—vedeliage e = /5 o)~y e)Pae+ [ lyoi(e)de

[61,62]\[€1,€2]
For any € € [£1, &), |#1(§)] > Cyp, hold. Thus, by Lemma 2.4,

1
[ we@Pksg [ e
(61,62]\[€1,€2] é1 JI1\¢1([€1,€2])

Hence, as (3.48) and (3.49) hold and (3.38) is assumed, taking J; = I; and Jo = ¢1([€1, &) = [d1, b1]
in Lemma 3.20-(i) we obtain

1 2
961 (€)PdE < ] e
/[51 &2]\[61,€2] C¢1 L2(I1\¢1([€1,82]))

Thus using (3.50), the fact that H2(I;) is continuously imbedded in C'(I;) and having Is = [£;, )
n (3.46) we obtain

2(C1,)?
7”9”}12(11)477

— 2v/2C1,
[yogr—ya0 ¢2||L2([51,52]) < (||y/||L°°(J1)H¢1 — ¢2||L2([§17€2]) + Hy||H2(J1) \/@ n).

Hence, using (3.43) we have (3.47). O
_ Let us recall that I = g(v([0,1])) = [90, 1], Lc = g°(7([0,1])) = [g5, g5] and for e < (g1 — go)/4, let
I. = IN1. = [gj,g5] as in (3.42). By (3.26) we have [|g — ¢°[|w1.(r) < € and thus
(3.51) lg v = 9" oVl = sup lgor(s) =g er(s)l < llg = g"llwre(r) <&

se|0,

Now, additionally let € < Cj;/2. Then, by (3.36) and (2.14) ¢° and v are bijective, and so (g oy)™*
is continuous. Thus (g o y)~1(1.) is a closed non-degenerate interval. In other words

(3.52) L. = [g5, 95] = ¢° (v([£5, 13])
for some t§ and t§ in [0, 1] with ¢§ < 5.
Now, for e < min{(g1 — go)/4, Cy/2}, let T5 : L*(1.) — L*([0,1]) be defined by

I
. Clge(v(s s € [t5, 5
(3.53) T5(¢)(s) { 0(9 ) g( [(0)) ] € 0,1]\ [t5, £5].

Now, we prove some properties of 1.
Theorem 3.22. Let TS be as defined in (3.53). Then, for ( € W,
1T5¢ = T5¢); 2o < (ConaliClazm)e,

where Cq 1 = C (1 + C\[C ) with Cy as in (3.43).

Proof. Let ¢ € W. For any s € [0, 1], by (2.15) and (2.14), we have
(g 07) ()] = CyCs.

By (3.51) and (3.52), we have ||[goy —g°ov|| < e and I, = INI. = (¢° o)([t§, 5]), respectively. Now
¢ €W C H?(I). Then, by definition of T3 and T§, we have

T3(()=Cogoy € L2([07 1]) and ((og® O’V)|[t8,t§] = <T§<<If5))|[tg,t§] € LQ([ 0:1])-
Hence, taking ¢, as g oy and ¢2 as g° o~y in Lemma 3.21, we have
2
<o+ v2
v CyCy

This completes the proof. O

IT5¢ = T5Celleqoay = IS 0 g0 = (€0 g% 07, o a2 )l nye
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Theorem 3.23. The map T% : L%(I;) — L2([0,1]), defined as in (3.53), is bounded linear and bounded
below. In fact, for every ¢ € L?(1.),

c,C. - -
%HTg (Ollzzqoap < €l p2cry < 4/ 2CCHITE (O L2 (0,1)),

where C.,, C! and Cy, Cy are as in (2.14) and (2.15), respectively.

(3.54)

Proof. Clearly, T is a linear map. Since (3.36) and (2.14) hold, using Lemma 2.4, and (3.53) we
obtain

o]

175 Ollsony = [ I5O@Ps= [ et Ps
2 e

91 2
20, — - -
< g . KR = gl

0

175 Ollsony = [ I5O@Ps= [ ieta o Pas

1 / 5 1
> oarar [ KEITdz = 1€ L2 gz .50 -
20,C% J gz 201 C!, (lg591])
Hence we have the proof. O

Now, by Theorem 3.23 we know that T3 is a bounded linear map which is bounded below. Thus
using Lemma 3.5, the operator

£ e\ * e -1 €\ *
(T3)Jr = ((T5)"T5) (T3)
is a bounded linear operator and is the generalized inverse of T5. The following theorem, which also
follows from Lemma 3.5, shows that the family

{(T;)T;o<5§mm{%’gl4go}}

is in fact uniformly bounded.

Theorem 3.24. For every ¢ € L*([0,1]),

(3.55) ICT5) €l ey < /20585 1IC 2 0.
where C,, and C’, are as in (2.14) and (2.15).

In order to obtain an approximate solution of (2.6) under the nosy data (j°, ¢°) satisfying (3.26) and
(3.27), we adopt the following operator procedure: First we consider the following operator equation

(3.56) (T5)"(I5)C = (T5)" .
Let 5575 € L2(I~E) be the unique solution of (3.56), that is, 55,5 = (T§)Tfj5. Then, we see that

Ca& _ 55,6 on fm B
’ 0 on I\ I,

belongs to L?(I). Next, we consider the operator equation
(3.57) (T5)"(T5) (w) = (T5) " Ce.s-

Let bo.e,s be the unique solution of equation (3.57). Thus by solving the operator equations (3.56)
and (3.57) we obtain by 5. Since by 5 € W C R(T1), G5 = bfl’&.,é is the solution of the equation

T (a) = ba,5,5~

We show that a5 is a candidate for an approximate solution to Problem (P).
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Lemma 3.25. Under the assumptions in Assumption 2.3 on (j,g), let ag € H'(I) be the solution of
T(a) = f7. Assume further that ao(g1) = 0. For ¢ € L*(I), let by ¢ € H*(I) be such that

(T5")"(T5") (bayc) = (T5)°C,
and let aq,c = b:x,{‘ Then

(3.58) llao — aacllmay < Ca+ %7

(3:59) 0= talizny < Valapliag + 1 m O,
where C,, > 0 is such that C,, — 0 as o — 0. In addition, if ag € H3(I), then
(3.60) lao = aa.cllzr ) S(HCWWMmm+M;%EQ’
(3.61) lao = aa.cllezay < u+QMammm+M%?”.

Here Cp, is as (3.3).

