Assorted optical solitons of the cubic and cubic quintic nonlinear Schrödinger equation featuring beta derivative
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Abstract
Although fractional and classical order cubic quintic nonlinear Schrödinger (NS) equation and cubic nonlinear Schrödinger equation are used simultaneously in nonlinear optics disciplines, the fractional-order NS equations are nowadays extensively used due to their higher coherence. The space-time fractional cubic quintic and nonlinear cubic Schrödinger equations integrating beta derivative are significant in modeling to nonlinear optics, photonics, plasmas, condensed matter physics, and other domains. The fractional wave transformation is exploited to translate the space-time fractional equations and the optical soliton solutions in the form of exponential, trigonometric, and hyperbolic functions with free parameters have been established in this article by putting to use the improved Bernoulli sub-equation function (IBSEF) approach. The shape of the solutions includes kink, periodic, bell-shaped soliton, breathing soliton, bright soliton, and singular kink type soliton. The physical features of the solitons have been revealed by depicting 3D, 2D, contour, and density graphs of some of the solutions. The results demonstrate that the IBSEF approach is simple, straightforward, effective and that it can be applied to a wide range of nonlinear fractional-order models in optics and communication engineering to achieve soliton solutions.
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Introduction
In mathematical physics, many real and rational problems in the world are modeled through fractional evolution equations. Indeed, fractional nonlinear evolution equations (FNLEEs) are a significant tool for defining the problems further precisely. FNLEEs are used in a wide range of applications, including optics, control theory, signal processing, plasma physics, electrochemistry, probability, image processing, system identification, medicine, and others, to control natural systems [1-3]. Accordingly, FNLEEs and their analytical soliton solutions are significant for deciphering the obscurity of intricate physical events and nonlinear features[4-6].Thus, several powerful techniques, for example the modified extended tanh-function [7, 8], the -expansion method [9], the modified auxiliary expansion method [10], the generalized Kudryashov method [11, 12], the multiple Exp-function method [13, 14], the unified method [15, 16], the sine-Gordon expansion method [17, 18], the extended sinh-Gordon equation expansion method [19], etc. have been developed and applied by physicists and mathematicians in the literature to determine the soliton solutions to the FNLEEs. Although the fractional and classical cubic quintic nonlinear Schrödinger (NS) equations, as well as the cubic nonlinear Schrödinger equation, are employed in nonlinear optics disciplines concurrently, fractional-order NS equations are at this time widely used owing to their higher compatibility. However, a few researchers have investigated the fractional-order cubic quintic NS equation, namely, Arshad et al. [20] examined this equation through the modified extended auxiliary equation approach, Chen et al. used the mapping technique and the Jacobian elliptic function approach [21] and double function [22] method. Islam et al. made use the modified extended direct algebraic technique[23], Hosseini et al. put to use the Kudryashov and exponentials method [24].Biswas et al. exploited the modified Kudryashov method and -expansion method [25] and Akinyemi et al. utilized the generalized auxiliary equation technique [26]. Further, the cubic nonlinear Schrödinger(NS) equation was investigated by making use of several methods, including the fractional Riccati method [27], the simplest equation method [28], the fractional mapping expansion method [29], the generalized tanh and the Bernoulli sub-ODE method [30].
In nonlinear physics and optics, the IBSEF approach is broadly used to examine soliton solutions of NLEEs and FNLEEs. The technique was used to achieve optical soliton [31] and traveling wave solutions to the nonlinear Lindau-Ginzburg-Higgs model [32], the dual core optical fiber equations [33], the Nizhnik-Novikov-Veselov equation [34], the Cahn-Allen equation [35], etc. To our optimal cognition, the cubic quintic nonlinear Schrödinger (NS) equation with parabolic nonlinearity and the cubic nonlinear Schrödinger (NS) equation with Kerr nonlinearity have not been investigated through the IBSEF method yet. Therefore, the aim of this article is to establish optical broad ranging stable soliton solutions to the stated equations by means of the IBSEF approach and fractional wave transformation integrating fractional beta-derivative. Kink, periodic, bell-shaped, multi-periodic, breathing, bright soliton, singular kink type and some other solitons are extracted from the determined solutions.
This article’s overview is divided into the following sections: The beta derivative is described in section 2 of this article. In the third section, the methodology is described, and in the fourth section, the mathematical analysis of the optical soliton solutions is discussed. The fifth section contains the results and discussion, while the last section contains the conclusions.
