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Abstract 
A probability prediction using conditional distribution function derived from copula provides a great deal of flexibility in the suspended sediment concentration as well as other hydrological variable estimations, but the influencing variables of the probability prediction model capability are necessary to be investigated. The bivariate conditional distribution function of suspended sediment concentration with runoff as its only influencing variable is firstly derived to assess the sensitivity of the probability prediction to the choice of copula and marginal distribution, and the probability prediction is further extended to the trivariate conditional distribution function with runoff and precipitation as its influencing variables. The approach is exemplified using stationary mean daily precipitation, runoff and suspended sediment concentration data sets from six hydrological stations in the central Yellow River located in the Loess Plateau, which is characterized by heavy sediment transport. The results of the bivariate conditional distribution functions indicate that the probability prediction is mainly influenced by the choice of copula function, and the tail dependence of the copula function determines the shape of the estimated suspended sediment concentration curve. The comparison between the bivariate conditional distribution function, trivariate conditional distribution function, and traditional sediment rating curve demonstrates the uncertainty bands from trivariate conditional distribution function are always smallest, and those from the sediment rating curve are usually largest, while the difference between different models become larger at hydrological stations with smaller sample size.
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1. Introduction
The evaluation and prediction of the suspended sediment concentration (S) plays an important role in a wide spectrum of problems such as the design of dams, the transport of sediment and pollutants in rivers and lakes, and issues related to sustainable water resources and environmental management (Cigizoglu & Alp, 2006; Ayteek & Kişi, 2008; Gericke& Venohre, 2012). Reliable procedures are needed to efficiently estimate suspended sediment loads. A variety of methods can be used to model S, and they can be classified into four classes (Zounemat-Kermani et al., 2016): (i) physically/mathematically distributed, physically based and lumped conceptual models; (ii) hydraulic/numerical-sediment transport models; (iii) statistics-based; and (iv) empirical models. The distinction between statistically based methods and empirical ones is vague because both analyse data from dynamic systems without explicit knowledge of the system’s physical behaviour when applying statistical methods. They provide information about the underlying processes in an implicit manner.
The progress in the estimation of S using statistically based methods is demonstrated in a manifold of studies. Abrahart and White (2001) assessed the potential benefits of an artificial neural network for modelling sediment transfer and demonstrated that the neural network is able to exceed the limitations of traditional multiple linear regression. Kişi (2004) investigated the prediction and estimation of suspended sediment concentration by using multi-layer perceptrons with the Levenberg-Marquardt training algorithm. Kişi (2005) found the neuro-fuzzy method promising for modelling the streamflow-suspended sediment relationship. Cobaner et al. (2009) proposed an adaptive neuro-fuzzy approach to estimate a suspended sediment concentration in rivers. Rajaee et al. (2011) combined wavelet analysis and artificial neural network as a relatively new application for suspended sediment prediction. Kişi (2012) assessed the ability of least square support vector machine to model a discharge-suspended sediment relationship. Kakaei et al. (2013) determined the number of required data for the training of a support vector mA probability prediction using conditional distribution function derived from copula provides a great deal of flexibility in the suspended sediment concentration as well as other hydrological variable estimations, but the influencing variables of the probability prediction model capability are necessary to be investigated. The bivariate conditional distribution function of suspended sediment concentration with runoff as its only influencing variable is firstly derived to assess the sensitivity of the probability prediction to the choice of copula and marginal distribution, and the probability prediction is further extended to the trivariate conditional distribution function with runoff and precipitation as its influencing variables. The approach is exemplified using stationary mean daily precipitation, runoff and suspended sediment concentration data sets from six hydrological stations in the central Yellow River located in the Loess Plateau, which is characterized by heavy sediment transport. The results of the bivariate conditional distribution functions indicate that the probability prediction is mainly influenced by the choice of copula function, and the tail dependence of the copula function determines the shape of the estimated suspended sediment concentration curve. The comparison between the bivariate conditional distribution function, trivariate conditional distribution function, and traditional sediment rating curve demonstrates the uncertainty bands from trivariate conditional distribution function are always smallest, and those from the sediment rating curve are usually largest, while the difference between different models become larger at hydrological stations with smaller sample size.achine and artificial neural network models. Nourani and Andalib (2015) examined the efficiency of a wavelet-based least square support vector machine model for the prediction of daily and monthly suspended sediment loads of the Mississippi River. Zounemat-Kermani et al. (2016) evaluated artificial neural network models with three different learning algorithms and support vector regression models with four different kernel functions. Talebi and Mahjoobi (2016) proposed a framework of using regression trees and model trees to estimate suspended sediment composition in the Hyderabad Basin in western Iran. Ulke et al. (2017) evaluated the ability of genetic algorithms combined with optimized fitting parameter models to predict suspended sediment load in the Aegean region of Turkey. Yadav et al.(2019) presented a hybrid approach which comprises genetic algorithm-based artificial intelligence models for the prediction of sediment yield in the Mahanadi River basin. The results of these data-driven models are encouraging, and they are more powerful tools for estimating and predicting suspended sediment compared to conventional sediment rating curve models and multiple linear regression. However, it is also indicated that sediment computation methods always provide rather rough estimates since the sediment amount is dependent on flow conditions and on drainage basin characteristics in a complex way (Sivakumar,& Wallender, 2005; Rajaee et al., 2009; Kişi, 2012; Kakaei et al., 2013). It is therefore difficult to develop a model capable of accurately estimating and predicting suspended sediment. The probability prediction approach, as developed herein, provides a well-founded alternative to incorporate the inherent significant uncertainty in the estimation of the suspended sediment.
Multivariable frequency analyses are performed in hydrology and water resources management to consider uncertainty in design variables. Copula functions are commonly used to analyse random variables and construct the multivariate distribution of these hydrological variables. Nelsen (1999) gave a comprehensive introduction to the copula method. De Michele and Salvadori (2003) described the dependence between rainfall duration and rainfall intensity by means of two-dimensional copulas. Favre et al. (2004) presented the modelling of multivariate extreme values using copulas. Salvadori and De Michele (2004) defined different primary and secondary return periods and provided a general theoretical framework exploiting copulas to study the return periods of hydrological events. Bárdossy (2006) applied bivariate copulas to describe the spatial variability of groundwater. Subsequently, the work of Genest and Favre (2007) exhibited the various steps involved in investigating the dependence between two random variables and modelling the dependence using copulas. Aas et al. (2009) introduced the pair copula to model multivariate data with complex patterns of dependence in the tails. Bárdossy and Pegram (2009) proposed a copula-based multisite model for daily precipitation simulation. Vandenberghe et al. (2011) used a copula-based frequency analysis of storms as a tool to evaluate the reproduction of (extreme) storms by stochastic rainfall models. Yu et al. (2014) derived low flow distribution in combination with the recession function with the copula method. Xiong et al. (2014) proposed an approach of deriving the annual runoff distribution using a pair copula from an annual rainfall-runoff model. Salvadori and De Michele (2015) presented a multivariate multi-site analysis of drought dynamics on the basis of copula theory. Durocher et al. (2016) investigated the use of the spatial copula to predict flood quantiles in ungauged basins. Yu et al. (2019) investigated the use of the vine copula to conduct probability prediction of peak break‐up water level. In terms of the S variable, Bezak et al. (2014) carried out trivariate frequency analyses of peak discharge, hydrograph volume and S data using copulas and concluded that the copula function is a useful mathematical tool for modelling these variables. However, there are no comprehensive studies that explore the copula method for the probability prediction of suspended sediment concentrations.
The copula method, which allows the consideration of a wide range of correlations, is an effective and flexible way to model statistical dependence between two or more random variables. Yu et al. (2019) found the uncertainty bands of the conditional distribution function derived from vine copula are much narrower than the traditional multiple linear regression results. Few studies have been conducted to analyse how sensitive the probability prediction results are to the choice of the type of copula function and the type of marginal distribution. Our aim is to investigate the influencing variables of the probability prediction model capability. In our study, the S data constitute a dependent predictand variable; runoff (Q) and precipitation (P) are considered predictor variables. Copula functions are used to construct the conditional distribution of the predictand variable and predictor variables. The probability prediction is straightforward using the application of this conditional distribution for fixed values of predictor variables. The median and the confidence interval of S for the given runoff are alternatives displaying the prediction. In our research, the probability prediction of the S variable will first be performed based on the bivariate conditional distribution of S with only the runoff Q assumed as the influencing factor of sediment source activation and further extended to a trivariate conditional distribution of S with precipitation P added as another predictor variable besides runoff. We use observed data of runoff and suspended sediment concentration from six observation stations in the central Yellow River, which is located on the Loess Plateau, to demonstrate our approach. 
This paper is organized as follows. In Section 2, the methodologies used in the paper are presented, including the copula method and the technique of probability prediction. Section 3 describes the study area and data used in this research. In Section 4, the marginal distributions of runoff and suspended sediment concentration (S) are analysed, and the goodness of fit of the conditional distribution are assessed. We also studied the sensitivity of the results for the choice of copula function and marginal distribution. The S estimated from the bivariate and three-dimensional conditional distribution functions for different prediction probabilities are presented and compared. A comparison with a traditional estimation from the sediment rating curves is also performed. Conclusions and discussions are presented in Section 5.