Proof. Let by = T1(ag). Then, as ag(g1) = 0, we have by € W. Now, by definition of a, ¢ and, H(I)
and H?(I) norms, for r € {0,1}

o\ * o -1 )\ *
lao = aacllery = llao = (((T5)"T5") (T5)7C) lmr 1y
)\ * o -1 ) *
< oo = ((T3)15") (T5) " Cllar+(r)
< oo = ((T9)"T5) (T8 Tabo) s
o\ ko — 1 o\ *
HI((T5)"15") (T5') (¢ — T2 (bo) | zrr+1(ry
Hence, for r € {0,1},
a* oy —1 o\ *
(3.62) lao — aacllaray < b0 = ((T3)"15") ~(T5) T2(bo) | 411
ay* oy L o\ *
HI((T5)"15) (15") (¢ = T2 (bo)) | mrr+1 (1)
By Theorem 3.9 we have
(3.63) lbo — ((T8)"T$) ™ (T5) Ta(bo) |2ty = 0 as a — 0.
Also, by Theorem 3.7-(iii) we have
o\ * oy —1 o\ ¥
(3.64) Ibo — ((T5")"T5") " (T5") T2 (bo) | arr(ry < 1166 [l 21y Ve
Again, using (3.11) and (3.12), we have
* —1 * 1
(3.65) I0CZ) T (T5)7(C = Ta(bo))ll 2y < IS = Ta(bo)ll 2y
and
o\ * o -1 ¥ 1
(3.66) 1((T3)"T5") (T5')" (¢ = T2(bo)) |2 (1) < EHC = T3(bo)ll 2 (1)

Thus combining (3.62), (3.63) and (3.65) we have (3.58) with
a* oy —1 Qo *
Co = [lbo — ((T5")"T5") ~(15") " T2(bo) | 2 (1)
and combining (3.62), (3.64) and (3.66) we have (3.59).
Next, let ag € H3(I), by = T1(ap) € WNH*(I). Then, using theorem 3.7-(ii) we have, for r € {0, 1},
a\* oy —1 ) *
(3.67) b0 — ((T5")*T5") " (T5") " Ta(bo)ll arr+1(ry < (1 + CL)llbg || 21y
Thus combining (3.62), (3.67) and (3.65) we have (3.60), and combining (3.62), (3.67) and (3.66) we
have (3.61). O
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Now, we prove one of the main theorems of this paper.
Theorem 3.26. Let ¢ < min{(g1 —g0)/4, Cy/2}. Let ap, g and j be as in Lemma 3.25. Let
g° € CY(I), j° € W=1/PP(9Q) with p > 3, Ce,s be the solution of (3.56), and an.cs =V, . s where
ba.c.s s the solution of (3.57). Also, let g° and j° satisfy (3.26) and (3.27), respectively. Then

1 -
(3.68) llao — aacesllmay = Cat —[/205C5(Crgalibollmzne + C10) + Crliboll (e,
1 -
(3.69) llao — aesllziy < Velagllzay + ﬁ[q/2C;C§(Cz,g,y||boHH2(1)€ + C0) + Crllbo || a2 (1yel,

where Cy, > 0 is such that Co,, — 0 as o — 0.
In addition if ag € H3(I), then

1 ~
(3.70) llao—aa,esllmr () < (1+CL)H<16||H2(1)0¢+5[\/2C;C$(Cl,g,v||b0|\H2(I)5+Cv5)+CI||bo||H2(1)€]’
(3.71)

||a0 — Qq,e,8

1 -
2 < (1+ CL)||a6||H2(I)a =+ ﬁ[\/ 207CL(Cr g 4ol 21y + C46) + Crllbol| 2 (1)€]-

Here, by = T1(agp), and Cy, C’N,y, C1, Cr.g.4, C, and C. are constants as in (3.3), Lemmas 3.13 and
3.19, Theorem 8.22, (2.14) and (2.15) respectively.

Proof. Since ag(g1) = 0, we have by € W. Now let us note that, by Remark 3.18, we have |gy — g§| < €
and |g1 — ¢5| < e. Hence, taking J; and Jo as I and I. respectively in Lemma 3.20, and with our
choice of ¢, by Lemma 3.20-(i) we have,

(3.72) 1boll 27y < Crllboll 2 (nye-
Since (.5 = (T5)T f3°, T5(Tu(bo)) = f7, and (T5)TE is identity, we have
o5 = bolillay = 1o = (Ta(bo))l 2 ll 2y
I(T5) 7 = (Ta(b0)) 7. | 2
< T T(Tabo)) = (Tl acry + 1T = F ) peqay
< (TN (T3(Ta(bo)) — T5 (Ta(bo)) 1 v0) | 21y + I1(T3)T(F7 — fjé)HLz(fe)-
Now, by (3.55) and Theorem 3.22, we obtain

. -5 ~
ITE = £V e,y < (20505650,
(T3 (T (Ta(bo)) = T5 (Ta(b0)) 1y 600 iy < /205 C4Crgn o2y

Therefore,
(3.73) 1.6 = bol 7l 27y < 1/2C5CH1(Cr o) b0ll 2(1)E + Cr).
Now by definition of (. 5 we have
1¢2.6 = bollz2(ry < 1I¢es = bol 2l 2y + Nboll L2 1)
Hence, by (3.72) and (3.73) we have,
1¢e5 = bollz2(ry < 1/2C5CEI(Cr g Iboll a2 (rye + o8] + Crllboll zr2(r)e-

Now by definition, by e s is the unique solution of equation (3.57). Thus, with (. s in place of ¢ in
Lemma 3.25, we have the proof. O
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Remark 3.27. Let ap and a5 be as defined in Theorem 3.26. Then (3.68) and (3.69) take the
forms

)€, = )
”aO aaaé”Hl(I) a 1

e+d
lao — aaeollzzay < \/a||a6“L2(1)+K2 %7

respectively, where C,, > 0 is such that C, — 0 as a — 0, and if, in addition, ag € H*(I), then (3.70)
and (3.71) take the forms

e+9
lao = aacollmay < (1+Cu)lagllmzme+ K3 ’
(0%
e+9
lao = aacollzay < (L+Cu)llagllazyor+ Ks ——

va’
respectively, where K1, Ky, K3, K, are positive constants independent of a,e,6 and Cp, > ||id — L||,
where L is the bounded operator as in Proposition 3.3. .

Then, choosing o = v/§ and € = § in (3.68) we have

llao — Gaesllmr () = o(1).

Thus using the new regularization method we obtain a result better than the order O(1) in [4] obtained
using Tikhonov regularization. On choosing o = § = ¢ in (3.69) we have

ao = @aesllz2(ry) = O(V3),

which is same as the estimate obtained in [4]. Next, under the source condition ag € H3(I) and for
a =4/ and € = 6, (3.70) gives the order as

||a0 - aa,€,5||H1(I) = O(\/g)

This estimate is similar to a result obtained in [7] with source condition ag € H*(I) and trace of ag
being Lipschitz which is stronger than the source condition needed in our result, whereas under the
same source condition ag € H3(I), the choice of a = 6%/ and € = ¢ in (3.71) gives the rate as

llao — Ga,csllL2(r) = 0(6%/3).

