References
Abe, K., & Kimura, H. (1996). The possible role of hydrogen sulfide as an endogenous neuromodulator. The Journal of Neuroscience , 16, 1066–1071. https://doi.org/10.1523/JNEUROSCI.16‐03‐01066.1996
Abou-Hamdan A, Ransy C, Roger T, Guedouari-Bounihi H, Galardon E, Bouillaud F. (2016) Positive feedback during sulfide oxidation fine-tunes cellular affinity for oxygen. Biochim Biophys Acta . 1857, 1464-1472. doi: 10.1016/j.bbabio.2016.04.282.
Aizenman, E., Lipton, D. A., & Loring, R. H. (1989). Selective modulation of NMDA responses by reduction and oxidation. Neuron , 2, 1257–1263. https://doi.org/10.1016/0896‐6273(89)90310‐3
American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. Arlington, VA: American Psychiatric Publishing.
Arnold WP, Mittal CK, Katsuki S, Murad F. (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A.  74, 3203–3207.
Braff DL, Geyer MA, Swerdlow NR. (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) . 156, 234-258. doi: 10.1007/s002130100810.
Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991). Cloned and expressed nitric oxide synthase structurally resembles cytochrome P‐450 reductase. Nature  351, 714– 718.
Bredt DS, Snyder SH (1990). Isolation of nitric oxide synthetase, a calmodulin‐requiring enzyme. Proc Natl Acad Sci U S A  87, 682– 685.
Cao L, Cao X, Zhou Y, Nagpure BV, Wu ZY, Hu LF, Yang Y, Sethi G, Moore PK, Bian JS. (2018) Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ1-42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain Behav Immun. 73, 603-614. doi: 10.1016/j.bbi.2018.07.005.
Cepeda C, Tong XP. Huntington’s Disease: From Basic Science to Therapeutics. (2018)CNS Neurosci Ther 24, 247-249. doi: 10.1111/cns.12841.
Chaganti SS, McCusker EA, Loy CT. (2017) What Do We Know About Late Onset Huntington’s Disease?J Huntingtons Dis 6, 95-103. doi: 10.3233/JHD-170247.
Chen G, Suzuki H, Weston AH. (1988) Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels.Br J Pharmacol. 95, 1165-74. doi: 10.1111/j.1476-5381.1988.tb11752.x.
Chiku, T., Padovani, D., Zhu, W., Singh, S., Vitvitsky, V., & Banerjee, R. (2009). H2S biogenesis by human cystathionine γ‐lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. The Journal of Biological Chemistry , 284, 11601–11612. https://doi.org/10.1074/jbc. M808026200
Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634
Choi P, Golts N, Snyder H, Chong M, Petrucelli L, Hardy J, Sparkman D, Cochran E, Lee JM, Wolozin B. (2001) Co-association of Parkin and Alpha-SynucleinNeuroreport 12, 2839-2843. doi: 10.1097/00001756-200109170-00017.
Choi YB, Tenneti L, Le DA, Ortiz J, Bai G, Chen HS, Lipton SA. (2000) Molecular Basis of NMDA Receptor-Coupled Ion Channel Modulation by S-nitrosylation. Nat Neurosci 3, 15-21. doi: 10.1038/71090.
Chung, K. K., Thomas, B., Li, X., Pletnikova, O., Troncoso, J. C., Marsh, L., … Dawson, T. M. (2004). S‐nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function.Science , 304, 1328–1331. https://doi.org/10.1126/science.1093891
Clarke HT (1932). The action of sulfite upon cystine. J Biol Chem97: 235–248.
Cortese‐Krott, M. M., Kuhnle, G. G. C., Dyson, A., Fernandez, B. O., Grman, M., DuMond, J. F., … Feelisch, M. (2015). Key bioactive reaction products of the NO/H2S interaction are S/N‐hybrid species, polysulfides, and nitroxyl. Proceedings of the National Academy of Sciences of the United States of America , 112, E4651–E4660. https://doi.org/ 10.1073/pnas.1509277112
Contestabile A, Ciani E. (2004) Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation.Neurochem Int . 45, 903-14. doi: 10.1016/j.neuint.2004.03.021.
Czyzewski BK, Wang DN. (2012) Identification and characterization of a bacterial hydrosulphide ion channel.Nature 483 , 494–497.
É Dóka , T Ida , M Dagnell, Y Abiko, N C Luong, N Balog, T Takata, B Espinosa, A Nishimura, Q Cheng, Y Funato, H Miki, J M Fukuto, J R Prigge, E E Schmidt, E S J Arnér, Y Kumagai, T Akaike, P Nagy. (2020) Control of Protein Function Through Oxidation and Reduction of Persulfidated States. Sci Adv 6:eaax8358. doi: 10.1126/sciadv.aax8358.