2. Methodology
In this section, a brief overview of the copula method is firstly given, and the construction of a bivariate and trivariate conditional distribution are further shown.
2.1 Copula method 



A copula is the joint distribution of random variables, each of which is marginally uniformly distributed as. In accordance with Sklar's Theorem (Sklar, 1959), for any random variables with joint cumulative distribution function (cdf) and marginal cdfs, a copula exists such that:

						(1)


where C is the copula function and is the marginal cdf. If each  is continuous, C is unique. 



To construct high-dimensional joint distributions, the pair-copula method has become a flexible method. A general multivariate distribution can be decomposed into a cascade of pair copulas. The joint density function  for therandom variablescan be factorized as (Aas et al., 2009):

	(2)
Each term in Eq. (2) can be decomposed into the appropriate pair copula multiplying a conditional marginal density by using the following general formula:

            (3)






where  is a multi-dimensional vector,  is one arbitrarily chosen component of , and denotes thevector excluding the component.

2.2 Bivariate probability prediction model 
When runoff Q is considered the only influencing variable of S, the probability prediction of S is performed based on its conditional distribution for Q. Imposing the joint distribution of Q and S is constructed using the copula function and the condition that Q is given; the bivariate conditional pdf of S is obtained as:

 			       	(4)
The bivariate conditional cdf of S is expressed as:

                     (5)





where c(.) is the pdf of the copula distribution, and represent the marginal cdf distribution of Q and S, respectively, and represent the marginal pdf distribution of Q and S, respectively, and  represent the conditional distribution function of the copula function. 






When the Q value is fixed as Q0, can be determined. Once the conditional probability  andare given,  can be estimated from the partial inverse function of the conditional distribution function, and the S value can then be computed from the inverse function of the marginal distribution. Therefore, the probability prediction of the S value for a fixed Q0 value and prediction probability p is expressed as:

			(6)
According to Eq. (6), S can be estimated with different prediction probabilities for different fixed Q0 values. 
2.3 Trivariate probability prediction model 
When precipitation P is added as another influencing variable of S aside from Q, a three-dimensional joint distribution should be constructed. There will be a key variable that is closely related to the other two variables using a pair copula to construct the joint distribution. Considering that runoff Q is the main variable that governs its interconnection with precipitation P and S variables in the probability prediction model, the trivariate conditional probability density function of S is expressed as: 
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where, , and denote the marginal probability density functions of ,  S, andrespectively,  is the bivariate copula function forand,  is the bivariate copula function for and, and is the bivariate copula function for and. 