This is better than the rate O(6%/°) mentioned in [4] as the best possible estimate under L?(I) norm
(under realistic boundary condition) using Tikhonov regularization. &

4. RELAXATION OF ASSUMPTION ON PERTURBED DATA

In the previous section we have carried out our analysis assuming that the perturbed data ¢° is
in C*(T), along with (3.26). This assumption can turn out to be too strong for implementation in
practical problems. Hence, here we consider a weaker and practically relevant assumption on our
perturbed data ¢g°, namely ¢° € L?(T") with

(4.1) lg — g°llL2y < e

What we essentially used in our analysis in Section 3 to derive the error estimates is that g oy
is close to g oy in appropriate norms. Here, we consider g5 := IIj, (¢¢ o 7y) in place of g° oy, where
Iy, : L?([0,1]) — L?(]0,1]) is the orthogonal projection onto a subspace of W°°([0,1]), and we show
that g5 is close to g o in appropriate norms, and then obtain associated error estimates. For this
purpose, we shall also assume more regularity on g o v, namely, g o~y € H*([0,1]).

Let IIj, : L%([0,1]) — L?([0,1]) be the orthogonal projection onto the space Lj which is the space
of all continuous real valued piecewise linear functions w on [0, 1] defined on a uniform partition
0=ty <t1 <---ty = 1 of mesh size h, that is, ¢; := (i — 1)h for ¢ = 1,---N and h = 1/N.
Thus, w € Ly, if and only if w € C]0, 1] such that wy, ., isa polynomial of degree at most 1. Let

T = {[ti—1,ta] :i=1,--- (5 + )}
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In the following, for w € L?([0,1]), we use the notation ||w|| g (-,) and ||w]|ym.e(7,) whenever wy,
belong to H™(1,) and W™ (1), respectively. As a particular case of inverse inequality stated in
Lemma 4.5.3 in [1], for m € {0,1}, we have

1
(42) MLl wmoe (r) < Con iy IMawll L2 )
where C/, is a positive constant.

Proposition 4.1. Let w € L?([0,1]), m € NU{0} and 7, € T),. Then the following inequalities hold.

IN

(4.3) lwl| fm (7 hl/ZC’OHwHHmH(Th) whenever w|Th€Hm+1(Th),

(4.4) lw][wm.oe(ry < Cgh1/2Hw||Hm+z(Th) whenever w| € W"™>(m),

45)  pwlwmsm) < CLCTP™R2|w]| yemio () whenever w), € H*™3(r,),

where Cy := 2Cyg 1) with Clo 1) as in (3.43) and C, is as in (4.2).

Proof. If wl(j) € Hl(r,) for some j € NU {0}, then using (3.43) and the fact that 75, is of length A,

Th

we obtain
||w(1)||L2(Th) < h1/2||w(‘7)||Loo(7-h) < hl/QCIon(J)||H1(Th,)7

where I := [0,1]. Hence, we have

[wllam iy = > Nw L2y <D 02Cr[IWD | 1, < 2CHBY? W] frenso) (1) -
=0 =0

Thus, taking Cy = 2C/,, we have (4.3).
By repeatedly using (3.43) and then by (4.3), we obtain
[l moe () < 201 [wl| gm1 () < 201, Coh 2 [[w]| grm2 7, -

As we have taken Cy = 2C,, we have the proof of (4.4).
Since IIj, is an orthogonal projection, from (4.2) we obtain,
! !
MTnwllwm.oe(r) < 3 ity IMnwllze) < s apimy lwllz,),
and, by repeatedly using (4.3) we have
Cv/n 24-2m C;n 24-2m
iy 0l < O™ s Cm Dl gensnr,) < CF ML fwl e -

Hence we have the proof of (4.5). O
For simplifying the notation, we shall denote
gyi=9goy, g5 =g on.

By definition, IT;(g5) € W>°([0,1]). In order to show that II,(g5) is close to g, with respect to
appropriate norms, we assume that

(4.6) g, € H*([0,1)).
Theorem 4.2. Let 7, € Ty, and (4.6) be satisfied. Then, the following inequalities hold.
. £ ~ C/
() IThg5 = gyl (r) < Coh®llgyllaram) + &2 5o
(i) 1Thg5 — g5 llwe ey < CrBY2llgs sy + &t -
¥ (n) () T T, R
(i) [(TTag5) ()] < CyCl+ Cil 2l gy lacr) + G5 Vs € Ths
¥ (] (n) T C, 1
() 1(0ag) (5)] = CyCr = Coh V2l gy sy — S gim Vs €7
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Proof. Using triangle inequality we have

(4.7) IThg5 = gyl (ry < 1Mngs — TngyllLec (r) + gy — gyl Loo (7)5
(48) g = gollwioeimy < ITags — gy s (r) + ITagy — gyllwro (-
Assumption (2.14), Lemma 2.4 and (4.1) imply
(4.9) Collgs = gyllzemn) < Mlg° —gllery <
so that, using (4.2) and the fact that II;, is an orthogonal projection, we have
1 Cy e

(4.10) ITThg5, — TThgy [ Los (r) < Cémﬂgi = gyllL2 () < CT?W’
and

1 ] e
(4.11) 1rg5 — hgyllwiee (r) < Cimﬂgi = gyll2(ry) < C%W’

By (4.4), (4.5) and (4.3)

T8y g1 2 oy < Mg o+ 4] ey < 2C0) R g0l g2y < 2Co) B2 lgorl sy
Hence, using (4.7) and (4.10), and taking Cy = 2(Cy)*, we have (i). By (4.4) and (4.5),
gy =g llwe () < ITagn llws o () Hllgn lwee () < (Co) B2 gorll s ry +(Co)*hY 2 llgov | macry-

Hence, using (4.11) and (4.8), and taking C; = (Co)* + (Co)* we have (ii).
To prove (iii) and (iv), let s € [0, 1]. Note that

1(9+)" ()] = [ITThg5 = gyllwroe () < 1Tng3) () < 1(97) | oo () + ITIng5 = gyllwnoe ()
Using (2.14) and (2.15) the above implies
CoCy = ITng5 = grllwreo () < 1ng3) ()] < CoCL + IMngs = gyllwroe ()
Hence using (ii) we have (iii) and (iv). O
From (iii) and (iv) in Theorem 4.2 we obtain the following corollary.