2. Beta derivative
Many academics have attempted to establish an appropriate definition of fractional-order derivative (FD). The Riemann-Liouville FD [36], Jumarie modified Riemann-Liouville FD [37], Caputo FD [38], conformable FD [39], etc. are some of the vastly used definitions. Each of these definitions has some drawback, such as the Riemann-Liouville FD and Caputo FD not adhering to the Leibnitz and chain rules. The Riemann-Liouville fractional derivative does not provide zero of the derivative of a constant, but Caputo does. At the origin, the conformable FD does not meet the derivative rule. On account of this, Atangana et al. [40] has recently established a novel definition of fractional derivative, known as beta derivative. This concept behaves well, adheres to both Leibnitz and chain rules, and interacts well with classical derivative [41].
Definition: Let  and  be a function such that . Then the -derivative of  is defined as[40]:
		
For, from the definition, we have.
Theorems associated to beta derivative: If we consider  and  are -differentiable for all  and and  are real constants, it satisfies the ensuing rules
1. .
2. .
3. .
4. .
5. .
6. .
7. .
It can be easily proved that the first five theorems are simple and satisfied by all definitions. Thus, here we will only prove the chain rule (Theory 6).

Proof of the chain rule (Theorem 6):
Suppose  and  are two differentiable functions. Then
.	  (i)
Now, we set . Therefore,  implies that . Also, it is found. Thus, from (i), it is obtained
,
.
Now, since  and  are differentiable functions, thus it is obtained
				
						(ii)
Now, we replace  by . Then from (ii), it can be found
			,
			,
			.
Hence .
This completes the proof. Many researchers have put to use this novel definition of fractional derivative in physical applications because of its ease, simplicity, and usefulness [9-11, 16].
3. The Method
The improved Bernoulli sub-equation function (IBSEF) method was established by updating the Bernoulli sub-equation function method [42], the steps of which are as follows [31-34]:
1st step:
The fractional nonlinear equation is assumed as the subsequent form:
,					(1)
where is a polynomial of , be the fractional derivative of -order and is an implicit function of  and . The aim is to transform (1) into the nonlinear differential equation using a suitable fractional transformation. The fractional travelling wave transformation is assumed in the subsequent form:
, ,					(2) 
where be the travelling wave velocity,  be the wave number,  be the wave variable and  be the order of fractional derivative.
Introducing the wave transformation (2) into equation (1), we attain the nonlinear equation:
.								(3)
2nd step:
As per the IBSEF method, the interim solution of the equation (3) can be assumed as
,					(4)
whereis the solution to the improved Bernoulli equation,and  are later determined coefficients. ,  are arbitrary constants that can be determined through the balance principle. The general form of the improved Bernoulli equation can be presented as follows:
, ,,.				(5)
The homogeneous balancing of the highest order linear term with the highest order nonlinear term of the equation (4) can be used to determine the value of the unknown parameters  and . This procedure yields the following  and  values.
Introducing solution (4) into equation (3) with the aid of equation (5), it provides us an equation of polynomial  of 
[bookmark: _Hlk83892584].		(6)
3rd step:
An algebraic system of equations is gained by equalizing all of ’s coefficients to zero:
,,,.
We can acquire the values of , ,, and ,,, respectively by solving this system.
4th step:
The solution of equation (5) depends on and and the following two conditions are met:
, ,						(7)
, ,					(8)
where , be an integrating constant.
The analytical solutions to equation (3) are attained with the aid of Maple software and categorize the analytical solutions using a whole distinction system for polynomial of . We acquire the analytical solutions to equation (1) by using the analytical solutions to equation (3) into equation (1) with the help of transformation (2). Thus, the investigation of the equation (1)’s analytical solution is completed.
4. Formulation of the solutions
The aim of this subsection is to establish stable broad-spectral inclusive solutions to the space-time fractional cubic quintic nonlinear Schrödinger (NS) equation and the cubic nonlinear Schrödinger equation by putting in use the IBSEF approach from which some known solutions in the literature are restored and some new closed-form wave solutions can be derived.
[bookmark: _Hlk95845552]4.1: The weakly nonlocal space-time fractional cubic quintic Schrödinger equation
In the case of nonlocal nonlinear media, the optical pulse intensity changed by the refractive index [23] is given by
,					(9)
wherei.e., is normalized, a rationally symmetric and positive real localized function,  represents self-focusing () and self-defocusing () nonlinearities.
The space-time fractional NS equation with nonlocal nonlinearities [24] can be expressed as
,				(10)
where  be the function of complex envelope and optical pulse  intensity ,
,  and  represent the temporal and spatial variables respectively. All quantities are taken as non-dimensional form.  and are constants which represent the non-linearity and the diffraction’s coefficient respectively, the real valued algebraic function is differentiable and  is a times continuously differentiable in complex plane .