Therefore, the trivariate conditional distribution of S given fixed  and  values will be expressed as:

 (8)













Once the P and Q values are fixed as  and , the ,, andvalues will be known conditions; thus, the conditional distribution function  are only the function of the  variable, and the conditional probabilities of different values can be estimated from . Furthermore, the  value can also be determined from the partial inverse function of the conditional distribution function when the conditional probability is given; consequently, thevalues will be estimated from the quantile function. Therefore, the probability prediction of the S value for fixed P and Q values can be implemented.
Three Archimedean copula types and one Elliptical copula type have been considered, i.e., the Clayton, Gumbel, Frank, and Student copulas, as the suitable pair copula for constructing the joint probability density. All the four copulas describe strong positive dependence between random variables, but their tail behaviour is different. The Clayton copula has lower tail dependence, the Gumbel copula has upper tail dependence, the Frank copula exhibits no tail dependence, and the Student copula has both lower tail dependence and upper tail dependence. Poulin et al. (2007) highlighted the importance of the tail dependence for selecting a copula function with the best fit to the data samples. The tail dependence roughly corresponds to the probability that one margin is large/small, conditioned on the other margin being large/small. The tail dependence can be defined via the notion of a copula and expressed as (Caillault & Guégan, 2005):

								    (9)






whereand  are called the upper and lower tail dependence, respectively, provided the limits exist, u is a threshold level, and  is the copula function. To estimate the tail dependence of the empirical series, will be replaced by the empirical copula. The cumulative distribution functions, the tail dependence coefficients of these three candidate copulas, and the conditional distribution functions of the four candidate copulas, i.e., , are also included in Table 1. 
[bookmark: OLE_LINK49][bookmark: OLE_LINK50]The dependence parameter  of the copulas will be calculated using the maximum pseudo-likelihood (MPL) technique by maximizing the likelihood function that involves empirical marginal probabilities, which is a nonparametric and marginal distribution-free technique. Kim et al. (2007) argued that the semiparametric method is preferred to parametrical methods, which are not robust against the misspeciﬁcation of the marginal distributions, and Kojadinovic and Yan (2010) concluded that the maximum pseudo-likelihood estimator is found overall to be the best choice in terms of mean square error among the semiparametric methods. 
2.4 Probability prediction model evaluation criteria




The probability prediction of the S variable will first be performed on the basis of the bivariate conditional distribution function  to evaluate the sensitivity of the probability prediction with respect to the choice of marginal distributions and copula function and then will be further extended to the trivariate conditional distribution function . The S curves from the  and , with a prediction probability of 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent, will be estimated and analysed. 


The sensitivity of the probability prediction to the choice of copula and marginal distribution is analysed based on the median curve of S estimated from, i.e., a S series estimated from with a prediction probability of 50 percent. The Pearson correlation coefficient (rS,S) between the estimated S series and the observed S series is calculated as one performance criterion. The multi-factor analysis of variance (ANOVA) is applied to test for variability in probability predictions between different marginal distributions and the copula functions. The ANOVA approach quantifies the contributions of the factors using the decomposition of the sum of squares and allows one to consider the interactions between different factors.


The median curves of S estimated from  and  will be compared to the traditional sediment rating curve (SRC) to illustrate the predictive capability. The most commonly used SRC in the form of a power function is applied (Walling, 1974, 1978). The power function covers both the effect of increased stream power at higher discharge and the extent to which new sources of sediment become available in weather conditions that cause high discharge (Asselman, 2000). The regression coefficients are obtained by ordinary least squares regression on logarithms of concentration and discharge data.
The prediction uncertainty of S will be assessed alongside the predictive capability. The lower bound and upper bound of the 90 percent prediction uncertainty (90 PPU) can be calculated at the 5 percent and 95 percent levels, and the lower bound and upper bound of the 50 percent prediction uncertainty (50 PPU) is the 25 percent level and 75 percent level, respectively. Two indices, i.e., the P-factor and R-factor, are used to quantify the goodness of uncertainty performance as Abbaspour et al. (2009). The P-factor is defined as the percentage of observed values bracketed by the uncertainty band, and the R-factor is the average width of the uncertainty band divided by the standard deviation of the corresponding measured variable, which is S in our study. 

            (10)

                        (11)