Corollary 4.3. Let h be such that

- (o c,C
(4.12) Cib2 || gy |t (e + e < —L2R3/2,
cy 2
Then,
c,C
(4.13) 92 1 < |(Mhgs) ()] < 2C,CL.
Since (g,)" # 0, for any 7, € Th, g(7v(4)) = [g8}, g7] for some gf! < gh. Let us denote
(4.14) In =g, 9], 12 = g5 (7).
Proposition 4.4. Let h and ¢ satisfy (4.12) and
B C' h3/2
(4.15) Coh?|| gyl (my) + e < ——.
cy 2

Then, for 1, € Tp, I, NI is a closed interval with non-empty interior, say IZ‘ = [gg’s,g?’a] for some
h,e

gy° < gf’e, and

. Cy
h _ _he 3/2 ~0_°=
(4.16) 90 =901 < Coh ||gw||H4<n,>+C7h1/zv
. Cy
(4.17) 9t =gl < Cob®llg |l + =

C’Y hl/2°
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Proof. Since h satisfies (4.12), by Corollary 4.3, II,gS satisfies (4.13). Thus I is a closed non-
degenerate interval. So, by Lemma 3.17, taking ¢1 = (g,)|-, and ¢2 = (Il4g5), we have the
following. I, NI = [gh=, "] for some g** < gi=. Also, since (4.15) is satisfied, we have (4.16) and
(4.17). O

Let us recall that, in Section 3 we have the perturbed operator 75 corresponding to the perturbed
data ¢g°. Here, we are working with IIj, (gfy) Now, let us define the corresponding operator which shall
be used in place of 7%, so that we can carry out the analysis similar to that of Section 3. In order to
do that, let us first observe the following.

Let h and ¢ satisfy (4.12) and (4.15). Then, by Corollary 4.3, TI;g5 satisfies (4.13). Thus, II;g5 is

bijective and, for any 7, € Ty, (thi)_l is continuous on I". Hence, there exists tg’a and t}f’e in 7
such that

(4.18) 12 = [g5°°, 91°°) = Tags ([t £1°))-
For y € L*(I.), let
Mags(s) s € [, 8]
Sh,e — y( hY~ 0 "1
(y)(S) { 0 seT, \ [tg’s, tlll,E]
and, let

(4.19) T y)(s) = (S"y)(s) for s e, 7 € Th.
2

(
We observe that To"* : L2(I.) — L2([0,1]) is a linear operator. We shall see some of its properties in
the next Theorem.

Theorem 4.5. Let h and ¢ satisfy (4.12) and (4.15). Then, the operator Ti° : L2(I.) — L*([0,1])
18 bounded linear and bounded below. Further, we have the following.

(i) For ¢ € L*(I.),

2
(4.20) 1755 (Ol 2o < 1/ = I1€] 127
3 ([0,1]) c,C, L2(I¢)
(421) 25T (Ol oy > 1Kl oty
* —1

(4.22) I((T55) T5%) (T35)7|| < /2C4Ch

(ii) For (e W,
(4.23) ||T§I’E(C\I~€) — T5C|| 22 (jo,1)) < Dy .. )+ Il a2 D c

(ifi) If ¢ € W H3(I), then
(4.24) IIT:?’E(C\I;) — T3¢l 20,1y < Dy e nll< 1oy + W< 230y D 2 s
where

~ €
Dgsh = CI(CO||gO’VHH4([O,1])h2+7)7

O’Y
!

~ 3/2 JL
e (Col™ | gy |l 4(j0,1)) + c, i)

Cy ¢
3 _ 3 0 3/2
Dgen = 8(Cr)%y/ CgC (Coh™lgs |+ o) + &7 c i)

Here Cy, Cy, Co, Cr1, Cy, Cy, C7, and C, are constants as defined in (4.3), Theorem 4.2-(ii), (3.43),
(2.15) and (2.14) respectively.

DS,E,h = 4(01)2
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Proof. Clearly, Ta" is a linear map. Now,

42) IOl = X [ QW= T / [y(Ig3 () Pds

ThETH ThE€TH

Since, h satisfies (4.12), by Corollary 4.3, Il g5 satisfies (4.13). Hence, using Lemma 2.4, we have

(126) Y / Y (g3) () Pds - < OFdz= o [ K

ThETH

(ar) Y / )P > s S / <P = sy [ 166 P

€Ty ¥ to 977 1 ETy

‘rhETh E

Hence, combining (4.25) and (4.26) we have (4.20), and combining (4.25) and (4.27) we have (4.21).
Hence, T3¢ is bounded linear and bounded below. Since, T2 satisfies (4.20) and (4.21), from Lemma
3.5, we obtain (4.22).

Using the fact that IIj is a projection, and Lemma 2.4, (2.14) and (4.1), we obtain,

(4.28) Mhgy — Ta(g5)2(0.17) < llgy — 9% oYl L2(o,1)) < (%7
and, using the fact that IT;, is an orthogonal projection, and (4.5),
oy = Tagyllzqoy = D l9v = agyllezmy < Y llgylleacm)
ThETH ThE€TH
(4.29) < R(C)* D gy llaam) < 2(Co)* B2 llgyllas o)
ThE€TH

Taking Co = 2(Cp)*, (4.28) and (4.29) imply

c ~ g
(4.30) gy — TagSllz20,1) < B*Collgy Il ma(oap) + o
7

Now, ¢ € W implies (|, € H?(I). Hence, taking ¢; and ¢ as g o 7|, and 1195 |7, respectively, in
the first part of Lemma 3.21, (4.30) and (3.43), we have,

175 (¢1p) — |’ = > lCogy = ComgslTagune ey,

L2 (UThETh [to 7t1 ])

ThETH
< (12Collga oy + ) > gy
ThE€TH
2
2
< (Cr)? <h200||gw||H4(01] CT) Z HC’HHl(g(W(Th)))
ThE€TH
5 €
= (Cn)?*(P*Collgsll o, + 7 ) 110
( v I1HA([0,1]) C,y) H\(I)
Hence,
~ €
(4.31) ||T;7E(C|I~g) = IsCll L2, cr, feoe aoeyy < Cr <h200||9 o Y[[ma(o,17) + (7) ¢ ey

E

Since g/, > 0, we have g(y([th=, 7)) = [ghey, gi°] C I for some g © < gy°. As h and e satisfy
(4.12) and (4.15), taking ¢1 = (g o 'y)|[th,s gney and gy = thfy‘[th,z (e in Lemma 3.17, we have,
0 'l 0 "1

Cl e

5 13/2
h3/ g1l E4 () + am7

h,e fL,e
190" — 90
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h, €
‘91 S - gl ‘ < 00h3/2||g’7”H4(7’h) + 4 C h1/2
Hence by (4.16) and (4.17),
2C) €
(432) |g(}JL - gO | < 260h3/2”g’y||H4(‘m) + CO hl/Q’
2C) €
(4.33) gt — g < 2C6h* |9\l ma(m) + CO Wi

Since (2.14) and (2.15) hold, by Lemma 2.4,

[C(g(v(s))Ids

I¢ o 9o 2 /
TN s emy o™ 4D) (0.0 (Uny e, (655 .£1)))