Eberhardt, M., Dux, M., Namer, B., Jiljkovic, J., Cordasic, N., Will, C., … Filipovic, M. R. (2014). H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO–TRPA1–CGRP signaling pathway. Nature Communications , 5, 4381. https://doi.org/10.1038/ ncomms5381
Fernandez Cardoso GM, Pletsch JT, Parmeggiani B, Grings M, Glanzel NM, Bobermin LD, ……  Leipnitz G. (2017) Bioenergetics Dysfunction, Mitochondrial Permeability Transition Pore Opening and Lipid Peroxidation Induced by Hydrogen Sulfide as Relevant Pathomechanisms Underlying the Neurological Dysfunction Characteristic of Ethylmalonic Encephalopathy. Biochim Biophys Acta Mol Basis Dis 1863, 2192-2201. doi: 10.1016/j.bbadis.2017.06.007.
Filipovic, M. R., Miljkovic, J. L., Nauser, T., Royzen, M., Klos, K., Shubina, T., … Ivanović‐Burmazović, I. (2012). Chemical characterization of the smallest S‐nitrosothiol, HSNO; cellular cross‐talk of H2S and Snitrosothiols. Journal of the American Chemical Society , 134, 12016–12027. https://doi.org/10.1021/ja3009693
Furchgott RF, Zawadzki JV. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature . 288, 373-376. doi: 10.1038/288373a0.
Garthwaite J. (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci . 14, 60-7. doi: 10.1016/0166-2236(91)90022-m.
Garthwaite J, Charles SL, Chess Williams R (1988). Endothelium‐derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature  336, 385– 388.
Giovanoli S, Engler H, Engler A, Richetto J, Mareike Voget, Roman Willi, Christine Winter, Marco A Riva, Preben B Mortensen, Joram Feldon, Manfred Schedlowski, Urs Meyer. (2013) Stress in Puberty Unmasks Latent Neuropathological Consequences of Prenatal Immune Activation in Mice. Science  339, 1095-1099. doi: 10.1126/science.1228261.
Goodwin, L. R., Francom, D., Dieken, F. P., Taylor, J. D., Warenycia, M. W., Reiffenstein, R. J., & Dowling, G. (1989). Determination of sulfide in brain tissue by gas dialysis/ion chromatography: Postmortem studies and two case reports. Journal of Analytical Toxicology , 13, 105–109. https://doi.org/10.1093/jat/13.2.105
Goubern, M., Andriamihaja, M., Nübel, T., Blachier, F., & Bouillaud, F. (2007). Sulfide, the first inorganic substrate for human cells.The FASEB Journal , 21, 1699–1706. https://doi.org/10.1096/fj.06‐7407com
Greiner, R., Palinkas, Z., Basell, K., Becher, D., Antelmann, H., Nagy, P., & Dick, T. P. (2013). Polysulfides link H2S to protein thiol oxidation. Antioxidants and Redox Signaling , 19, 1749–1765. https://doi.org/10.1089/ ars.2012.5041
Hatakeyama, Y., Takahashi, K., Tominaga, M., Kimura, H., & Ohta, T. (2015). Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons. Molecular Pain , 11, 24.
He XL, Yan N, Chen XS, Qi YW, Yan Y, Cai Z. (2016) Hydrogen Sulfide Down-Regulates BACE1 and PS1 via Activating PI3K/Akt Pathway in the Brain of APP/PS1 Transgenic Mouse.Pharmacol Rep 68, 975-982. doi: 10.1016/j.pharep.2016.05.006.
Hildebrandt, T. M., & Grieshaber, M. K. (2008). Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. The FEBS Journal , 275, 3352–3361. https://doi. org/10.1111/j.1742‐4658.2008.06482.x
Hildebrandt TM, Meo ID, Zeviani M, Viscomi C, Braun HP. (2013) Proteome Adaptations in Ethe1-deficient Mice Indicate a Role in Lipid Catabolism and Cytoskeleton Organization via Post-Translational Protein Modifications. Biosci Rep 33: e00052. doi: 10.1042/BSR20130051.
Hill BC, Woon TC, Nicholls P, Peterson J, Greenwood C, Thomson AJ. (1984) Interactions of sulphide and other ligands with cytochrome c oxidase. An electron-paramagnetic-resonance study.Biochem J. 224, 591-600. doi: 10.1042/bj2240591.
Hosoki, R., Matsuki, N., & Kimura, H. (1997). The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun , 237, 527–531. https://doi.org/10.1006/bbrc.1997.6878
Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. (2010) Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models.Aging Cell. 9, 135-46. doi: 10.1111/j.1474-9726.2009.00543.x.
Ichinohe A, Kanaumi T, Takashima S, Enokido Y, Nagai Y, Kimura H. (2005) Cystathionine beta-synthase is enriched in the brains of Down’s patients. Biochem Biophys Res Commun. 338, 1547-50. doi: 10.1016/j.bbrc.2005.10.118.
Ide M, Ohnishi T, Toyoshima M, Balan S, Maekawa M, Shimamoto-Mitsuyama C, Iwayama Y, Ohba H, Watanabe A, Ishii T, Shibuya N, Kimura Y, Hisano Y, Murata Y, Hara T, Morikawa M, Hashimoto K, Nozaki Y, Toyota T, Wada Y, Tanaka Y, Kato T, Nishi A, Fujisawa S, Okano H, Itokawa M, Hirokawa N, Kunii Y, Kakita A, Yabe H, Iwamoto K, Meno K, Katagiri T, Dean B, Uchida K, Kimura H, Yoshikawa T. (2019) Excess hydrogen sulfide and polysulfides production underlies a schizophrenia pathophysiology.EMBO Mol Med. 11:e10695. doi: 10.15252/emmm.201910695.