where n represents the sample size,  represents the observed suspended sediment concentration,  represents the lower bound of the percent prediction uncertainty, and represents the upper bound of the percent prediction uncertainty. Ideally, the P-factor would be equal to 1 and the R-factor equal to 0 when all the measured data fall within a narrow uncertainty band.
3. Study area and data
The hydrological data used in this study are the mean daily precipitation P (mm), mean daily runoff Q (m³/s) and mean daily suspended sediment concentration S (kg/m³) from May to October from ten hydrological stations in the central Yellow River, which are situated on the Loess Plateau and is the main sediment-yielding area of the Yellow River (Fig. 1). The ten hydrological stations are located in six drainage areas. The size of the drainage areas and the period of observation for each hydrological station are listed in Table 2. The drainage areas of the ten hydrological stations range from 807 km2 to 23,422 km2, and the records are from the 1950s to the 2010s. The climate in the study area is semi-arid and semi-humid. Precipitation, runoff and the suspended sediment concentration during the dry season from November to April are minor, and few observations of S are carried out during the dry season. The long-term precipitation, runoff depth, and sediment transport module of the ten stations during the rainy season and dry season are calculated and compared in Fig. 2. It is shown that annual precipitation in the ten stations are similar, and precipitation in the rainy season accounts for approximately 90% of the annual precipitation. The runoff depth is influenced not only by the distribution of precipitation but also by many underlying surface factors; thus, the runoff depth in the ten stations are quite different, and the ratios of runoff depth in the rainy season are approximately 60%. The magnitude sediment transport module varies greatly from station to station, but the ratio of sediment transport modules in the rainy season is approximately 95% of the annual sediment transport module. Soil erosion mainly takes place in the rainy season in our study area; therefore, only the mean daily P, mean daily Q and mean daily S from May to October are utilized. In our research, only daily precipitation greater than 12.7 mm is calculated because storms with less than 12.7 mm of rainfall are generally discarded in the rainfall erosivity calculations (Wischmeier & Smith,1978; Rosewell & Turner,1992).
Classical frequency analyses that fitting an assumed theoretical probability distribution function to the observed data are valid only when the assumption of stationarity is fulfilled (IACWD, 1982; USACE, 1994). The stationarity of the mean daily series was first analysed by the Mann-Kendall test, and the null hypothesis of the Mann-Kendall test is that there is no monotonic trend in the series. The Mann-Kendall test indicates that most mean daily series are nonstationary at the 5% significance level when the full records are considered. The hypothesis of stationarity are not rejected only for the Q and S series of the Lijiahe (LJH) and Suide (SD) stations. Large scale soil and water conservation measures have taken place in the Loess Plateau since 1985, when the comprehensive reclamation of this area was a key science and technology project in China (Liu et al., 2002). This greatly altered the surface conditions of the Loess Plateau. In a second step, stationarity was tested for the eight remaining series up to 1985. Of these, the series at Gaoshiya (GSY), Huangfu (HF), Wangdaohengta (WDHT), and Dingjiagou (DJG) stations are accepted as stationary at the 5% significance level. The time series to be used in the study are thus those from the LJH and SD stations up to 2010 and up to 1985 from GSY, HF, WDHT, and DJG stations up to 1985 to comply with the stationarity criteria. For some stations, there are some years that no runoff or suspended sediment concentration were observed; thus, the sample size in some stations are not quite as large as shown in Table 3.














For the selected time series of the mean daily P, mean daily Q and mean daily S basic statistics, the mean values (,,), coefficients of variation (,,  ) and skewness (,,) are also presented in Table 3. The range of mean values of precipitationis 0.9-1.3 mm, and the mean values of runoff are 1.0-28.0 m3/s, and  is 17.0– 64.0 kg/m3. The coefficient of variation is modest for P, Q and S in a range of 0.3 to 0.8. The coefficients of skewness are positive for all Q and S samples, and the values are low to moderately high (: 0.6- 1.3; : 0.3-1.5). The relationship between the coefficients of variation and coefficients of skewness for the Q and S series are in agreement with the theoretical relationships of the Lognormal and the Gamma. The skewness coefficients of P are approximately 0 and are closer to the normal distribution.
4. Results and Discussion



This section is aimed at the selection of an appropriate model for the probability prediction of S that is conditioned on the observed runoff Q and precipitation P. In the construction of the conditional distribution, three standard distributions are applied as candidates for the marginal distributions and four bivariate copula function are employed as pair copula in the construction of the conditional distribution. The sensitivity in the results of the probability prediction with respect to the choice of marginal distributions and copula function is first evaluated on the basis of the bivariate conditional distribution function . The probability prediction of S is then made from the trivariate conditional distribution functionand is compared to the results from as well as traditional sediment rating curve. 
4.1 Marginal distribution
It may be expected that mean daily data, i.e., P, Q and S as an average of daily data, should follow the normal distribution in accordance with the central limit theorem. However, both Q and S series of all six hydrological stations show significant positive skewness, as seen in Gottschalk (2006) and Yu et al. (2015). The normal distribution (NORM) and two asymmetric distributions, namely the three-parameter lognormal (LN3) and the three-parameter Gamma (Pearson Type III, PE3), are selected as candidate distributions to model the sample series of discharge P, Q and S based on the basic statistics of the series. The L-moments technique is utilized to estimate the parameters of the three distributions due to its robustness (Hosking,1985; Hosking, 1990; Hosking &Wallis, 1997). The Anderson-Darling test has been applied to test the goodness of fit, and the null hypothesis of the Anderson-Darling test is that the data follow a specified distribution (Stephens, 1974). None of these three candidate distributions is rejected for any of the P, Q, and S series of the six hydrological stations at a 5% significance level with the Anderson-Darling test. 
The reliabilities of the marginal distributions were evaluated further using the corrected Akaike Information Criterion (AICc) as statistical performance criteria, as Burnham and Anderson (2002) and Claeskens and Hjort (2008) recommended. It offers a relative estimate of the information lost when a given model is used to represent the process that generates the data, and it addresses the trade-off between the goodness of fit of the model and the complexity of the model; thus, the preferred model is the one with the minimum AICc value given a set of candidate models for the data.
The AICc values of the candidate distributions for the P, Q, and S series of the six hydrological stations are shown in Table 4. For the P series, the AICc values of NORM are always the lowest among the three candidate distributions, indicating that the NORM is the most appropriate for the P variable. For the Q series, the AICc values show that the LN3 distribution is slightly better than the PE3 distribution in five out of six stations and that their AICc values are all lower than the NORM’s. For the S series, the LN3 distribution performs best in three stations, the PE3 distribution is the best choice in two stations, and the NORM distribution is preferred in the DJG station. For the present, we maintain all three marginal distributions for further analysis of the goodness of fit of the joint bivariate distribution and model sensitivity. There are thus nine combinations of marginal distributions for one copula function.
4.2 Probability prediction results between different copula functions and marginal distributions