9 / )
< IC(2)"dz
CoCy Uy, eny a(r (5 £°]))
P / )
< I¢(2)]"dz
CyCy T,;h AVICT(ZAR 1)
~h,e h
2 /go 2 5 2
< @+ [ 1cPd:]
CECIYTEé%h[ s -
Hence,
~h,e h
9 2 9o g1 5
(4.34) 1< ogVHLZ([O,l]\(UTheTh[tg’57t}1L’5])) < m ZT /gh [q¢ )| dz + /gh . C(2)[7dz| .
ThETH 0 1

Now, by (3.43), ¢ € W implies ¢ € W1°°(I). Hence, as (4.32) and (4.33) hold, by Lemma 3.20-(i)
and then by (3.43), we have

~h,e

90 C’
[ ke < ser (o2 sy + 2 W) (-

C/
4 2
< 1600 (ol + Gy ) <0y

and, similarly,

g C/ € 2
2
/g{l C(2)d= < 16(C1)" (Coh3/2||9w||H4<m)+Co w) 1612,m g 549

Thus, from (4.34) we have (4.23).
Next, let ¢ € H3(I). Since (4.32) and (4.33) hold, by Lemma 3.20-(ii) and then by (3.43), we obtain

~h,e 3

Y0
2 4 N 1.3/2
[ tceas < et (G Plos i + i ) 190
3
6 Y 1.3/2 2
< 640" (ol oy + 277 ) Wl ey
and, similarly,
~h,e 3
" 24z < 64(Cy)° [ Coh?/?
[ e < 0100 (Con sl + e ) Wl ey

Thus, from (4.34) we have (4.24). O
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Let . 5., € L?(I.) be the unique solution of the equation

(4.35) The T () = T

that is .5 := (T9°)T £9°. Now, let (o5 = Cegn omle Then, (.5 € L2(I). Let bocsn
Yy thal 0 On I \ IE. thal 1<y

be the solution of the equation

(4.36) (T5) (15 (w) = (T5')" Ce.a,n-

We show that a5, = bfm’&h is an approximate solution of (2.6). For this purpose, we shall make

use of the following proposition.

Proposition 4.6. Let ag and g be as defined in Lemma 3.25. Let h and € satisfy the relations in
(4-12) and (4.15). Let g° € L*(I) be such that (4.1) is satisfied. Then, by = T1(ag) satisfies,

!

- Cl ¢
(4.37) 1B0ll L2\ 7y < Nbollzz2(ry (Cr)? (Cohg/2|\gv||H4([o,1}) + C%W)’

and, in addition, if ag € H*(I), then,
- o/ 3/2
3 3/2 0
(4.38) 1ol L2 7.y < ol a3 2(Cr) (Coh gyl o,y + c, hl/Q) :

Proof. Since, h and ¢ satisfy (4.12), for any 75, € T, as (4.16) holds, by Lemma 3.20-(i) and then by
(3.43), we have

Cy e

ol < Cilbolbwnosian (Co* 2l oy + 6 )
Cl e

< (C1)?|Iboll 2 (1) (Coh?’/zllgwlmmw c, h1/2>

and, if ap € H*(I), by € H3(I) and so, by Lemma 3.20-(ii) and then by (3.43),

HbOHLQ(Ih\I;h) < 2(C ) ||bOHW2°o In) <00h3/2||97|H4 ™ T A c, h1/2>

IN

3 3/2 Cy ¢ 8/
2 Wl (CoR* 2l oy + i)

Since [|boll 27y = Dory e, b0||L2(I} \ /> the required inequalities follow. O
Theorem 4.7. Let ag, g and j be as in Lemma 3.25. Let g° € L*(I), j° € W'=1/P»(9Q) with p > 3.
Also, let g° and j° satisfy (4.1) and (3.27), respectively, and h and ¢ satisfy the relations in (4.15)

and (4.12), and a5 = ., esn- Then the following results hold.

(i) With the original assumption that ag € H(I),

2
(4.39)  llao — aesnllmay < Cot a“b0||H2(I)(CI)2CQ,E,h

CyC4 Dy wllbol 1 1y + D o llbollar2ry + €6,

(4.40)  llao = @aesnllieay < \EHGBHLZ(I)JF (C1)*Cyren

2
ﬁ”boﬂmu)

\f CoC4 Dy e nlbollzr2 1y + D llbollarzry + €8]
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(i) If ap € H?(I), then,

A

(4.41)  lao — aaesn

2
ey < Vallagllia + = bl (0 (Coen)”

2 1
75V oGPy

06l 7 (1) + D3 2 ullboll e ry + C40).-

(iii) If ap € H3(I), then

IA

2
(4.42)  |lao — aa.esnllz () (14 Co)llagll g2 (nye + a||b0||H3(I)(01)3(0975,;1)3/2

2 -
TG [Dg e 0ol (ry + Dy - wllboll s 2y + Co6),
2
(443)  lao = aaeonllezay < (1+Cp)lagllgzye + ﬁHb0||H3(1)(01)3(Cg,s,h)3/2

2 N
7 CyCa Dy wlIV e (1) + Dy e llbol 3 (1) + C-6]-
In the above Cy > 0 is such that Co, — 0 as o — 0, bg = T (ag),

'oe

_ (A13)2 0
Coen = (Coh/||gv“H4([071])+am)
. €
D)., = CI(C'O||907HH4([0,1])h2+C,*)y
v
2 - Cy e
Dien = 4O\ G g Coh*Plonlluson) + & jr):
1 ~ cl e B2
Dg,&,h = 8(01)3 CgC’Y (COh3/2Hg'yHH4([O11]) + 073 h,l/z) )

and Cy, Cr, Cy, Ch, C; Cy, Cy, C., O, are constants as defined in (4.3), Proposition 3.3, Theorem
4.2-(i1), (3.43), (2.15) and (2.14) respectively.