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 84, 9265-9269. doi: 10.1073/pnas.84.24.9265.
Ishigami, M., Hiraki, K., Umemura, K., Ogasawara, Y., Ishii, K., & Kimura, H. (2009). A source of hydrogen sulfide and a mechanism of its release in
the brain. Antioxidants and Redox Signaling , 11, 205–214. https://doi. org/10.1089/ars.2008.2132
Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H. (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression.Biochem J. 381, 113-123. doi: 10.1042/BJ20040243.
Issy AC, Dos-Santos-Pereira M, Pedrazzi JFC, Kubrusly RCC, Del-Bel E. (2018) The role of striatum and prefrontal cortex in the prevention of amphetamine-induced schizophrenia-like effects mediated by nitric oxide compounds.
Prog Neuropsychopharmacol Biol Psychiatry. 86, 353-362. doi: 10.1016/j.pnpbp.2018.03.015
Jarosz, A. P., Wei, W., Gauld, J. W., Auld, J., Ozcan, F., Aslan, M., & Mutus, B. (2015). Glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) is inactivated by S‐sulfuration in vitro. Free Radical Biology and Medicine , 89, 512–521. https://doi.org/10.1016/j.freeradbiomed.2015.09.007
Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. (2001) Protein S-nitrosylation: A Physiological Signal for Neuronal Nitric Oxide. Nat Cell Biol 3, 193-197. doi: 10.1038/35055104.
Jennings ML. (2013) Transport of H2S and HS across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl/HS exchange.Am J Physiol Cell Physiol 305, C941-C950. https://doi.org/10.1152/ajpcell.00178.2013
Jęśko H, Lenkiewicz AM, Wilkaniec A, Adamczyk A. (2019) The interplay between parkin and alpha-synuclein; possible implications for the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp (Wars) . 79, 276-289.
Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux-Vekemans B. (2003) Endogenous hydrogen sulfide overproduction in Down syndrome.Am J Med Genet A. 116A, 310-311. doi: 10.1002/ajmg.a.10847.
Kimura, H. (2015a). Signaling molecules: Hydrogen sulfide and polysulfide. Antioxidants and Redox Signaling , 22, 362–376. https://doi.org/ 10.1089/ars.2014.5869
Kimura, H. (2015b). Hydrogen sulfide and polysulfides as signaling molecules. Prc. Jpn. Acad. Ser. B. 91, 131-159. doi: 10.2183/pjab.91.131.
Kimura, H. (2016). Hydrogen polysulfide (H2Sn) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO). Journal of Neural Transmission , 123, 1235–1245. https://doi.org/10.1007/s00702‐016‐1600‐z
Kimura H. (2020) Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration.Br J Pharmacol. 177, 720-733. doi: 10.1111/bph.14579.
Kimura, Y., Dargusch, R., Schubert, D., & Kimura, H. (2006). Hydrogen sulfide protects HT22 neuronal cells from oxidative stress.Antioxidants and Redox Signaling , 8, 661–670. https://doi.org/10.1089/ ars.2006.8.661
Kimura, Y., Goto, Y.‐I., & Kimura, H. (2010). Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxidants and Redox Signaling , 12,1 –13. https://doi.org/10.1089/ ars.2008.2282
Kimura, Y., & Kimura, H. (2004). Hydrogen sulfide protects neurons from oxidative stress. The FASEB Journal , 18, 1165–1167. https://doi.org/ 10.1096/fj.04‐1815fje
Kimura, Y., Koike, S., Shibuya, N., Lefer, D., Ogasawara, Y., & Kimura, H. (2017). 3‐Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine‐ and glutathione‐persulfide (Cys‐SSH and GSSH) together with signaling molecules H2S2, H2S3 and H2S. Scientific Reports, 7, 10459. https://doi.org/10.1038/s41598‐01711004‐7
Kimura, Y., Mikami, Y., Osumi, K., Tsugane, M., Oka, J.‐I., & Kimura, H. (2013). Polysulfides are possible H2S‐derived signaling molecules in rat brain. The FASEB Journal , 27, 2451–2457. https://doi.org/ 10.1096/fj.12‐226415
Kimura, Y., Shibuya, N., & Kimura, H. (2019). Sulfite protects neurons from oxidative stress. British Journal of Pharmacology . 176, 571-582. DOI: https:// doi.org/10.1111/bph.14373
Kimura, Y., Toyofuku, Y., Koike, S., Shibuya, N., Nagahara, N., Lefer, D., … Kimura, H. (2015). Identification of H2S3 and H2S produced by 3mercaptopyruvate sulfurtransferase in the brain. Scientific Reports , 5, 14774. https://doi.org/10.1038/srep14774
King, A. L., Polhemus, D., Bhushan, S., Otsuka, H., Kondo, K., Nicholson, C. K., … Lefer, D. J. (2014). Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase–nitric oxide dependent. Proceedings of the National Academy of Sciences of the United States of America , 111, 3182–3187. https://doi.org/10.1073/pnas.1321871111
Koike, S., Kawamura, K., Kimura, Y., Shibuya, N., Kiimura, H., & Ogasawara, Y. (2017). Analysis of endogenous H2S and H2Sn in mouse brain by high performance liquid chromatography with fluorescence and tandem mass spectrometric detection. Free Radical Biology and Medicine , 113, 355–362. https://doi.org/10.1016/j.freeradbiomed.2017.10.346
 Koike S, Kayama T, Yamamoto S, Komine D, Tanaka R, Nishimoto S, Suzuki T, Kishida A, Ogasawara Y. (2019) Polysulfides protect SH-SY5Y cells from methylglyoxal-induced toxicity by suppressing protein carbonylation: A possible physiological scavenger for carbonyl stress in the brain. Neurotoxicology. 55, 13-19. doi: 10.1016/j.neuro.2016.05.003
Koike, S., Ogasawara, Y., Shibuya, N., Kimura, H., & Ishii, K. (2013). Polysulfide exerts a protective effect against cytotoxicity caused by t‐buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells.FEBS Letters , 587, 3548–3555. https://doi.org/10.1016/j. febslet.2013.09.013
Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G Sr, Gojon G Jr, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ. (2013) H₂S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation . 127, 1116-1127. doi: 10.1161/CIRCULATIONAHA.112.000855.