Four bivariate copulas with different tail dependence structures, i.e., Student, Clayton, Gumbel and Frank, are selected to construct the joint distribution of Q and S and further derive the conditional distribution of S. The dependence parameter  in the four copulas is estimated by the maximum pseudo-likelihood technique and is given in Table 5. The Cramér-von Mises  statistic is applied to test the goodness of fit, and the null hypothesis of this test is an empirical distribution function associated with the pseudo-observations and is “close” to the independence copula. Compared to other goodness-of-fit tests, the  test yields better blanket goodness-of-fit test procedures for copula models, and its performance across models is slightly more consistent while also having the advantage that a single bootstrap is sufficient to approximate their null distribution and extract the P-values (Genest & Remillard, 2009; Kojadinovic & Holmes, 2009; Kojadinovic & Yan, 2010). Therefore, is employed for the goodness-of-fit. The results of the goodness-of-fit are also shown in Table 5. It is indicated that at a 5% significance level, the Student copula is rejected in the LJH station, the Clayton copula is rejected in the LJH, HF, SD, and DJG stations, the Gumbel copula is not rejected by any station, and the Frank copula is rejected by the LJH and HF stations. The AICc values suggest that the Gumbel copula is the best choice in the LJH, SD, and DJG stations, the Frank copula is most often recommended in the GSY and HF stations, and the Clayton copula has the best performance in the WDHT station.
The tail behaviour of the observed Q and S series at the six hydrological stations and those of the Student copula, the Clayton copula, the Gumbel copula and the Frank copula are analysed and illustrated in Fig. 3. The tail behaviour of the observed Q and S series at the six hydrological stations can be classified as two types. For the LJH, SD and DJG stations, weak lower tail dependence and high upper tail dependence between Q and S are detected, which are in closer agreement with that of the Gumbel copula. For the GSY HF, and WDHT stations, the empirical tail curve has better agreement with that of the Frank copula compared to the other candidate copulas. The tail differences among the stations may be related to the geographical position. The LJH, SD and DJG stations are all located in the Wuding River watersheds, and the locations of the GSY HF, and WDHT stations are close. It must be noted that the notion of tail dependence is a limit, and finite sample sizes may not be able to capture this well, especially for our small sample size. Thus, the fit of these theoretical tail curves to the measured data are not adequate. The performances of the copula functions are coincidental to the accuracy of the tail behaviour simulation. The agreement between the tail behaviour of the observed Q and S series at the six hydrological stations and the theoretical curves of the Student copula, Clayton copula, the Gumbel copula and the Frank copula is in accordance with the AICc criterion, and the copula function that is in the closest agreement with the empirical behaviour has rather low AICc values.


Based on the bivariate conditional distribution function of S, i.e., , S can be estimated given fixed Q values and prediction probabilities. For each hydrological station, there are thirty-six combinations of marginal distributions and copula functions, and each combination will lead to a different conditional distribution function, thus providing a different S estimation given the same Q value and prediction probability. The sensitivity of the results to the choice of copula and marginal distribution is analysed based on the median curve of S estimated from .
The Pearson correlation coefficient (rS,S) between the estimated S series and the observed S series is calculated as one performance criterion. The rS,S values of thirty-six combinations are displayed as a box plot in Fig. 4(a) for the six hydrological stations. The box plot provides the median, upper and lower quartiles, and maximum and minimum of thirty-six estimations for the same hydrological station. The disperse range shows that the accuracy of the prediction result varies greatly from one conditional distribution function to another for all stations. It also indicates that the performance of these prediction results has large differences for different station. 

According to , the performance of the estimated S is potentially influenced by the copula function, the marginal distribution of Q, and the marginal distribution of S. To visually identify whether the estimated S varies from copula function to copula function, the results of nine combinations of marginal distributions for the same copula function are displayed as a box plot in Fig. 4(b). It is revealed that the estimations of S based on different copula functions have quite different accuracy levels. The correlation coefficient between the median rS,S of each copula function and their AIC values is -0.65, which means that S derived from the copula function with high accuracy tends to agree better with the observed S. The results of twelve combinations of S marginal distributions and copula functions are displayed as a box plot in Fig. 4(c) to analyse the sensitivity of the Q marginal distribution. It is illustrated that the performance of the PE3 and LN3 distributions are quite similar, and they are different from the NORM’s. The results of twelve combinations of Q marginal distributions and copula functions are displayed in Fig. 4 (d) to analyse the sensitivity of the S marginal distribution. The results show that the difference between the three candidate distributions are small, and the results of the PE3 distribution always fall between the other two distributions.
The ANOVA approach is applied to detect significant sensitive factors. The effect of the copula function, the marginal distribution of Q, the marginal distribution of S, and their interactions are all analysed. The null hypothesis — for all combinations of the Q marginal function and S marginal function, the average result of every copula function equals one other — is rejected at the 5% significance level, an interaction between the copula function and Q marginal distribution is detected, and no other null hypotheses are rejected. The results indicate that the estimated S results are significantly sensitive to the choice of the copula function and are related to the choice of marginal distribution of Q. 
To further illustrate the influence of the copula function and the marginal distribution, the median curve of S estimated from the conditional distribution function based on different combinations of marginal distributions and copula functions in the SD hydrological station is displayed in Fig. 5. The effects of the marginal distribution and the copula function are the same in the six stations; thus, the SD hydrological station where the difference between the Q marginal distributions and between the S distributions are the largest among the six stations is chosen. It is demonstrated that the copula function determines the shape of the estimated S curve, the curve derived from the Gumbel copula always has the highest upper tail; the Student copula comes second, after which comes the Frank copula, while derived from the Clayton copula, has lowest upper tail. The upper tail coefficients of the Clayton copula are the lowest among the four copula functions (Fig. 3), which means that the Clayton copula is the least sensitive to the variation of the upper tail, leading to the lowest upper tail of S estimated from the Clayton copula. The consequences also include the variance of S estimated from the Clayton copula being the smallest, which leads to the estimated S with high probability being generally quite large. Thus the R-factor of the Clayton copula is the largest among the four copulas. The results derived from the Gumbel copula, which has the highest upper tail coefficients, are contrary to those from the Clayton copula.
With regard to the Q marginal distribution, higher skewness values (LN3> PE3>NORM) tends to bring about the upper tail of the curve, which is derived from the Gumbel copula and Student copula being lower while leading to a lower tail of the curve, which is derived from the Clayton copula, and the Student copula much lower. This is in accordance with the multi-factor analysis of variance that proved that the effect of the Q marginal distribution is not the same for all copula functions. For the S marginal distribution, higher skewness values will lead to curves derived from the Gumbel copula being more concave and result in curves derived from Clayton copula being more convex, which means that the high skewness value of the S marginal distribution will intensify the effect of the copula function.

