References
Apgaua, D. M., Tng, D. Y., Forbes, S. J., Ishida, Y. F., Vogado, N. O., Cernusak, L. A., & Laurance, S. G. (2019). Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats.Tree physiology , 39 (11), 1806-1820.
Atkin, O. K., & Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in plant science, 8 (7), 343-351.
Bange, M. (2007). Effects of climate change on cotton growth and development. The Australian Cottongrower, 28 (3), 41-45.
Bange, M., Carberry, P., Marshall, J., & Milroy, S. (2005). Row configuration as a tool for managing rain-fed cotton systems: review and simulation analysis. Australian Journal of Experimental Agriculture, 45 (1), 65-77.
Broughton, K., Bange, M., Tissue, D. T., Osanai, Y., Nguyen, L., Luo, Q., . . . Payton, P. (2020). An overview of recent research into effects of climate change & extreme weather events on Australian cotton systems. www.cottoninfo.com.au .
Broughton, K. J., Smith, R. A., Duursma, R. A., Tan, D. K., Payton, P., Bange, M. P., & Tissue, D. T. (2017). Warming alters the positive impact of elevated CO2 concentration on cotton growth and physiology during soil water deficit. Functional Plant Biology, 44 (2), 267-278.
Burke, J. J., & Wanjura, D. F. (2010). Plant responses to temperature extremes. In J. McD. Stewart, D. M. Oosterhuis, J. J. Heitholt & J. R. Mauney (Eds), Physiology of Cotton (pp. 123-128). Berlin: Springer.
Carmo-Silva, A. E., Gore, M. A., Andrade-Sanchez, P., French, A. N., Hunsaker, D. J., & Salvucci, M. E. (2012). Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, 83 , 1-11.
Chastain, D. R., Snider, J. L., Collins, G. D., Perry, C. D., Whitaker, J., & Byrd, S. A. (2014). Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. Journal of Plant Physiology, 171 (17), 1576-1585.
Chavan, S. G., Duursma, R. A., Tausz, M., & Ghannoum, O. (2019). Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. Journal of experimental botany, 70 (21), 6447-6459.
Dai, A. (2013). Increasing drought under global warming in observations and models. Nature climate change, 3 (1), 52-58.
Downton, J., & Slatyer, R. (1972). Temperature dependence of photosynthesis in cotton. Plant physiology, 50 (4), 518-522.
Duan, H., Duursma, R. A., Huang, G., Smith, R. A., Choat, B., O’GRADY, A. P., & Tissue, D. T. (2014). Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in E ucalyptus radiata seedlings. Plant, Cell & Environment , 37 (7), 1598-1613.
Echer, F., Oosterhuis, D., Loka, D., & Rosolem, C. (2014). High night temperatures during the floral bud stage increase the abscission of reproductive structures in cotton. Journal of agronomy and crop science, 200 (3), 191-198.
Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant biology, 6 (03), 269-279.
Frantz, J. M., Cometti, N. N., & Bugbee, B. (2004). Night temperature has a minimal effect on respiration and growth in rapidly growing plants. Annals of Botany, 94 (1), 155-166.
Gipson, J., & Joham, H. (1968). Influence of Night Temperature on Growth and Development of Cotton (Gossypium hirsutum L.). I. Fruiting and Boll Development 1. Agronomy Journal, 60 (3), 292-295.
Gipson, J. R. (1986). Temperature effects on growth, development, and fiber properties. In J.R. Mauney & J. McD Stewart (Eds), Cotton physiology (pp. 47-56). Memphis: Cotton Foundation.
Gunderson, C. A., O’hara, K. H., Campion, C. M., Walker, A. V., & Edwards, N. T. (2010). Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Global Change Biology, 16 (8), 2272-2286.
Haldimann, P., & Feller, U. (2005). Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves.Plant, Cell & Environment, 28 (3), 302-317.
Hamilton III, E. W., Heckathorn, S. A., Joshi, P., Wang, D., & Barua, D. (2008). Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species. Journal of Integrative Plant Biology, 50 (11), 1375-1387.
Impa, S., Nadaradjan, S., & Jagadish, S. (2012). Drought stress induced reactive oxygen species and anti-oxidants in plants. In P. Ahmad & M.N.V. Prasad (Eds). Abiotic Stress Responses in Plants (pp. 131-147). Berlin: Springer.
Izquierdo, N., Aguirrezábal, L., Andrade, F., & Pereyra, V. (2002). Night temperature affects fatty acid composition in sunflower oil depending on the hybrid and the phenological stage. Field Crops Research, 77 (2-3), 115-126.
