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In this study, time-space fractional heat conduction equation (HCEs), which plays an important role in thermal science, is considered on Cantor set. The analytical solution of this equation is obtained by using local fractional reduced differentiable transform method in fractal spaces. After giving preliminaries, some definitions and fundamental properties belong to this procedure are given. Then to make it easy to understand, this method is applied to homogeneous and non-homogeneous time-space fractional HCEs and analytic solutions are obtained. After that, physical behaviours of the solutions on fractal spaces are illustrated in 3D graphics. This shows the efficiency and reliability of the method.
Key words: local fractional derivative, reduced differential transform method, heat conduction equation, fractional partial differential equations
Introduction
Throughout this study, time-space fractional HCEs below are considered in fractal spaces.
	

	(i)


with the initial condition
	

	(ii)



where the derivative operators denotes the local fractional differential operator and stands for the rate of heat generation.
In real life, many events can be modeled in a more accurate way by fractional differential equations than ordinary and partial differential equations. So fractional differential equations started to get much attention lately. Some of the application areas of fractional calculus are; thermodynamics, entropy in dynamical systems, control theory of dynamical systems, motion, control problem, systems identification, signal processing, fluid flow, viscoelastic materials, polymers, diffusion problems, potential fields and many other areas of sciences [1–17].
One of the equations that needs fractional calculus is time-space fractional HCEs. This equations arise in the hairs of polar bear [18-22] and they interpolate the heat conduction of parabolic type, Helmholtz equation of elliptic type and the solution behaves similarly in appearance [18,19]. Thermoelasticity depends on the classical heat conductivity theory, especially Fourier law that makes related heat flux to temperature gradient [18]. These equations are very important mathematical model for many diversity of physical phenomena, including glassy, colloid, porpus materals, pattern formation, fractals, disordered media, biological systems [23–28].
Heat conduction problems are solved analitically but mostly numerically applying numerous methos, some of which are tehcniques of finite difference, homotopy analysis method [29,30], adomian deomposition method [31], differential transform method [32], the heat balance integral method [33-35], regression analysis [36], boundary element method [37], local fractional variational iteration method [38].
Since there is a loss of important physical charasteristics of heat process in the non-homogeneous materials, the fractional problems of heat conduction usually come out in the heat transport in non-homogeneous materials. This non-smoothness makes it impossible to use integer and fractional order calculus. Local fractional derivative eliminate this problem and can successfully be used in the fractional ordinary and partial differential equations [39-41].
Preliminaries
Some basic definitions and important properties belong to local fractional derivative (LFDs) are as follows [39,42,43].
Definition 






Let  be non-differentiable functions set where is the fractal dimension. For ,at the point , LFD operator of with the order is defined as in the following [39].
	

	(1)


where
	

	(2)


Lemma 


Let in fractal space and. Then [39]
a) 

 for 
b) 

c) 

Some basic LFD operations are shown in Table 1 [42].
Definition




At point , the local fractional partial derivative of  with respect to time  of order is defined as in the following [11,27]:
	

	(3)


where
	

	(4)





From (1), LFDs of with the order where is given as [39,43]
	

	(5)


Table 1. Some basic LFD operations
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Local Fractional Reduced Differential Transform Method (LFRDTM)
In this section, local fractional Taylor's theorems is given and it is extended to LFRDTM.
Lemma (Local fractional Taylor's theorem)




Let , ,  and then
	
 
	(6)




with ,  [43,44].
Lemma




Let , ,  and then [43,44]
	
 
	(7)


Definition


 is the local fractional reduced differential transform (LFRDT) of the function and it is defined as follows [43,44]
	

	(8)




where  and .
Definition

The inverse LFRDT of is defined as follows [43,44]
	

	(9)



where .
From Definition 3.3 and Definition 3.4, basic LFRDTM operations are listed in Table 2 [44]

Table 2. Fundamental LFRDTM operations
	Function (original)
	Transformed Form

	

	


	

	


	

	


	

	


	

	






In Table 2 above,  are the original functions and are the LFRDT forms of the original functions respectively.
LFRDTM Applications
Example
Let us consider the homogeneous HCE (local fractional diffusion equation) given below on Cantor set [45,46]
	

	(10)


with the initial condition
	

	(11)


First, let us write the LFRDT form of the equation (10) as
	

	(12)


From (11), it can be written that
	

	(13)



Replacing (13) into (12), the following values are obtained as follows
	

	(14)



From the values given in (14), approximate solution is found as follows
	

	(15)


Thus, from (15)
	

	(16)



This is the exact solution of the problem given in (10) by LFRDTM on Cantor set. The solution for  is shown graphically in Fig. 1.
[image: ]

Fig. 1. The exact solution of the problem given in (10) for  by LFRDTM on Cantor set
Example
Consider the non-homogeneous HCE below on Cantor set [45]
	

	(17)


with the initial condition
	

	(18)


First let us write the LFRDT form of the equation (17) as
	

	(19)


From (18), it can be written that 
	

	(20)



Replacing (20) into (19), the following values are obtained as follows
	

	(21)



From the values given in (21), approximate solution is found as follows
	


	(22)


Thus, from (22)
	

	(23)



This is the exact solution of the problem given in (17) by LFRDTM on Cantor set. The solution for  is shown graphically in Fig. 2.
	[image: ]



Fig. 2. The exact solution of the problem given in (17) for  by LFRDTM on Cantor set
Example
Let us consider the nonhomogeneous HCE given below on Cantor set [45]
	

	(24)


with the initial condition
	

	(25)


First, let us write the LFRDT form of the equation (24) as
	

	(26)


From (25), it can be written that
	

	(27)



Replacing (27) into (26), the following values are obtained as follows
	

	(28)



From the values given in (28), approximate solution is found as follows
	

	(29)


Thus, from (29)
	

	(30)



This is the exact solution of the problem given in (17) by LFRDTM on Cantor set. The solution for  is shown graphically in Fig. 3.
	[image: ]



Fig. 3. The exact solution of the problem given in (24) for  by LFRDTM on Cantor set.
Conclusion
In this study, LFRDTM was applied to time-space fractional HCEs on Cantor set. To show the accurateness and effectiveness of this technique, three different applications were carried out for homogeneous and nonhomogeneous fractal problems. In these applications, our method directly gave us the exact solution of the problems without any transformation, discretization and any other restrictions. Then Physical behaviours of the solutions on fractal spaces are illustrated in 3D graphics. In short, it can be said that, LFRDTM is quite practical and reliable in time-space fractional HCEs.
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