It must be mentioned that the probability prediction of S is also conducted based on the joint distribution of S and P. The results also show that the difference between the different copulas are also the largest among the potential influencing factors. The shape of the estimated S curve varies greatly from copula function to copula function, as is the case for . 
It is illustrated that the copula function is the dominant control and determines the shape of the estimated S curve, and the performance of probability prediction is significantly related to the accuracy of the copula function. The skewness of marginal distributions has some influence on the tail of the derived curves; the PE3 distribution always offers the closest skewness to the empirical ones among the three candidate distributions for the Q and S series. Therefore, the copula function with the lowest AICc value will be applied, and the PE3 distribution is selected as the marginal distributions for the Q and S series in further analysis.
4.3 Comparison between probability prediction models





Besides, the SRC that have traditionally been taken in the estimation of S can also give probability prediction results, and the probability prediction of suspended sediment concentration can also be conducted from with runoff and precipitation as its influencing variables. The selected copula functions, dependence parameter , and the AICc value in the construction of  are given in Table 6. For the P series, the skewness coefficient is close to zero; thus, the NORM distribution is the best choice. The capabilities of the three probability prediction modes, i.e., , SRC, and , will be compared.







The moments of the observed S series, the estimated S series from SCR, median curves of and are calculated in Table 7. It is shown that the long term mean  of the observed series is correctly simulated by the estimated S series. For the standard derivation (), all the estimated S series are lower than the empirical ones, which means that some extreme S values are not well captured. The overestimation and underestimation of extreme values also result in the skewness () of estimated S are different from that of observed series. A comparison of the three techniques indicated that the moments of the S series fromare commonly closest to the empirical moments, and the moments from show better agreement than those from SRC.


The median curve of S, 50 PPU and 90 PPU estimated from , are illustrated in Fig. 6. The overwhelming majority of observed suspended sediment concentration points lie in 90 PPU, but the width of the 90 PPU band is rather large. For the 50 PPU, the uncertainty band is narrower, but many observed S points are not included. To precisely assess the performance of , the correlation coefficient (rS,S) between the estimated median S series and the observed S series are calculated, and the P-factors and R-factors of 90 PPU for different stations are computed and shown in Table 8. The results show that the rS ranges from 0.63 to 0.86. The P-factors of 90 PPU range from 0.82 to 0.97, but the R-factors of 90 PPU are from 1.91 to 2.49. 



The results of SRC are illustrated in Fig. 7 and Table 8. The tendency of mean S curve estimated from SRC is similar to that of observed one as , but the uncertainty interval of SRC is larger than , while the P-factors of 90 PPU from SRC are comparable to those from.






The results of  are demonstrated in Fig. 8 and Table 8. The comparison indicates that the median curve of S estimated from is generally in better agreement with the observed S series, and the P-factors of 90 PPU from are slightly larger than from, while the R-factors of 90 PPU from are narrower than from.


The difference between three criteria, i.e.,rS,S, P-factors of 90PPU and P-factors of 90PPU, from SRC, , and , are testified using paired T-test from station to station. The results indicate that significant difference are only testified between R-factors of 90 PPU at the 5% significant level, and there are no significant difference between rS,S, P-factors of 90 PPU from different models. The result that the uncertainty bands from the conditional distribution function is usually much narrower than traditional multiple regression are consisting with Yu et al. (2019). 






However, not all P-factors of 90PPU between three models are significantly different. There is none significant difference between P-factors of 90 PPU at LJH station, and the difference between P-factors from and from  are not significant at WDHT station. The correlation coefficient between Q and S reaches 0.85 at LJH station, high correlation coefficient between Q and S indicate that the traditional SRC can provide sufficient information to predict S, thus the capability of SRC is comparable to and  at LJH station. At WDHT station, the correlation coefficient between P and Q is 0.85, which indicate the information provided by P have been included in Q, thus there are no significant difference between and  at WDHT station. 