For weakly nonlocal nonlinear medium, using the condition on  and considering parabolic nonlinearity, , equation (10) becomes
,		(11)
where,  and  represent the weakly non-local nonlinearities, cubic, quintic coefficients.
Consider the fractional wave transformation
,,				(12)
where  be the wave number, be the wave velocity and .
Setting transformation (12) into the equation (11), we acquire
.			(13)
The complex envelope can be considered as
,								(14)
where be the phase shift of the complex envelope.
By means of (14) and its derivatives with respect to  into the equation (13), obtaining an equation and equating real and imaginary parts, we attain
,	(15)
and	.								(16)
Since, , from equation (16), it can be found
.									(17)
Setting the value of  from (17) into equation (15), we obtain
,		(18)
Balancing and , we found a relationship among , and  as
.
For , , we found.
Therefore, the following is the trial solution of equation (18):
,						(19)
where , , , .
Introducing solution (19) combined with equation (5) into equation (18) provides a polynomial in  and setting each coefficient to zero yields a system of over-determined equations. By unravelling the algebraic system of equations with the assistance of Maple, we attain the subsequent estimations of the coefficients:
, ,  , 
	, ,,	(20)
where  and  are arbitrary parameters.
Case 1: For 
By setting the values of the parameters indicated in (20) into solution (19), as well as solution (7) of the modified Bernoulli equation and establishing transformation (12) and complex envelope (14), we reach the ensuing solution to the space-time fractional cubic quintic NS equation
,				(21)
where ,,,,,, and  are free parameters and .
Simplifying solution (21), we attain the hyperbolic function solution
,(22)
As E is an arbitrary parameter, we can set its values instinctively in terms ofand, the parameters of the improved Bernoulli equation, to obtain further simple form of the solution which is explained in detail below:
When , we ascertain the following solution from solution (22):
,			(23)
where .
Particularly, for , solution (22) yields the dark soliton shape solution
.				(24)
When , we accomplish the singular kink shape solution
,				(25)
Similarly, for other values of the integral constant, different geometries of solutions can be found, but these solutions have not been reported here for minimalism.

Case 2: When 
Setting the scores of the parameters gathered in (20), we obtain the following solution from (19), using the transformation (12) and complex envelope (14) along solution (8).
,			(26)
where ,,,,are arbitrary parameters and .
Simplifying solution (26), we perceive the subsequent solution
, 		(27)
As  is an integrating constant, we choose, thus we found from solution (27)
,			(28)
When , solution (27) converts to
,			(29)
Since is an arbitrary constant, we can obtain infinite number of solutions to this equation by choosing the values of  instinctively. For conciseness, only a few solutions are taken here.
4.2: The space-time fractional cubic nonlinear Schrödinger (NS) equation
The space-time fractional cubic nonlinear Schrödinger (NS) equation with Kerr nonlinearity is [29]:
,					(30)
where ,, are three real parameters with , ;  is the imaginary unit and the function  is a complex valued function related to the spatial coordinate and the time. The operators ,  and  represent the beta derivative with respect to  of order  and  of order  and  respectively.
The fractional wave transformation is assumed as
.								(31)
The wave variable  and of the transformation (31) can be defined as
,
and,
where ,   and  represent wave velocity, wave frequency and wave number respectively.
Introducing transformation (31) into equation (30) and extrication real and imaginary parts, it is found
,				(32)
and.									          (33)
Setting the estimation of into equation (32), we obtain
	.				(34)
Balancing and , the relationship among , and  is obtained as
.
If, we choose , , it is obtained .
Therefore, the trial solution of (34) can be assumed to
,						(35)
where , , , .
When solution (35) is paired with equation (5) into equation (34), a polynomial in  is obtained, and setting each coefficient to zero, results a system of over-determined equations. We obtain the following values of the coefficients by unraveling the algebraic system of equations with the help of Maple:
, , , 
, ,		          (36)
where  and  are arbitrary parameters.
Case 1: As the improved Bernoulli’s equation solutions are reliant on and , we  assume
,
Setting the values stated in (36) along with solution (7) of the improved Bernoulli equation into solution (35), we obtain the rational exponential function solution as follow:
.					           (37)
Introducing solution (37) into transformation (31), we found the general solution of the fractional cubic NS equation (30) as
,				           (38)
where , , 
and.
Restructuring solution (38), we attain the hyperbolic form of the solution as below
,	           (39)
Since  is an integral constant, the values of  can be set instinctively in terms of and , the parameters of the improved Bernoulli’s equation, to obtain further solutions.