Kitao, M., & Lei, T. (2007). Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought. Plant biology, 9 (01), 69-76.
Kurek, I., Chang, T. K., Bertain, S. M., Madrigal, A., Liu, L., Lassner, M. W., & Zhu, G. (2007). Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. The Plant Cell, 19 (10), 3230-3241.
Larkindale, J., & Vierling, E. (2008). Core genome responses involved in acclimation to high temperature. Plant physiology, 146 (2), 748-761.
Law, D. R., Crafts-Brandner, S. J., & Salvucci, M. E. (2001). Heat stress induces the synthesis of a new form of ribulose-1, 5-bisphosphate carboxylase/oxygenase activase in cotton leaves. Planta, 214 (1), 117-125.
Law, R. D., & Crafts-Brandner, S. J. (1999). Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant physiology, 120 (1), 173-182.
Lewis, J. D., Smith, R. A., Ghannoum, O., Logan, B. A., Phillips, N. G., & Tissue, D. T. (2013). Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster-and slower-growing Eucalyptus seedlings to short-term drought. Tree Physiology , 33 (5), 475-488.
Li, X., Smith, R., Choat, B., & Tissue, D. T. (2019). Drought resistance of cotton (Gossypium hirsutum ) is promoted by early stomatal closure and leaf shedding. Functional Plant Biology ,47 (2), 91-98.
Li, Z., Lin, J., Zhang, T., Zhang, N., Mu, C., & Wang, J. (2014). Effects of summer nocturnal warming on biomass production ofLeymus chinensis in the Songnen grassland of C hina: from bud bank and photosynthetic compensation. Journal of agronomy and crop science, 200 (1), 66-76.
Loka, D., & Oosterhuis, D. (2010). Effect of high night temperatures on cotton respiration, ATP levels and carbohydrate content.Environmental and Experimental Botany, 68 (3), 258-263.
Long S.P. & Ort D.R. (2010). More than taking the heat: crops and global change. Current Opinion in Plant Biology, 13 (3), 241–248.
Medrano, H., Escalona, J. M., Bota, J., Gulías, J., & Flexas, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter.Annals of Botany, 89 (7), 895-905.
Mohammed, A., & Tarpley, L. (2009). High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology, 149 (6-7), 999-1008.
Najeeb, U., Sarwar, M., Atwell, B. J., Bange, M. P., & Tan, D. K. (2017). Endogenous ethylene concentration is not a major determinant of fruit abscission in heat-stressed cotton (Gossypium hirsutum L.).Frontiers in plant science, 8 , 1615. doi: 10.3389/fpls.2017.01615
Osanai, Y., Tissue, D. T., Bange, M. P., Anderson, I. C., Braunack, M. V., & Singh, B. K. (2017). Plant-soil interactions and nutrient availability determine the impact of elevated CO2 and temperature on cotton productivity. Plant and Soil, 410 (1-2), 87-102.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., . . . Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change . IPCC.
Paul, M. J., & Pellny, T. K. (2003). Carbon metabolite feedback regulation of leaf photosynthesis and development. Journal of experimental botany, 54 (382), 539-547.
Perkins, S., Alexander, L., & Nairn, J. (2012). Increasing frequency, intensity and duration of observed global heatwaves and warm spells.Geophysical Research Letters, 39 (20). doi.org/10.1029/2012GL053361
Pettigrew, W. (2001). Environmental effects on cotton fiber carbohydrate concentration and quality. Crop science, 41 (4), 1108-1113.
Pettigrew, W. (2008). The effect of higher temperatures on cotton lint yield production and fiber quality. Crop science, 48 (1), 278-285.
Prasad, P., Pisipati, S., Ristic, Z., Bukovnik, U., & Fritz, A. (2008). Impact of nighttime temperature on physiology and growth of spring wheat. Crop science, 48 (6), 2372-2380.
Prasad, P. V., & Djanaguiraman, M. (2011). High night temperature decreases leaf photosynthesis and pollen function in grain sorghum.Functional Plant Biology, 38 (12), 993-1003.
Reddy, K., Hodges, H., & Reddy, V. (1992). Temperature effects on cotton fruit retention. Agronomy Journal, 84 (1), 26-30.
Reddy, K., Reddy, V., & Hodges, H. (1992). Temperature effects on early season cotton growth and development. Agronomy Journal, 84 (2), 229-237.
Reddy, K. R., Davidonis, G. H., Johnson, A. S., & Vinyard, B. T. (1999). Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agronomy Journal, 91 (5), 851-858.
Reddy, K. R., Hodges, H. F., & McKinion, J. M. (1997). A comparison of scenarios for the effect of global climate change on cotton growth and yield. Functional Plant Biology, 24 (6), 707-713.