Besides the correlation between predictand and predictor variables, the sample size is another influencing variable that determinate the difference between P-factors of 90PPU from three models. The DJG station whose sample size is smallest among the six stations, and the difference between P-factors of 90PPU from three models are largest. The  always outperforms SRC, and  tends to have better performance than at hydrological stations with small sample size.  
5. Conclusions
Suspended sediment concentration S is of great importance in many hydrological applications, but there are many uncertainties in the S prediction since the sediment yield is a product of multiple-factor action; therefore, the probability prediction of S, which is a promising tool to manage uncertainties, is studied in this research. The conditional distribution function derived from copula function which allows the consideration of a wide range of correlations is applied. The bivariate conditional distribution function is firstly derived from the bivariate conditional distribution function with runoff Q as the only influencing variable of S to assess the sensitivity of the probability prediction to the choice of copula and marginal distribution. The trivariate conditional distribution of S is applied when precipitation P is added as another influencing variable of S aside from Q are further applied and compared with bivariate conditional distribution function. The results of conditional distribution function are also compared with traditional sediment rating curve. The analysis is conducted using the stationary mean daily P, Q and S series from six hydrological stations located in the Loess Plateau.
The results of the bivariate conditional distribution function indicate that the probability prediction results between different copulas are much larger than different marginal distributions. The shape of the S probability prediction curve from the conditional distribution function is determined by the tail behaviour of the copula function; thus, the choice of copula function is important for achieving prediction accuracy. 
The comparison between different probability prediction models, i.e. bivariate conditional distribution function, trivariate conditional distribution function and traditional sediment rating curve show that uncertainty bands from sediment rating curve is always much larger than the conditional distribution function, and the trivariate conditional distribution function is usually significantly narrower than the bivariate conditional distribution function. The difference between different sediment rating curve and bivariate conditional distribution function tend to be larger when correlation coefficient between S and Q are smaller, and the difference between bivariate and trivariate conditional distribution function tend to be larger when correlation coefficient between P and Q are smaller. The difference between different models become larger at hydrological stations with smaller sample size.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]A probability prediction using copulas that broadens the applicability of a copula function offers a great deal of flexibility in a suspended sediment concentration estimation and is a promising alternative in suspended sediment and other hydrological variable predictions. It moves beyond the existing approaches and provides a potentially useful technique for probability prediction. The limitation of this work is that only stationary time series are applied and only a three-dimensional joint distribution is constructed. A further analysis can be extended to a high dimensional joint distribution construction, which can be applied to the modelling of complex phenomena with more explanatory variables, as vegetation cover and land use are all potential influencing factors on sediment yield (Xin et al., 2011). Nonstationary joint distribution can also be constructed using copula functions (López & Francés, 2013; Jiang et al., 2015); thus, the probability prediction using copula also can be expanded to nonstationary time series where climate change and human activities can be taken into consideration.
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Table 1 The cumulative distribution function and the conditional distribution function of the three candidate copula functions.
	Name
	

	

	

	


	Clayton
	

	

	0
	


	Gumbel
	

	0
	

	


	Frank
	

	0
	0
	


	Student
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Table 2. Information about the studied watersheds and their Q and S series.
	Hydrological
Station
	Area
(km2)
	Data
period
	Q
(m3/s)
	S (kg/m3)
	Data
period
	Q
(m3/s)
	S (kg/m3)

	
	
	
	MK.P
	MK.P
	
	MK.P
	MK.P

	Lijiahe
	807
	1959-2005
	0.31
	0.28
	1959-2005
	0.31
	0.28

	Shenjiawan
	1121
	1957-2005
	0.00*
	0.00*
	1957-1985
	0.00*
	0.00*

	Gaoshiya
	1263
	1958-2010
	0.00*
	0.00*
	1958-1985
	0.29
	0.06

	Huangfu
	3175
	1977-2005
	0.00*
	0.00*
	1977-1985
	0.63
	0.11

	Gaojiachuan
	3253
	1956-2010
	0.00*
	0.00*
	1956-1985
	0.00*
	0.01*

	Wangdaohengta
	3839
	1961-2010
	0.00*
	0.00*
	1961-1985
	0.91
	0.67

	Suide
	3893
	1960-2005
	0.51
	0.96
	1960-2005
	0.51
	0.96

	Wenjiachuan
	8645
	1955-2010
	0.00*
	0.00*
	1955-1985
	0.32
	0.00*

	Zhaoshiyao
	15325
	1956-2005
	0.00*
	0.00*
	1956-1985
	0.00*
	0.00*

	Dingjiagou
	23422
	1959-2010
	0.00*
	0.00*
	1959-1985
	0.10
	0.21


(* represents the null hypothesis was rejected at 5% significance level)



Table3. Statistics of the studied P, Q and S series.
	Hydrological
Station
	Data
period
	Sample
size
	
(mm)
	

	

	
(m3/s)
	

	

	
(kg/m3)
	

	


	Lijiahe(LJH)
	1959-2005
	36
	1.15
	0.37
	0.25
	1.07
	0.55
	1.03
	38.02
	0.74
	1.45

	Gaoshiya(GSY)
	1958-1985
	25
	1.28
	0.52
	0.92
	4.54
	0.77
	1.28
	47.69
	0.38
	1.13

	Huangfu(HF)
	1977-1985
	25
	1.06
	0.43
	0.13
	10.14
	0.70
	1.01
	63.17
	0.33
	0.44

	Wangdaohengta
(WDHT)
	1955-1985
	22
	1.16
	0.50
	0.38
	9.24
	0.52
	0.64
	17.83
	0.38
	0.30

	Suide(SD)
	1960-2005
	37
	1.16
	0.33
	-0.15
	5.67
	0.50
	1.36
	56.85
	0.45
	1.18

	Dingjiagou(DJG)
	1957-1985
	19
	0.96
	0.33
	-0.66
	27.76
	0.35
	0.64
	25.86
	0.58
	1.28






Table 4. The  value of the candidate marginal distributions for P, Q and S.
	Hydrological
Station
	Precipitation(mm)
	Discharge Q(m3/s)
	S (kg/m3)

	
	NORM
	PE3
	LN3
	NORM
	PE3
	LN3
	NORM
	PE3
	LN3

	LJH
	45.3 
	50.5 
	55.5 
	68.1 
	57.0 
	56.1 
	346.2 
	329.7 
	323.8 

	GSY
	53.7 
	53.5 
	54.6 
	137.1 
	123.9 
	123.2 
	219.1 
	217.2 
	216.5 

	HF
	35.0 
	38.1 
	38.7 
	172.2 
	165.8 
	163.3 
	226.6 
	226.7 
	224.0 

	WDHT
	42.0 
	50.6 
	69.9 
	135.1 
	134.7 
	133.4 
	150.2 
	153.0 
	152.4 

	SD
	38.2 
	50.1 
	63.0 
	186.2 
	170.5 
	172.6 
	348.9 
	334.0 
	336.4 

	DJG
	14.2 
	24.7 
	32.2 
	143.8 
	144.8 
	142.1 
	160.5 
	156.9 
	158.7 





Table 5. Values of the copula parameter, and performance of the constructed joint distribution of Q and S.
	Hydrological
Station
	Student
	Clayton
	Gumbel
	Frank