Kumar A, Dejanovic B, Hetsh F, Semtner M, Fusca D, Arjune S et al. (2018). S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. J Clin Invest127: 4365–4378.
Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F, Bouillaud F. (2010) Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes.Biochim Biophys Acta. 1797, 1500-1511. doi: 10.1016/j.bbabio.2010.04.004.
Landry, A. P., Ballou, D. P., & Banerjee, R. (2017). H2S oxidation by nanodisc‐embedded human sulfide quinone oxidoreductase. The Journal of Biological Chemistry , 292, 11641–11649. https://doi.org/ 10.1074/jbc.M117.788547
Lancaster JR Jr. (2017) How are nitrosothiols formed de novo in vivo? Arch Biochem Biophys . 617, 137-144. doi: 10.1016/j.abb.2016.10.015.
Lewerenz, J., Ates, G., Methner, A., Conrad, M. & Maher, P. (2018) Oxytosis/Ferroptosis (Re-)Emerging Roles for Oxidative Stress-Dependent Non-Apptotic Cell Death in Diseases of the Central Nervous System.Front. Neurosci. 12, 214.
Li YL, Wu PF, C JG, Wang S, Han QQ, Li D, Wang W, Guan XL, Li D, Long LH, Huang JG, Wang F. (2017) Activity-dependent sulfhydration signal controls N-methyl-D-aspartate subtype glutamate receptor-dependent synaptic plasticity via increasing D-serine availability.Antioxid. Redox Signal. 27, 398-414. Doi: 10.1089/ars.2016.6936.
Linden, D. R., Furne, J., Stoltz, G. J., Abdel‐Rehim, M. S., Levitt, M. D., & Szurszewski, J. H. (2012). Sulphide quinone reductase contributes to hydrogen sulphide metabolism in murine peripheral tissues but not in the CNS. British Journal of Pharmacology , 165, 2178–2190. https:// doi.org/10.1111/j.1476‐5381.2011.01681.x
Mao CC, Guidotti A, Costa E (1974). The regulation of cyclic guanosine monophosphate in rat cerebellum: possible involvement of putative amino acid neurotransmitters. Brain Res  79, 510– 514.
Marechal D, Brault V, Leon A, Martin D, Lopes Pereira P, Loaëc N, Birling MC, Friocourt G, Blondel M, Herault Y. (2019) Cbs overdosage is necessary and sufficient to induce cognitive phenotypes in mouse models of Down syndrome and interacts genetically with Dyrk1a. Hum Mol Genet. 28, 1561-1577. doi: 10.1093/hmg/ddy447.
Matsui T, Sugiyama R, Sakanashi K, Tamura Y, Iida M, Nambu Y, Higuchi T, Suematsu M, Ikeda-Saito M. (2018) Hydrogen sulfide bypasses the rate-limiting oxygen activation of heme oxygenase. J Biol Chem. 293, 16931-16939. doi: 10.1074/jbc.RA118.004641.
Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, Finazzi-Agro A. (1997) S-nitrosylation regulates apoptosis. Nature . 388, 432-433. doi: 10.1038/41237.
Meyer U, Feldon J. (2012) To poly(I:C) or Not to poly(I:C): Advancing Preclinical Schizophrenia Research Through the Use of Prenatal Immune Activation Models. Neuropharmacology  62, 1308-1321. doi: 10.1016/j.neuropharm.2011.01.009.
Mikami, Y., Shibuya, N., Kimura, Y., Ogasawara, Y., & Kimura, H. (2011). Thioredoxin and dihydrolipoic acid are endogenous reductants required for 3‐mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. The Biochemical Journal , 439, 479–485. https://doi.org/ 10.1042/BJ20110841
Miki B, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F, Toritsuka M, Ikawa D, et al…..Iwamoto K. (2014) Increased l1 Retrotransposition in the Neuronal Genome in Schizophrenia.Neuron 81, 306-313. doi: 10.1016/j.neuron.2013.10.053.