Reddy, V., Baker, D., & Hodges, H. (1991). Temperature effects on cotton canopy growth, photosynthesis, and respiration. Agronomy Journal, 83 (4), 699-704.
Reddy, V., Reddy, K., & Baker, D. (1991). Temperature effect on growth and development of cotton during the fruiting period. Agronomy Journal, 83 (1), 211-217.
Reddy, V., Reddy, K., & Hodges, H. (1995). Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Research, 41 (1), 13-23.
Salvucci, M. E., & Crafts-Brandner, S. J. (2004). Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments.Plant physiology, 134 (4), 1460-1470.
Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change.Proceedings of the National Academy of sciences, 106 (37), 15594-15598.
Sekmen, A. H., Ozgur, R., Uzilday, B., & Turkan, I. (2014). Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum ) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany, 99 , 141-149.
Sharwood, R. E. (2017). Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytologist, 213 (2), 494-510.
Singh, R. P., Prasad, P. V., Sunita, K., Giri, S., & Reddy, K. R. (2007). Influence of high temperature and breeding for heat tolerance in cotton: a review. Advances in Agronomy, 93 , 313-385.
Sinsawat, V., Leipner, J., Stamp, P., & Fracheboud, Y. (2004). Effect of heat stress on the photosynthetic apparatus in maize (Zea maysL.) grown at control or high temperature. Environmental and Experimental Botany, 52 (2), 123-129.
Snider, J. L., Chastain, D. R., Meeks, C. D., Collins, G. D., Sorensen, R. B., Byrd, S. A., & Perry, C. D. (2015). Predawn respiration rates during flowering are highly predictive of yield response inGossypium hirsutum when yield variability is water-induced.Journal of Plant Physiology, 183 , 114-120.
Snider, J. L., Oosterhuis, D. M., Skulman, B. W., & Kawakami, E. M. (2009). Heat stress-induced limitations to reproductive success inGossypium hirsutum . Physiologia plantarum, 137 (2), 125-138.
Soliz, L. M. A., Oosterhuis, D. M., Coker, D. L., & Brown, R. S. (2008). Physiological response of cotton to high night temperature.Am. J. Plant Sci. Biotechnol, 2 , 63-68.
Turnbull, M., Murthy, R., & Griffin, K. (2002). The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant, Cell & Environment, 25 (12), 1729-1737.
Turnbull, M. H., Tissue, D. T., Murthy, R., Wang, X., Sparrow, A. D., & Griffin, K. L. (2004). Nocturnal warming increases photosynthesis at elevated CO2 partial pressure in Populus deltoides . New Phytologist, 161 (3), 819-826.
Ullah, A., Sun, H., Yang, X., & Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant biotechnology journal, 15 (3), 271-284.
Wang, R., Ji, S., Zhang, P., Meng, Y., Wang, Y., Chen, B., & Zhou, Z. (2016). Drought effects on cotton yield and fiber quality on different fruiting branches. Crop science, 56 (3), 1265-1276.
Way, D. A., & Yamori, W. (2014). Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynthesis research, 119 (1-2), 89-100.
Williams, A., White, N., Mushtaq, S., Cockfield, G., Power, B., & Kouadio, L. (2015). Quantifying the response of cotton production in eastern Australia to climate change. Climatic change, 129 (1-2), 183-196.
Wolfe-Bellin, K. S., He, J., & Bazzaz, F. (2006). Leaf-level physiology, biomass, and reproduction of Phytolacca americana under conditions of elevated carbon dioxide and increased nocturnal temperature. International journal of plant sciences, 167 (5), 1011-1020.
Xu, Z., Zhou, G., & Shimizu, H. (2009). Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop science, 49 (5), 1843-1851.
Yamori, W., Hikosaka, K., & Way, D. A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis research, 119 (1-2), 101-117.
Yi, X., Zhang, Y., Yao, H., Luo, H., Gou, L., Chow, W., & Zhang, W. (2016). Different strategies of acclimation of photosynthesis, electron transport and antioxidative activity in leaves of two cotton species to water deficit. Functional Plant Biology, 43 (5), 448-460.
Zhao, D., Reddy, K. R., Kakani, V. G., Koti, S., & Gao, W. (2005). Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation. Physiologia plantarum, 124 (2), 189-199.
Zhu, L., Bloomfield, K. J., Hocart, C. H., Egerton, J. J., O’Sullivan, O. S., Penillard, A., . . . Atkin, O. K. (2018). Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant, Cell & Environment , 41 (6), 1251-1262.