References
  1. Aiello, L.C. & Wheeler, P. (1995) The Expensive-Tissue Hypothesis: The brain and the digestive system in human and primate evolution.Curr. Anthropol. 36, 199–221.
  2. Bennett, A. F., & Ruben, J. A. (1979). Endothermy and activity in vertebrates. Science 206 , 649-653.
  3. Chrząścik, K.M., Sadowska, E.T., Rudolf, A. & Koteja, P. (2014) Learning ability in bank voles selected for high aerobic metabolism, predatory behaviour and herbivorous capability. Physiol. Behav.135, 143–151.
  4. Galsworthy, M.J., Amrein, I., Kuptsov, P.A., Poletaeva, I.I., Zinn, P., Rau, A., Vyssotski, A., & Lipp H.P. (2005) A comparison of wild-caught wood mice and bank voles in the Intellicage: assessing exploration, daily activity patterns and place learning paradigms.Behav. Brain Res. 157, 211–217.
  5. Garland T, & Rose MR Ed., Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments . (University of California Press, 2009).
  6. Gębczyński, A.K. & Konarzewski, M. (2009) Locomotor activity of mice divergently selected for basal metabolic rate: a test of hypotheses on the evolution of endothermy. J. Evol. Biol. 22, 1212–1220.
  7. Healy SD, & Rowe CA (2007) A critique of comparative studies of brain size, Proc. R. Soc. Lond. B Biol. Sci. , 274(1609): 453–464.
  8. Herculano-Houzel S (2011) Scaling of brain metabolism with a fixed energy budget per neuron: Implications for neuronal activity, plasticity and evolution. PLoS ONE 6 e17514.
  9. Isler K, & van Schaik C.P (2006) Metabolic costs of brain size evolution. Biol. Lett. 2(4): 557–560.
  10. Kiryk, A., Mochol, G., Filipkowski, R.K., Wawrzyniak, M., Lioudyno, V., Knapska, E., Gorkiewicz, T., Balcerzyk, M., Leski, S., Van Leuven, F., Lipp, H. P., Wojcik, & D.K., Kaczmarek, L. (2011) Cognitive abilities of Alzheimer’s disease transgenic mice are modulated by social context and circadian rhythm. Curr. Alzheimer Res . 8, 883–892.
  11. Knapska, E., Walasek, G., Nikolaev, G,E., Neuhäusser-Wespy, F., Lipp, H.P., Kaczmarek, L., & Werka, T. (2006) Differential involvement of the central amygdala in appetitive versus aversive learning,”Learn. Mem. Cold Spring Harb. N 13, 192–200.
  12. Knapska, E., Lioudyno, V., Kiryk, A., Mikosz, M., Górkiewicz, T., Michaluk, P., Gawlak, M., Chaturvedi, M., Mochol, G., Balcerzyk, M., Wojcik, D.K., Wilczynski, G.M. & Kaczmarek, L. (2013) Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala, Neurosci. Off. J. Soc. Neurosci. 33, 14591–14600.
  13. Konarzewski, M. & Diamond, J. (1995) Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution 49, 1239–1248.
  14. Koteja, P. (2000) Energy assimilation, parental care and the evolution of endothermy. Proc. R. Soc. Lond. B Biol. Sci. 267, 479–484 (2000).
  15. Koteja, P. (2004) The evolution of concepts on the evolution of endothermy in birds and mammals,” Physiol. Biochem. Zool.77 , 1043–1050.
  16. Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I., Immler, S., Maklakov, A.A., & Kolm, N. (2013) Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171.
  17. Kotrschal, A., Kolm, N., & Penn, D.J. (2016) Selection for brain size impairs innate, but not adaptive immune responses. Proc. R. Soc. B Biol. Sci. 283, 20152857.
  18. Kowalski, J., Łęski, S., Puścian, A. (2016) PyMICE: 0.2.3 .
  19. Książek, A., Czarniecki, J., & Konarzewski, M. (2009) Phenotypic flexibility of traits related to energy acquisition in mice divergently selected for basal metabolic rate (BMR). J. Exp. Biol. 212, 808-814.
  20. Książek, A., Konarzewski, M., & Łapo, I.B. (2004) Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiol. Biochem. Zool. Ecol. Evol. Approaches 77 , 890–899.
  21. Lovegrove, B., G. A phenology of the evolution of endothermy in birds and mammals. Biol. Rev. 92 , 1213–1240 (2017).
  22. Navarrete, A., van Schaik, C.P., & Isler, K. (2011) Energetics and the evolution of human brain size. Nature 480, 91–93.
  23. Polymeropoulos, E. T., Oelkrug, R., & Jastroch, M. (2018) Editorial: The Evolution of Endothermy–From Patterns to Mechanisms Front. Physiol. 9.
  24. Pontzer, H., Brown, M.H., Raichlen, D.A., Dunsworth, H., Hare, B., Walker, K., Luke, A., Dugas, L.R., Durazo-Arvizu, R., Schoeller, D., Plange-Rhule, J., Bovet, P., Forrester, T.E., Lambert, E.V., Thompson, M.E., Shumaker, R.W., Ross, & S.R. (2016) Metabolic acceleration and the evolution of human brain size and life history. Nature 533, 390–392.
  25. Rose, M.R., Mueller, L.D., & Stearns, S.C. (1993) The evolution of life histories. (Oxford University Press, London 1992). J. Evolut. Biol . 6, 304–306.
  26. Sadowska, J., Gębczyński, A.K., & Konarzewski, M. (2017) Selection for high aerobic capacity has no protective effect against obesity in laboratory mice. Physiol. Behav. 175, 130–136.
  27. SAS/STAT® 14.1 User’s Guide. The MIXED Procedure 2015. SAS Institute Inc., Cary, NC, USA.
  28. Sayol, F., Downing, P.A., Iwaniuk, A. N., Maspons, J. & Sol, D. (2018). Predictable evolution towards larger brains in birds colonizing oceanic islands. Nature Comm . 9, 2820.
  29. Withers, P.C. (1997) Measurement of VO2, VCO2, and evaporative water loss with a flow through mask. J. Appl. Physiol. 42, 120-123.