Minamishima, S., Bougaki, M., Sips, P. Y., Yu, J. D., Minamishima, Y. A., Elrod, J. W., … Ichinose, F. (2009). Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3‐dependent mechanism in mice.Circulation , 120, 888–896. https://doi.org/10.1161/CIRCULATIONAHA.108.833491
Mishanina, T. V., Libiad, M., & Banerjee, R. (2015). Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nature Chemical Biology , 11, 457–464. https://doi.org/10.1038/ nchembio.1834
Mishanina, T. V., Yadav, P. K., Ballou, D. P., & Banerjee, R. (2015). Transient kinetic analysis of hydrogen sulfide oxidation catalyzed by human sulfide quinone oxidoreductase. The Journal of Biological Chemistry , 290, 25072–25080. https://doi.org/10.1074/jbc.M115.682369
Miyamoto, R., Koike, S., Takano, Y., Shibuya, N., Kimura, Y., Hanaoka, K., … Kimura, H. (2017). Polysulfides (H2Sn) produced from the interaction of hydrogen sulfide (H2S) and nitric oxide (NO) activate TRPA1 channels. Scientific Reports , 7, 45995. https://doi.org/10.1038/ srep45995
Modis, K., Coletta, C., Erdelyi, K., Papapetropoulos, A., & Szabo, C. (2013). Intramitochondrial hydrogen sulfide production by 3mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. The FASEB Journal , 27, 601–611. https://doi.org/10.1096/fj.12‐216507
Moustafa, A., & Habara, Y. (2016). Cross talk between polysulfide and nitric oxide in rat peritoneal mast cells. American Journal of Physiology. Cell Physiology , 310, C894–C902. https://doi.org/10.1152/ ajpcell.00028.2016
Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L., and Coyle, J. T. (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547–1558.
Mustafa, A. K., Gadalla, M. M., Sen, N., Kim, S., Mu, W., Gazi, S. K., … Snyder, S. (2009). H2S signals through protein S‐sulfhydration. Science Signaling , 2, ra72.
Mustafa, A. K., Sikka, G., Gazi, S. K., Steppan, J., Jung, S. M., Bhunia, A. K., … Snyder,S.H. (2011). Hydrogen sulfide as endothelium‐derived hyperpolarizing factor sulfhydrates potassium channels. Circulation Research , 109, 1259–1268. https://doi.org/10.1161/CIRCRESAHA.111.240242
Nagahara, N. (2018). Multiple role of 3‐mercaptopyruvatesulfurtransferase: Antioxidative function, H2S and polysulfide production and possible SOxproduction. British Journal of Pharmacology , 175, 577–589.
Nagahara, N., Koike, S., Nirasawa, T., Kimura, H., & Ogasawara, Y. (2018). Alternative pathway of H2S and polysulfides production from sulfurated catalytic‐cysteine of reaction intermediates of 3mercaptopyruvate sulfurtransferase. Biochemical and Biophysical Research Communications , 496, 648–653. https://doi.org/10.1016/j. bbrc.2018.01.056
Nagahara N, Nirasawa T, Yoshii T, Niimura Y. (2012) Is Novel Signal Transducer Sulfur Oxide Involved in the Redox Cycle of Persulfide at the Catalytic Site Cysteine in a Stable Reaction Intermediate of Mercaptopyruvate Sulfurtransferase?Antioxid Redox Signal. 16, 747-753. doi: 10.1089/ars.2011.4468.
Nagahara, N., Yoshii, T., Abe, Y., & Matsumura, T. (2007). Thioredoxin dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation.Journal of Biological Chemistry , 282, 1561–1569. https://doi.org/ 10.1074/jbc.M605931200
Nagai, Y., Tsugane, M., Oka, J., & Kimura, H. (2004). Hydrogen sulfide induces calcium waves in astrocytes. The FASEB Journal , 18, 557–559. https://doi.org/10.1096/fj.03‐1052fje
Nagai, Y., Tsugane, M., Oka, J.‐I., & Kimura, H. (2006). Polysulfides induce calcium waves in rat hippocampal astrocytes. Journal of Pharmacological Sciences , 100, 200.
Nielsen, R. W., Tachibana, C., Hansen, N. E., & Winther, J. R. (2011). Trisulfides in proteins. Antioxidants and Redox Signaling , 15, 67–75. https:// doi.org/10.1089/ars.2010.3677
O’Dell TJ, Hawkins RD, Kandel ER, Arancio 0 (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 88, 11285-11289.