Proof. By definition of (. 51,
(4.44) €260 = boll2 ) < 11es.n = bol s Nl L2y + Nboll L2 12y

* _1 *
We use the notation (T5°) := ((T4"%) T2"%) (T4*°)". Then, by (4.22), and using the fact that
(Tg’s)f(Tg’g)* is identity, we have

|(T3) T (Ta(bo)) — (Ta(bo))| 7 iy < /205 CLITs(Ta(bo)) — T (Tabo))| 1) o1,

and, in addition, using (3.34),

c . .5 .5 . ~
(4.45) T3 (7 = )2y < 420505157 = 2o, < 4/2C45CC6.
Also, since ag(g1) = 0 we have bg = T1(ag) € W, so that, by (4.23) and (4.24),
(4.46) I(T5") T T3(Ta(bo)) — (Ta(b0)) |7 21,y < 1/2C5C4 Dy c nllboll a1 1y + Dye,nvol;
where,

D _ [ D2 _llbollzy  if bo €W,
g,€,h,bg - — Dg’57h|‘b0HH3(1) if bO e HB(I) NW.
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Now, by the definition of (. 55, and the fact that T3(Th(b)) = f7, we have
~ h,e .5
ICesn = bolfllpary < (T F = (T2(b0))l 7 Il a(ry
h,
(T5) T T3(Ta(bo)) — (T2(b0))| 7 Ml 212
. .5
HI(TE ) = )2y

IN

Hence, from (4.46) and (4.45) we have
(4-47) ||C:s,6,h - bo\fg”m(fs) < \/ QCQCQ[D;,E,I«L
Thus, from (4.44), (4.37) and (4.47) we have

5 €
(4.48) ICe.5.n —bollzz(y < ||bo||H2(1)(01)2(Co||g oY ma(o,ph” + *)

Cv
+4/2CC% [D;M

16111y + D e 1ol 21y + €50
If ap € H?(I) then by € H3(I), and thus from (4.44), (4.38) and (4.47) we have,

|b6||H1(I) + Dg.e.hpo + 575]-

3/2
P ~ 13
(4.49) I¢en — bollzzay < |lbollma(r)(Cr)? (COHQ oY ma(oaph® + >

C’Y
+4/2C:C [D;,&h

Our aim is to find an estimate for the error term (ag — @a,c6) in L2(I) and H'(I) norms. Now
ba.e.5.5 18 the unique solution of equation (4.36). Thus, according to Lemma 3.25 we need an estimate
of ||¢e,5,n — bol|z2(r) in order to find our required estimates. Inequalities (4.48) and (5.19) give us
estimates of ||(c. 5, — boll r2(r) under different conditions on by. Hence, taking (. s in place of ¢ in
Lemma 3.25 we have the proof. ([l

66l 2 (1) + D3 2 ullboll e ry + C4).-

Remark 4.8. Suppose

1/2

C’YCQ 1
= [ A %
Cillgovllmaqoy + & Collg e vl (o, + 7

2e1/* < min

Then, for ¢ = § and h = §*/2, (4.15) and (4.12) are satisfied. Hence, by Theorem 4.7, we have the
following:

(1) Choosing a = /8, we have
llao — aa,eonl () = o(1).
(2) If ag € H*(I) and o = §%/3, then
w1 = O(V6),  llao — aaconllzay = O(6°7).

”aO — Qqa,e,6,h
(3) Choosing a = 4, we have
lao — Ga.c.snllz2(ry = O(8"*).
(4) If ap € H*(I), then

llao — @aesnllr2(ry = 0(5'/?).

Results in (1) and (2) above are analogous to the corresponding results for ag — aq¢,s in Remark 3.27.
The estimate in (4) is same as the corresponding estimate in Remark 3.27, except for the fact that
here we need an additional condition that ag € H?(I). &
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5. WITH EXACT SOLUTION HAVING NON-ZERO VALUE AT ¢

In the previous two sections we have considered the exact solution with assumption that ag(g1) = 0.
Here we consider the case when ag(g1) # 0 but is assumed to be known. Let ag(g1) = ¢. Since ag is
the solution to Problem (P), by (2.6) we have f/ = T'(ag) which implies

(5.1) fi=T(ag —c+c)=T(ag —c) +cT(1)
Now by definition of T" we have

(5.2) T(1)(s) = /QQOV(S) dt =gov(s) —go, se€]0,1].
0

Thus, combining (5.1) and (5.2) we have

(5.3) T(ap —c) = f —c(gy — go)

Hence ag — c is the solution of the following operator equation,

(5.4) T(a) = f7 — c(gy — 90),

where clearly f7 — c(g, — go) € L*([0,1]). Also, (ag — ¢)(g1) = 0. Now, let us define

boc(x) = /x(ao(t) —c)dt, zel.

90
Then by, € W. Thus, the analysis of the previous two sections can be applied here to obtain a stable
approximate solution of equation (5.4). Let ac o := b’c,a, where b. , is the solution to the following
equation.

(5.5) (T5)(T5) (w) = (T5)"Ce,
where (. is the solution of the equation
(5.6) (T3)"(T3)¢ = (T3)" (7 — e(gy — 90))-

Now, let ¢° and j° be the perturbed data as defined in Theorem 4.7. Also, let g be such that
go~y € H*([0,1]). Let (.c5n be the solution of the equation

(5.7) TP T (¢) = T (7 — e(Tn(g5) — 90))

where IIj,(g5) is as defined in Section 4. Now, (.. s 5 defined as, 507575,;1 on I. and 0 on T \ I, is in
L2(I). Let be.e.s,n be the solution of the equation

(5-8) (T5)"(T3") (w) = (T5) " Ce.e o0

Then we have the following theorem.

Theorem 5.1. Let ag, ¢ and by . be as defined in the beginning of the section. Let g and j be as
defined in Lemma 3.25, and goy € H*([0,1]). Let h and € satisfy (4.12) and (4.15), respectively. Also,
let g° € L*(T), j° € W'=VPP(9Q) with p > 3, and g° and j° satisfy (4.1) and (3.27) respectively. Let
Qcae,8,h = Ut o o 51s and let

) 5 13/2 Cl e
Coen = Coh ||97||H4(T}L)+amv
~ 5
Dy = CiCollgolmsoanh® + 5,
vy
AT [ (Col* gy sy + Sim)  if boc €W,
D!],E,h,bo,c = 5 i - s o 3/2 | 3
S o (Cob g llmsion + Sogie)” if b € B AW,

Hic,e,0n) = /ey (DL,

Bl (1) + Dy +Cod+eD} )
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Then

IN

2
(59) ||Cl0 - (C + ac7a,875,h)||H1(I) Oa + a (HbO,cHHQ(I)O?Cg,E,h + H(C, g, 5, h)) y

(5.10) [lao — (¢ + acacsn)llezay < Velaglloza + (I1bo.cllzr2(1)C7Cg.en + H(c,e,6,h))

2
7a
where Cy, > 0 is such that Co, — 0 as o« — 0. Further, we have the following.