Considering, from (39), we achieve the next solution
.		           (40)
In particular, if we choose , we perceive the subsequent form of the solution (39)
,				           (41)
where  and.
Again, when , we ascertain dark soliton solution from (41)
,				          (42)
where ,, 
wave velocity and wave number.By varying the values of the parameter,other relevant solutions can be achieved from the same general solution (39), but such solutions are not mentioned for brevity.
Case 2: We assume :
Setting the values of the parameters collected in (36) along with transformation (31) and solution (8) into solution (35), we attain the hyperbolic and exponential function form solution to the fractional cubic NS equation as below
,			(43)
where  and.
Since  is an integrating constant, so we can choose several values of .
When , we acquire from solution (43)
.		           (44)
where  and.
We can obtain several solutions to the fractional cubic NS equation by choosing the values of arbitrary parameter, instinctively. For brevity, only a few solutions are shown.
5. Results and discussion
The acquired soliton solutions are depicted in the figures in this section, and the natures of these wave solutions for various parametric values are discussed using the symbolic computational program Mathematica.
[bookmark: _Hlk97481384]5.1: The fractional cubic quintic NS equation
The graphical representations of the derived solutions to the fractional cubic quintic NS equation are discussed in this module for different parametric values. The obtained solutions are included two parts: the real and imaginary parts.
The kink shape soliton is obtained for the modulus of the solution (22) for the parametric values, , , , , , withwave velocity  within the intervals , , isshown in the 3D plot in Fig. 1(a); the 2D plot for is depicted in Fig. 1(b) and the contour plot in Fig.1(c).Further, the singular kink type soliton is obtained for the modulus of the same solution (22) as illustrated in Fig. 2 by changing the values of  from -1 to 2.As shown in the 3D plot in Fig. 3(a), the real part of the solution (22) represents the periodic soliton with different amplitudes for the values , , , , , , ,  with wave velocity  within the intervals ; the 2D plot for is depicted in Fig. 3(b) and the contour graph in Fig. 3(c). Assuming all of the parameters same without fractional order, the 3D, 2D, and contour plots of the real part of the solution (22) are illustrated the multi periodic soliton with same amplitudes, as shown in Fig.4 for .The imaginary part of the solution (22) represents periodic bell shape soliton for the  parametric values, , , , , , ,  with wave velocity  within the intervals  outlined 3D plot in Fig. 5(a);the 2D plot for is shown in Fig. 5(b) and the contour graph in Fig. 5(c).The multi-periodic soliton is obtained for the real part of the solution (23) for values, , , , ,  withwave velocity  within the intervals  and portrayed in Fig. 6. The imaginary part of the solution (23) illustrates the periodic bell shape soliton for , , , , ,  with travelling wave velocity  as shown in Fig. 7. Figures 8 and 9 illustrate breathing soliton  generated by the real part of the solution (24) for , , , , ,,  throughout the range and the imaginary part of the solution (24) for , , , , , ,  within the range .Breathing solitons are a kind of dissipative Kerr soliton with periodic oscillations in pulse duration and peak intensity[43].Further, both 2D graphs are drawn for t=1. Moreover, the multi periodic soliton is achieved for the real part of the solution (26) for , , , , , ,,  throughout the range ,  and shown in Fig. 10. Only changing , , , the imaginary part of the solution (26) represents the bright soliton as shown in Fig. 11.
The acquired solutions to this equation produced analogous soliton for other values of the free parameters, which are not shown here for sagacity. It can be concluded from the preceding representation of the soliton profiles that the soliton changes shape mostly based on the values of the fractional order, phase shift, wave number and velocity. The coefficients , in this equation do not play a significant role in changing the speed of the wave here, but the Bernoulli parameters  and  as well as the integrating constants contribute.