Ogasawara, Y., Ishii, K., Togawa, T., & Tanabe, S. (1993). Determination of bound sulfur in serum by gas dialysis/high‐performance liquid chromatography. Analytical Biochemistry , 215, 73 –81. https://doi.org/ 10.1006/abio.1993.1556
Ogasawara, Y., Isoda, S., & Tanabe, S. (1994). Tissue and subcellular distribution of bound and acid‐labile sulfur, and the enzymic capacity for sulfide production in the rat. Biological and Pharmaceutical Bulletin , 17, 1535–1542. https://doi.org/10.1248/bpb.17.1535
Ohnishi T, Balan S, Toyoshima M, Maekawa M, Ohba H, Watanabe A, Iwayama Y, Fujita Y, Tan Y, Hisano Y, Shimamoto-Mitsuyama C, Nozaki Y, Esaki K, Nagaoka A, Matsumoto J, Hino M, Mataga N, Hayashi-Takagi A, Hashimoto K, Kunii Y, Kakita A, Yabe H, Yoshikawa T. (2019) Investigation of betaine as a novel psychotherapeutic for schizophrenia.EBioMedicine . 45, 432-446. doi: 10.1016/j.ebiom.2019.05.062.
Ojika K, Tsugu Y, Mitake S, Otsuka Y, Katada E. (1998) NMDA receptor activation enhances the release of a cholinergic differentiation peptide (HCNP) from hippocampal neurons in vitro.Brain Res Dev Brain Res . 106, 173-80. doi: 10.1016/s0165-3806(98)00014-5.
Olson, K. R., Gao, Y., Arif, F., Arora, K., Patel, S., DeLeon, E. R., … Straub, K. D. (2018). Metabolism of hydrogen sulfide (H2S) and production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biology, 15, 74–85. https://doi.org/10.1016/j.redox.2017.11.009
Olson, K. R., Gao, Y., DeLeon, E. R., Arif, M., Arif, F., Arora, N., & Straub, K. D. (2017). Catalase as a sulfide–sulfur oxido‐reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biology, 12, 325–339. https://doi.org/10.1016/j.redox.2017.02.021
Oosumi, K., Tsugane, M., Ishigami, M., Nagai, Y., Iwai, T., Oka, J.‐I., & Kimura, H. (2010). Polysulfide activates TRP channels and increases intracellular Ca2+ in astrocytes. Neuroscience Research , 685, e109–e222.
Palmer RM, Ferrige AG, Moncada S (1987). Nitric oxide release accounts for the biological activity of endothelium‐derived relaxing factor. Nature  327, 524– 526.
Panagaki T, Randi EB, Augsburger F, Szabo C. (2019) Overproduction of H(2)S, generated by CBS, inhibits mitochondrial Complex IV and suppresses oxidative phosphorylation in Down syndrome.Proc Natl Acad Sci U S A . 116, 18769-18771. doi: 10.1073/pnas.1911895116.
Paul BD, Sbodio JI, Xu R, Vandiver MS, Cha JY, Snowman AM, Snyder SH. (2014) Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease.
Nature . 509, 96-100. doi: 10.1038/nature13136.
Pitsikas N. (2016) The Role of Nitric Oxide Synthase Inhibitors in Schizophrenia. Curr Med Chem . 23, 2692-2705. doi: 10.2174/0929867323666160812151054.
Reddy PH, Oliver DM. (2019) Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer’s Disease. Cells , 8:488. doi: 10.3390/cells8050488.
Reed TT, Pierce WM Jr, Turner DM, Markesbery WR, Butterfield DA. (2009) Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. Version 2. J Cell Mol Med . 13, 2019-2029. doi: 10.1111/j.1582-4934.2008.00478.x.
Reiffenstein, R. J., Hulbert, W. C., & Roth, S. H. (1992). Toxicology of hydrogen sulfide. Annual Review of Pharmacology and Toxicology , 32, 109–134. https://doi.org/10.1146/annurev.pa.32.040192.000545
Ruetz, M., Kumutima, J., Lewis, B. E., Filipovic, M. R., Lehnert, N., Stemmler, T. L., & Banerjee, R. (2017). A distal ligand mutes the interaction of hydrogen sulfide with human neuroglobin. The Journal of Biological Chemistry , 292, 6512–6528. https://doi.org/10.1074/jbc. M116.770370
Savage, J. C., & Gould, D. H. (1990). Determination of sulfide in brain tissue and rumen fluid by ion‐interaction reversed‐phase high‐performance liquid chromatography. Journal of Chromatography , 526, 540–545. https://doi.org/10.1016/S0378‐4347(00)82537‐2
Sbodio JI, Snyder SH, Paul BD. (2016) Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease.Proc Natl Acad Sci U S A . 113, 8843-8848. doi: 10.1073/pnas.1608264113.
Sbodio JI, Snyder SH, Paul BD. (2018) Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington’s disease. Proc Natl Acad Sci U S A. 115, 780-785. doi: 10.1073/pnas.1717877115.
Searcy, D. G. (1996). HS−:O 2 oxidoreductase activity of Cu, Zn superoxide dismutase. Archives of Biochemistry and Biophysics , 334, 50–58. https:// doi.org/10.1006/abbi.1996.0428
Searcy, D. G., Whitehead, J. P., & Maroney, M. J. (1995). Interaction of Cu, Zn superoxide dismutase with hydrogen sulfide. Archives of Biochemistry and Biophysics , 318, 251–263. https://doi.org/10.1006/ abbi.1995.1228
Selkoe DJ, Hardy J. (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med . 8, 595-608. doi: 10.15252/emmm.201606210.