(i) If af, € L>°(I), then,

(511) Jlao = (e + taesn) 2y < Vallaplian + —= (ol (Cr* (Coe)? + Hic e, 6.1) )

2

Va
(i) If ap € H3(I), then

(5.12)

2
lao = (¢ + acaem) )y < (1 + Cp)llagll g2ye + o (Hbo,c

H3(I)(CI)3(C9,5,h)3/2 +H(c, €, 6, h)) ;
(5.13)

2
[(ao =€) = acaesnllL2y < (L+ Co)llagl g2y + 7o (Hbo,c H3(I)(OI)3(Cg,e,h)3/2 +H(c, €, 9, h)) )

where Cy,, Co, Cy, Cr Cy, Cy, C, and C, are constants as in Proposition 3.3, Theorem 4.2, (5.43),
(2.15) and (2.14) respectively.
Proof. By definition of (. sn,

(5.14) [Cee.6,n — Dol

221y < leesn — bo,cl 2y + bo,cll z2(n 7o)

* -1 *
Here also we use the notation (T5°)t := ((T3"°) Ta*%) (T3°)". By (4.22),

(T3 T (Te(bo.c)) — (Ta(bo.)lz iy < 4/2C5C4ITa(Ta(bo.e)) — T3 (T2 (bo.e))7) 22101,

(T3 (7 — e(gy — g0) — F7° — c(Mngs — g2y < £/2CCEIIf7 — elgy — o)
- c(Ilngs, — go)lll 20,1
< 200l -
—c(g oy — g5l p2(ry-
Hence, by (3.34) and (4.30),

. .5 ~
(5.15) (T3 *) (f7 = e(gy — g0) — f7 — c(Ings — g0))ll L2y < 1/2CCL(Cy6 + ¢Dy _ 1),
and, by definition by . € W and so, by (4.23) and (4.24)
(5.16) (T35 T3(Ta(boe)) — (Ta(bo.o))l 7 2z < £/2C5C5 Dy e nlbocll i ry + Dy.eonbo..-
Now by definition of (.. 5 and the fact that T3(Ta(boc)) = f7 — ¢(gy — go), we have
~ -5
Coein —bocli loy < T = efTuge — (Tolboe))l 7 pacr,
< T (Ts(Te(bo,e)) = (Te(bo,e)) i) 2

. -5
FINT = elgy —go) = F7 — e(Tngs — go)ll2n)-
Hence, from (5.16) and (5.15) we have

(5'17) Héa,é,h - b07c|f€ ||L2(f€) < \/QCQC%,[D;,EJL

106, ll#1 (1) + Dg.eonbo,. + Cod +¢Dy 4.
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Thus, from (5.14), (4.37) and (5.17) we have

~ €

(5.18) 1¢e.50n — bo,ellz2(ry < N1bocllm2(r)(Cr)? <C’0g o Y|l e o h® + C) +H(c,e,6,h).
Y
If ap . € H?(I), from (5.14), (4.38) and (5.17) we have,
} -\ 32
(5.19) 1Ce.6.n = bo.cllL2(ry < Mlbo.ellms(ry (Cr)? (COHQ oY rraoaph® + C) +H(c,e,0,h).
v

By definition, b q ¢ 6,5 is the unique solution of equation (5.8). Thus, putting (.. s in place of ¢ in
Lemma 3.25, we have the proof using (4.48) and (5.19). O

From Theorem 5.1, we see that ¢+ @¢ ¢, IS @ stable approximate solution of Problem (P), with
error estimates obtained from Theorem 5.1.

Remark 5.2. Let us relax the assumption on the exact solution ag even more. Let us assume that
ap(g1) is not equal to the known number ¢ but is known to be “close” to it, i.e,

(5.20) lao(g1) — ¢ <,

for some n > 0. Let ¢ := ag(g1). Define by ., (z) = fgi(ao(t) —¢g)dt for x € I. Then by, € W. Also,
let g, 4, g5, j°, h, Ceeohs beae,6,n and e ge.5,h be as defined in Theorem 5.1. Since (5.20) holds,

- ) .5 .
(7 = f7 = (e=co)(gy +90) —clgoy —Mag))ll iy lezqoay < 7 — 2o

+ cllgoy —Tngsllz2(0,1))

+ (g ollz2(o.1y) + 190D

and, by (3.34) and (4.30), we have
(5.21)

. .5 ~
[(f7 =17 —(c=co)(gy+90) —c(goy—TIng3)l 2 (1)l L2 (0,1)) < Crd+ ao(91) Dy - n+(llgovll L2 (o, +lgol)n;
with D;@h as in Theorem 5.1. Now, as T5(T%(bo.c,)) = f7 — co(gy — g0)s

eesn = bocolr2iylliziy = ecsn = Talbo.eo)lr2(iyllia iy
< T = elngs = 90)) = Tolbo.c0)l oy e
< T3 E) Ts(Ta(boe) — Talbo.e)l 2y ll 2
HITE (T = colgy — g0) — 7 + e(Thgs — go))ll (7.
< T (TTa(bo.e) — T (Ta(bo.e)l 2l L2
s

TS (7 = 77 = (e = co)(gy + 90) — clg 0¥ = TThgd)) |l 121
and, by (4.22), (4.23) and (4.24)
I(T5) T(Ta(bo.e)) = (Talbo )z ll oy < \/2C5CLIDg e wllbo i (1) + Db

. .5
+I = 7 M2 o,
+[(c = co)(gy + go) + c(g oy — Tng3) [l L2(j0.1))]
with Dg . np, . as in Theorem 5.1. Hence, by (5.21)

ICeessin = bo.eol L2y liziy < \/2C5CH D g e Ibh el (1) + Dg.cnpo.. + Cr6

+¢cDy .+ (lg o Yllz2(0,1) + lgol)m]-

Thus, using similar arguments as in the proof of Theorem 5.1, we obtain estimates for

H(ao - CO) - ac,a,s,é,hHHl(I) and ||(a0 - CO) - ac,a,e,é,h”Lz(I)-
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Using the fact that
(a0 = (ac,a.e6n +¢)) = ((a0 — co) = aca,esn) + (co — ),

we obtain (a¢ ¢, +¢) as a stable approximate solution to Problem (P), and obtain the corresponding
error estimates. &

6. ILLUSTRATION OF THE PROCEDURE

In order to find a stable approximate solution of Problem (P) using the new regularization method

we have to undertake the following.
Let j° € WI=Y/PP(9Q) with p > 3, ¢° € L?(9S) be the perturbed data satisfying (3.27) and (4.1)

respectively, and let fj‘S =i’ o 7. Also let us assume goy € H*([0,1]). Then, by the following steps
we obtain the regularized solution aq 5.

Step (i): (a) Suppose g° € W1>°(T') and it satisfies (3.26). Let (. 5 be the unique element in L>([0,1])
such that

* e % pid
(6.1) (T5)"(T5)Ces = (T5)"
with T%§ defined as in (3.53). Define (. 5 to be equal to 55,5 on 1:6, and equal to 0 on I\ I~6.
(b) Suppose ¢g¢ € {/2(1“) \ W1°(T"). Then under the assumption go~y € H*([0,1]), there exists
a unique element (. 5, € L*([0,1]) such that
* ~ * .5
(6.2) (T3) (T5) e o = (T3°) F

with T3¢ defined as in (4.19). Define (. 5. to be equal to (. 54 on I., and equal to 0 on I\ I..
We denote the solution obtained in this step by ¢=-°.