	
	

	df
	

	

	

	

	

	

	

	

	

	

	


	LJH
	0.72 
	35
	0.07* 
	-17.65 
	0.91 
	0.07* 
	-5.56 
	2.11 
	0.06 
	-24.64 
	5.74 
	0.07* 
	-19.43 

	GSY
	0.76 
	24
	0.03 
	-13.04 
	1.64 
	0.04 
	-12.55 
	2.05 
	0.03 
	-13.65 
	6.19 
	0.03 
	-14.48 

	HF
	0.69 
	8 
	0.05 
	-7.92 
	1.35 
	0.07* 
	-7.33 
	1.85 
	0.06 
	-9.10 
	5.58 
	0.07* 
	-11.07 

	WDHT
	0.79 
	2 
	0.02 
	-18.22 
	2.82 
	0.02 
	-20.92 
	2.50 
	0.03 
	-17.57 
	7.61 
	0.02 
	-16.05 

	SD
	0.67 
	36
	0.06 
	-14.17 
	0.90 
	0.08* 
	-6.28 
	1.90 
	0.04 
	-19.25 
	5.10 
	0.05 
	-16.21 

	DJG
	0.64 
	2 
	0.06 
	-4.29 
	0.53 
	0.07* 
	2.07 
	1.98 
	0.05 
	-7.97 
	4.20 
	0.05 
	-3.32 


(*joint distribution rejected at 5% significance level)




Table 6. Values of the copula parameter, and performance of the constructed joint distribution of P, Q and S.
	Hydrological
Station
	

	

	

	
	copula
	

	AICc
	copula
	

	AICc
	


	LJH
	Gumbel
	2.11 
	-24.64 
	Frank
	-0.73 
	1.64 
	0.03 

	GSY
	Frank
	6.19 
	-14.48 
	Frank
	-1.89 
	-0.60 
	0.06 

	HF
	Frank
	5.58 
	-11.07 
	Clayton
	1.01 
	-9.19 
	0.06 

	WDHT
	Clayton
	2.82 
	-20.92 
	Gumbel
	1.08 
	1.94 
	0.05 

	SD
	Gumbel
	1.90 
	-19.25 
	Frank
	-1.62 
	-0.78 
	0.03 

	DJG
	Gumbel
	1.98 
	-7.97 
	Gumbel
	1.50 
	-2.60 
	0.04 


(*joint distribution rejected at 5% significance level)

 


[bookmark: _Hlk26344336]Table 7. The moments of the observed S series, S series estimated from SRC, median curves of and .
	Hydrological
Station
	
	
 (kg/m3)
	
	
 (kg/m3)
	
	


	
	Empirical
	SRC
	

	

	Empirical
	SRC
	

	

	Empirical
	SRC
	

	


	LJH
	38.0
	34.3 
	36.4
	36.5
	28.2
	17.9
	21.5
	21.7
	1.45
	0.98
	1.15
	1.19

	GSY
	47.7
	46.0
	46.8
	47.1
	18.0
	11.8
	12.1
	12.6
	1.13
	0.49
	0.29
	0.11

	HF
	63.2
	61.6
	61.5
	60.8
	20.9
	13.3
	14.2
	15.9
	0.44
	0.21
	0.51
	0.43

	WDHT
	17.8
	17.4
	17.1
	17.4
	6.8
	5.6
	4.9
	5.4
	0.30
	0.26
	-0.34
	0.03

	SD
	56.8
	54.1
	54.6
	55.0
	25.8
	24.5
	20.0
	20.6
	1.18
	1.25
	1.73
	1.61

	DJG
	25.9
	23.2
	25.1
	25.5
	15.0
	6.1
	10.9
	11.0
	1.28
	0.45
	1.23
	1.04







[bookmark: _Hlk26344327]Table 8. The rS, P-factors, and R-factors for S estimated from different conditional distributions.
	Hydrological
Station
	rS
	P-factor-90PPU
	R-factor-90PPU

	
	SRC
	

	

	SRC
	

	

	SRC
	

	


	LJH
	0.85
	0.86
	0.85
	0.94
	0.97
	0.97
	2.09
	1.91
	1.90

	GSY
	0.70
	0.73
	0.78
	0.88
	0.88
	0.92
	2.38
	2.26
	2.17

	HF
	0.62
	0.63
	0.73
	0.92
	0.84
	0.88
	2.80
	2.49
	2.11

	WDHT
	0.70
	0.73
	0.79
	0.91
	0.82
	0.84
	2.52
	2.14
	2.22

	SD
	0.69
	0.67
	0.70
	0.97
	0.89
	0.89
	2.32
	2.14
	2.08

	DJG
	0.71
	0.76
	0.75
	0.95
	0.95
	0.84
	3.18
	2.10
	1.78



Figure captions
Fig. 1 Topography and locations of the study watersheds and hydrological stations.
Fig. 2 The long-term precipitation, runoff depth, and sediment transport module of the ten stations during the rainy season and dry season. 
Fig. 3 Tail behaviours of the observed mean daily discharge Q and mean daily suspended sediment concentration S series in the six hydrological stations and those of the four candidate copulas.
Fig. 4 Box plots of the Pearson correlation coefficient (rS,S) between the estimated median S series and the observed S series (a) for all thirty-six combinations of copula functions and marginal distributions, (b) for different copula functions, (c) for different Q marginal distributions, and (d) for different S marginal distributions.  
Fig. 5 The median curve of S estimated from the bivariate conditional distribution function based on different combinations of marginal distributions and copula functions in the SD hydrological station.
Fig. 6 The median curve of S, 50 PPU and 90 PPU estimated from the bivariate conditional distribution function.
Fig. 7 The median curve of S, 50 PPU and 90 PPU estimated from sediment rating curve.
Fig. 8 The median curve of S, 50 PPU and 90 PPU estimated from the trivariate conditional distribution function.
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