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Fig. 1: Graph of the modulus part of the solution (22) for 1(a):3D ,1(b): 2D and 1(c): contour graphs
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Fig. 2: Graph of the modulus part of the solution (22) for 2(a): 3D, 2(b): 2D plot and 2(c): contour graphs
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Fig. 3: Graph of real part of the solution (22) for 3(a): 3D, 3(b): 2D and 3(c): contour graphs
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Fig. 4: Graph of real part of the solution (22) for 4(a): 3D, 4(b): 2D and 4(c): contour graphs
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Fig. 5: Graph of imaginary part of the solution (22) for 5(a): 3D, 5(b): 2D and 5(c): contour graphs
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Fig. 6: Plot of real part of the solution (23) for 6(a): 3D, 6(b): 2D for and 6(c): contour graphs
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Fig. 7: Plot of imaginary part of the solution (23) for 7(a): 3D, 7(b): 2D for  and 7(c): contour graphs
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Fig. 8: Graph of real part of the solution (24) for 8(a): 3D, 8(b): 2D and 8(c): density graphs
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Fig. 9: Plot of imaginary part of the solution (24) for 9(a): 3D, 9(b): 2D and 9(c): density graphs
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Fig. 10: Plot of real part of the solution (26) for 10(a): 3D, 10(b): 2D and 10(c): contour graphs
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Fig. 11: Plot of imaginary part of the solution (26) for 11(a): 3D, 11(b): 2D and 11(c): contour graphs

5.2: The solutions to the fractional cubic NS equation
The modulus of the solution  represents the kink wave shape soliton for the certain value of , , , , , , , , , . 3D and contour graph are drawn for the interval  as shown in Fig. 12(a) and 12(c). Further, Fig. 12(b) is obtained for .
The real part of the solution , shown in Fig. 13, represents periodic soliton with different amplitudes for , , , , , , , , , throughout the intervals , .Increasing only the values of the wave frequency  from  to , the multi periodic soliton with similar amplitudes is obtained for the real part of the solution which is shown in Fig. 14.
The periodic soliton is illustrated for the imaginary part of the solutionfor the parametric values , , , , , , , , , with range , which isportrayed in Fig. 15.
The imaginary part of the solution  represents the breathing soliton for the certain value and, while others parametric values are same. The 3D and density graph are drawn for the interval . The 2D graph of this solution for  with the interval , shown in Fig.16.In the case of  and  , the fractional form of solution matches well with the classical form of solution.
The real part of the solution represents breathing soliton for the certain values of , , , .6, , , , , .The 3D and density graphs are attained for the region. Also, 2D graphs are drawn for  as shown in Fig. 17.
Keeping the values of , ,  as constant, the breathing soliton is accomplished for , , , , ,for the imaginary part of the solution  throughout the intervals  and illustrated in Fig. 18.
Other attained solutions to this equation provided similar soliton such as kink, breathing, and periodic soliton for other values of the free parameters, which are not shown here for sagacity. The previous illustration of the soliton profiles shows that the soliton changes shape mostly as a result of the values of the fractional order, wave frequency, wave number, and velocity. The coefficients , , ,  in this equation have no effect on the speed of the wave, but the Bernoulli parameters  and , as well as the integrating constants, do.
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Fig. 12: Plot of modulus of the solution  for 12(a): 3D, 12(b): 2D and 12(c): contour graphs
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Fig. 13: Plot of real part of the solution  for 13(a): 3D, 13(b): 2D for  and 13(c): contour graphs
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Fig. 14: Plot of real part of the solution  for 14(a): 3D, 14(b): 2D and 14(c): contour graphs
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Fig. 15: Plot of imaginary part of the solution  for 15(a): 3D, 15(b): 2D and 15(c): contour graphs

	[image: ]16(a)
	[image: ]16(b)
	[image: ]16(c)


Fig. 16: Plot of imaginary part of the solution  for 16(a): 3D, 16(b): 2D and 16(c): density graphs
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Fig. 17: Plot of real part of the solution  for 17(a): 3D, 17(b): 2D and 17(c): density graphs
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Fig. 18: Plot of imaginary part of the solution  for 18(a): 3D, 18(b): 2D and 18(c): density graphs

From the preceding discussion, we can conclude that variability of the solution is determined by parameter values, such as singular kink, kink, periodic, bell shape, breather soliton, and other soliton shapes.
6. Conclusion
In this article, we have competently extracted wide-ranging optical soliton solutions of the space-time fractional cubic quintic NS equation and the space-time fractional cubic NS equation comprising assorted subjective constraints by putting in use of the IBSEF approach that could be useful for analyzing optical solitons in communication engineering. Symbolic computation software Maple was used to estimate the necessary calculations, and Wolfram Mathematica was used to depict the 3D, density and 2D surfaces of all solutions with appropriate parametric values to decipher the inward physical features of the solitons. The achieved solutions include the kink, periodic, multi-periodic, breathing soliton, bright soliton, singular kink type soliton and some other distinctive solitons that may be helpful to make clear nonlinear optics, plasmas, photonics, condensed matter physics etc. This research affirms that the IBSEF approach is straightforward, effective, powerful, and rationally able, and it can be used to generate broad-ranging stable soliton solutions to some other FNLEEs in optics, applied mathematics, and quantum physics.
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