Step (ii): Let ¢5° be as in Step (i). Let b .5 be the unique element in H?(I) such that

(6.3) (T5)* T3 (bae.s) = (T3) ¢
with T defined as in (3.1).

/

".e.s0 the derivative of by ¢ 5.

Step (iil): Define aqes5:=0b

We now explain how to solve (6.1) and (6.2) and obtain ¢=°. Let us observe that, for g° € W >(T)
and for f € L*([0,1]),

f(g°on) " (2) =
(T (f)(z) =4 oo @ ey 2 €l
0 zel\ L.
Hence, it can be seen that,

P e N2) zel
ol ={ EL

For ¢g¢ € L?(T") \ Who(T), for any f € L*([0,1])
(T3") ())(z) == (S0 (N)(2), =€l

where

f((@Mhg®0y) "' (2)) ih
(S’Lvev‘s)*(f)(z) = (th%’v)’(};*l((ﬂhga)*l(Z))) zel; N
0 z €I\ 1P,

Hence, it can be seen that,
Chﬁ,é(z) = Xh’gﬁ(z)a KAS Iga
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where,
.5 ~
_ [ (Mg oy)™(2)) zel?
Thus we have ¢5°. Next let us consider Step (ii). Let us consider the case when (*° € C(I). If
¢5% € R(T') then the solution of

(6.4 T3 () = ¢

is the solution of (6.3). Now let us note that, finding a solution of (6.4) is same as solving the ODE
(6.5) —ab” +b=""°

with boundary condition

(6.6) b(go) = 0

and

(6.7 (g1) = 0.

Hence, if j° and ¢ are such that (=% € R(Ts") N C(I) then the solution of the ODE (6.5)-(6.7) gives
us our desired by 5. Also, by Step (iii) Ga.es = b;’e, s is our desired regularized solution. Now let us
note that, if (¢ € L2(I)\ C(I) then there exists (5° € C(I) such that
£ £ 1
169 — 5l = OC)

for n € N. Since by (3.4) we have

o\ * oy — Q\*x (€ € 1 € €
(T3 T5) " (T (¢ = ) lmzny < e ? =G0z,

if (59 € R(Ts') then the solution by c 5., of (6.5)-(6.7) with ¢5° in place of (= is an approximation
of bg.e,5. Again, as

[100,e.6m = Vaesllz(n) < [base,sn = baesllazn,
executing Step (iii) b/ is our desired approximate regularized solution. Hence, if j° and ¢° are

a,e,0,n
such that either ¢59 or ¢ is in R(Ts") N C(I), then we have a stable approximate solution. Thus in
this case we obtain a stable approximate solution to Problem (P) using steps among which the most
critical one turns out to be that of solving an ODE.

7. APPENDIX

Lemma 7.1. Let J be a closed interval in R. Then,
(7.1) IYlle ) < Crllyllar ),
where

Cy = Cmax{3,(2|J] +1)}.
In particular, for any interval J' contained in J,
(7.2) Iyllzeecrry < Callyllmr -
Proof. Let J = [¢,d] for some ¢ < d. Let ¢ d € R be such that ¢ < ¢, d < d and
(7.3) max{(c — ¢),(d —d)} < (d — ¢).

Then, let us define the function

0 LeR\[6,d
_ y(o) (=5) teled
5t) = MO( ) ted

y(d)(g—g) teldd
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Then, it can be seen that j € H*(R) and

W) ¢, o ) wa)* -

(7.4 1) = (o J, €= O+ I+ (F s [ A=t
Now,

WE? [ aegy_ W s we)?,
and

W)® (7 L W@ - s d)? s
(7.6) (Jd)Z/ (d—1t) dtfg(czidy(d d)* = =7 (d — d).
By the fundamental theorem of calculus, for any ¢ € [c, d], =— f y'(s)ds + y(t), which implies,

W@ = (0~ [ v/ < 2w + | / s)asf)

Hence, using Schwartz inequality as we have

| / (s)ds]? < (/ /(s |ds) < (0= O oo

y(©)* < 2(ly®)1 + (¢ = Y 172 (c,a)
holds. This implies

d d d
or@-o= [ |y<c>|2dts2< [ woPde+ 1 ey [ <t—c>dt>.

Thus,

(7.7) ly(e)*(d = ¢) < 2(Iyl1 22 ((e,a) + (d— C)Qlly’lliz([c d))-

Again, by the fundamental theorem of calculus, for any ¢ € [c,d], ft s)ds + y(t), which
implies,

d
W) = u(t) + / (s)dsf> < 2(y(t)[? + | / $)ds]?).

Hence, using Schwartz inequality as we have

2
d
|/ (s)ds|* < (/t Iy'(8)|d8> < (d =)y 122 (e

(@) < 2(ly@)* + (d = DY 172 ((e.ap)
holds. This implies

d d d
)P -0 = | |y<d>2dts2< [ 0P+ 1 e [ <d—t>dt).

Thus,
(7.8) y(d)*(d =) < 20yl L2 e.ap + (@ = 1Y 22 ((c.ap))-
Hence, combining (7.4), (7.5), (7.6), (7.7) and (7.8), we obtain
- 4
(7.9) ||y||iz([5’d’]) < §(||Z/H%2([c,d]) +(d— C)2||Z/||2L2([c,d])) + ||y||2L2([c,d])

IN

7 4
lylleeean + 5(d - 2Ny 112 (e, -
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Now,
0 teR\ [¢d]
- c telcc
g(t) = Z’((t)) L
_y(d) te [dv CZ]
Hence,
C C’l‘
(7.10) ”37”%2([57(2}) < /é(y(c))th—’_||yl||%2([c,d])+/d (y(d))?dt

< W0 (=) + Y122 (e.ay + (¥(d)*(d — d).
Thus, from (7.7) and (7.8), we obtain
711 71 ay < 2UlEeeay + (@ = 1Y 2 (o) + 191122 ey + 19122 e,
< 3lyl 2 eay + 2d =) + DY 172 (c.ap
and from (7.9) and (7.11), we obtain

s 10
19l ey < 3llllezqean + ( g(d —c)?+ 1) %' 2 ([e,a1)
< 3llyllze e, + 2 =) + DIy |22 (e, -
Hence,
(7.12) 191 g2 g2,y < max{3, (2(d — ¢) + D)}yl 2 (e.a))-

Since, H*(R) is continuously imbedded in C(R) N L>®(R) (cf. [6]), there exists C' > 0 such that
19l ®) < Cllgll s ®), so that

19l Loe (je,a)y < 9L @y < ClFlE ®R) = CllIN 115, -
Hence, by (7.12) ||yl poe (e, < Cmax{3, (2(d — ¢) + 1)}yl a1 ((c,a)- O
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