Seth D, Hess DT, Hausladen A, Wang L, Wang YJ, Stamler JS. (2018) A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation.Mol Cell. 69, 451-464.e6. doi: 10.1016/j.molcel.2017.12.025.
Shatalin, K., Shatalina, E., Mironov, A. and Nudler, E. (2011) H2S: A universal defense against antibiotics in bacteria. Science 334, 986–990.
Shibuya, N., Koike, S., Tanaka, M., Ishigami‐Yuasa, M., Kimura, Y., Ogasawara, Y., … Kimura, H. (2013). A novel pathway for the production of hydrogen sulfide from D‐cysteine in mammalian cells.Nature Communications , 4, 1366. https://doi.org/10.1038/ncomms2371
Shibuya, N., Tanaka, M., Yoshida, M., Ogasawara, Y., Togawa, T., Ishii, K., & Kimura, H. (2009). 3‐Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain.Antioxidants and Redox Signaling , 11, 703–714. https://doi.org/10.1089/ ars.2008.2253
Shigetomi, E., Jackson‐Weaver, O., Huckstepp, R. T., O’Dell, T. J., & Khakh, B. S. (2013). TRPA1 channels are regulators of astrocyte basal calcium levels and long‐term potentiation via constitutive D‐serine release. The Journal of Neuroscience , 33, 10143–10153. https://doi.org/10.1523/ JNEUROSCI.5779‐12.2013
Stipanuk, M. H., & Beck, P. W. (1982). Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat.The Biochemical Journal , 206, 267–277. https://doi.org/10.1042/ bj2060267
Streng, T., Axelsson, H. E., Hedlund, P., Andersson, D. A., Jordt, S. E., Bevan, S., … Zygmunt, P. M. (2008). Distribution and function of the hydrogen sulfide‐sensitive TRPA1 ion channel in rat urinary bladder. European Urology , 53, 391–399. https://doi.org/10.1016/j.eururo.2007.10.024
Stubbert, D., Prysyazhna, O., Rudyk, O., Scotcher, J., Burgoyne, J. R., & Eaton, P. (2014). Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide.Hypertension , 64, 1344–1351. https://doi.org/ 10.1161/HYPERTENSIONAHA.114.04281
Szabo C, Ransy C, Módis K, Andriamihaja M, Murghes B, Coletta C, Olah G, Yanagi K, Bouillaud F. (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol . 171, 2099-2122. doi: 10.1111/bph.12369.
Tan, S., Schubert, D., and Maher, P. (2001) Oxytosis: A novel form of programmed cell death. Cur. Top. Med. Chem . 1, 497–506
Taqatqeh F, Mergia E, Neitz A, Eysel UT, Koesling D, Mittmann T. (2009) More Than a Retrograde Messenger: Nitric Oxide Needs Two cGMP Pathways to Induce Hippocampal Long-Term Potentiation. J Neurosci 29, 9344-9350. doi: 10.1523/JNEUROSCI.1902-09.2009.
Taub JW, Huang X, Matherly LH, Stout ML, Buck SA, Massey GV, Becton DL, Chang MN, Weinstein HJ, Ravindranath Y. (1999) Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin.
Blood . 94, 1393-400.
Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, Levitt MD, Prelle A, Fagiolari G, Rimoldi M, Zeviani M. (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med . 15, 200-205. doi: 10.1038/nm.1907.
Topcuoglu C, Bakirhan A, Yilmaz FM, Neselioglu S, Erel O, Sahiner SY. (2017) Thiol/disulfide homeostasis in untreated schizophrenia patients. Psychiatry Res . 251:212-216. doi: 10.1016/j.psychres.2017.02.016.
Toyoshima M, Jiang X, Ogawa T, Ohnishi T, Yoshihara S, Balan S, Yoshikawa T, Hirokawa N. (2019) Enhanced carbonyl stress induces irreversible multimerization of CRMP2 in schizophrenia pathogenesis.Life Sci Alliance. 2: e201900478. doi: 10.26508/lsa.201900478.
Umemura K, Kimura H. (2007) Hydrogen sulfide enhances reducing activity in neurons: neurotrophic role of H2S in the brain? Antioxid Redox Signal. 9, 2035-2041. doi: 10.1089/ars.2007.1802.
Ünal K, Erzin G, Yüksel RN, Alisik M, Erel Ö.Nord. (2018) Thiol/disulphide homeostasis in schizophrenia patients with positive symptoms. J Psychiatry . 72, 281-284. doi: 10.1080/08039488.2018.1441906
Vandini E, Ottani A, Zaffe D, Calevro A, Canalini F, Cavallini GM, Rossi R, Guarini S, Giuliani D. (2019) Mechanisms of Hydrogen Sulfide against the Progression of Severe Alzheimer’s Disease in Transgenic Mice at Different Ages. Pharmacology . 103, 50-60. doi: 10.1159/000494113.
Vandiver, M. S., Paul, B. D., Xu, R., Karuppagounder, S., Rao, F., Snowman, A. M., … Snyder, S. H. (2013). Sulfhydration mediates neuroprotective actions of parkin. Nature Communications , 4, 1626. https://doi.org/ 10.1038/ncomms2623
Viscomi C, Burlina AB, Dweikat I, Savoiardo M, Lamperti C, Hildebrandt T, Tiranti V, Zeviani M. (2010) Combined Treatment With Oral Metronidazole and N-acetylcysteine Is Effective in Ethylmalonic Encephalopathy. Nat Med 16, 869-871. doi: 10.1038/nm.2188.
Vitvitsky, V., Yadav, P. K., Kurthen, A., & Banerjee, R. (2015). Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. Journal of Biological Chemistry , 290, 8310–8320.
Wang, L., Cvetkov, T. L., Chance, M. R., & Moiseenkova‐Bell, V. Y. (2012). Identification of in vivo disulfide conformation of TRPA1 ion channel. The Journal of Biological Chemistry , 287, 6169–6176. https://doi.org/ 10.1074/jbc.M111.329748
Warenycia, M. W., Goodwin, L. R., Benishin, C. G., Reiffenstein, R. J., Francom, D. M., Taylor, J. D., & Dieken, F. P. (1989). Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochemical Pharmacology , 38, 973–981. https://doi.org/10.1016/0006‐2952(89)90288‐8
Warenycia, M. W., Goodwin, L. R., Francom, D. M., Dieken, F. P., Kombian, S. B., & Reiffenstein, R. J. (1990). Dithiothreitol liberates non‐acid labile sulfide from brain tissue of H2S‐poisoned animals. Archives of Toxicology , 64, 650–655. https://doi.org/10.1007/BF01974693
Warenycia, M. W., Smith, K. A., Blashko, C. S., Kombian, S. B., & Reiffenstein, R. J. (1989). Monoamine oxidase inhibition as a sequel of hydrogen sulfide intoxication: Increases in brain catecholamine and 5‐hydroxytryptamine levels. Archives of Toxicology , 63, 131–136. https://doi.org/10.1007/BF00316435
Watanabe A, Toyota T, Owada Y, Hayashi T, Iwayama Y, Matsumata M, Ishitsuka Y, Nakaya A, Maekawa M, Ohnishi T, Arai R, Sakurai K, Yamada K, Kondo H, Hashimoto K, Osumi N, Yoshikawa T. (2007) Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. Version 2. PLoS Biol. 5: e297. doi: 10.1371/journal.pbio.0050297.
Whiteman, M., Li, L., Kostetski, I., Chu, S. H., Siau, J. L., Bhatia, M., & Moore, P. K. (2006). Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochemical and Biophysical Research Communications , 343, 303–310. https://doi.org/10.1016/j.bbrc.2006.02.154
Wright DJ, Gray LJ, Finkelstein DI, Crouch PJ, Pow D, Pang TY, Li S, Smith ZM, Francis PS, Renoir T, Hannan AJ. (2016) N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington’s disease. Hum Mol Genet. 25, 2923-2933. doi: 10.1093/hmg/ddw144.
Xie L, Hu LF, Teo XQ, Tiong CX, Tazzari V, Sparatore A, Soldato PD, Dawe GS, Bian JS. (2013) Therapeutic Effect of Hydrogen Sulfide-Releasing L-Dopa Derivative ACS84 on 6-OHDA-induced Parkinson’s Disease Rat Model.PLoS One 8: e60200. doi: 10.1371/journal.pone.0060200.
Xiong JW, Wei B, Li YK, Zhan JQ, Jiang SZ, Chen HB, Yan K, Yu B, Yang YJ. (2018) Decreased plasma levels of gasotransmitter hydrogen sulfide in patients with schizophrenia: correlation with psychopathology and cognition. Psychopharmacology (Berl) . 235, 2267-2274. doi: 10.1007/s00213-018-4923-7.
Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM, ……Lipton SA. (2004) Nitrosative Stress Linked to Sporadic Parkinson’s Disease: S-nitrosylation of Parkin Regulates Its E3 Ubiquitin Ligase Activity.Proc Natl Acad Sci U S A 101, 10810-10814. doi: 10.1073/pnas.0404161101.
Yin WL, Yin WG , Huang BS , Wu LX. (2017) Neuroprotective Effects of Lentivirus-Mediated Cystathionine-Beta-Synthase Overexpression Against 6-OHDA-induced Parkinson’s Disease Rats. Neurosci Lett 657, 45-52. doi: 10.1016/j.neulet.2017.07.019.
 
Yong R, Searcy DG. (2001) Sulfide Oxidation Coupled to ATP Synthesis in Chicken Liver Mitochondria. Comp Biochem Physiol B Biochem Mol Biol  129, 129-37.
doi: 10.1016/s1096-4959(01)00309-8.
Zhao W, Zhang J, Lu Y, Wang R. (2001) The Vasorelaxant Effect of H(2)S as a Novel Endogenous Gaseous K(ATP) Channel Opener EMBO J, 20, 6008-6016.
doi: 10.1093/emboj/20.21.6008.
Zhuo M, Small SA, Kandel ER, Hawkins RD. (1993) Nitric Oxide and Carbon Monoxide Produce Activity-Dependent Long-Term Synaptic Enhancement in Hippocampus. Science , 260, 1946-1950. doi: 10.1126/science.8100368.