Joshua James Ruck

and 6 more

Prior to use in operational systems, it is essential to validate ionospheric models in a manner relevant to their intended application to ensure satisfactory performance. For Over-the-Horizon radars (OTHR) operating in the high-frequency (HF) band (3-30 MHz), the problem of model validation is severe when used in Coordinate Registration (CR) and Frequency Management Systems (FMS). It is imperative that the full error characteristics of models is well understood in these applications due to the critical relationship they impose on system performance. To better understand model performance in the context of OTHR, we introduce an ionospheric model validation technique using the oblique ground backscatter measurements in soundings from the Super Dual Auroral Radar Network (SuperDARN). Analysis is performed in terms of the F-region leading edge (LE) errors and assessment of range-elevation distributions using calibrated interferometer data. This technique is demonstrated by validating the International Reference Ionosphere (IRI) 2016 for January and June in both 2014 and 2018. LE RMS errors of 100-400 km and 400-800 km are observed for winter and summer months, respectively. Evening errors regularly exceeding 1,000 km across all months are identified. Ionosonde driven corrections to the IRI-2016 peak parameters provide improvements of 200-800 km to the LE, with the greatest improvements observed during the nighttime. Diagnostics of echo distributions indicate consistent underestimates in model NmF2 during the daytime hours of June 2014 due to offsets of -8° being observed in modelled elevation angles at 18:00 and 21:00 UT.

Ian James Kelley

and 4 more

Medium-scale Traveling Ionospheric Disturbances (MSTIDs) are prominent and ubiquitous features of the mid-latitude ionosphere, and are observed in Super Dual Auroral Radar Network (SuperDARN) and high-resolution Global Navigational Satellite Service (GNSS) Total Electron Content (TEC) data. The mechanisms driving these MSTIDs are an open area of research, especially during geomagnetic storms. Previous studies have demonstrated that night-side MSTIDs are associated with an electrodynamic instability mechanism like Perkins, especially during geomagnetically quiet conditions. However, day-side MSTIDs are often associated with atmospheric gravity waves. Very few studies have analyzed the mechanisms driving MSTIDs during strong geomagnetic storms at mid-latitudes. In this study, we present mid-latitude MSTIDs observed in de-trended GNSS TEC data and SuperDARN radars over the North American sector, during a geomagnetic storm (peak Kp reaching 9) on September 7-8, 2017. In SuperDARN, MSTIDs were observed in ionospheric backscatter with Line Of Sight (LOS) velocities exceeding 800 m/s. Additionally, radar LOS velocities oscillated with amplitudes reaching +/-$500 m/s as the MSTIDs passed through the fields-of-view. In detrended TEC, these MSTIDs produced perturbations reaching ~50 percent of background TEC magnitude. The MSTIDs were observed to propagate in the westward/south-westward direction with a time period of ~15 minutes. Projecting de-trended GNSS TEC data along SuperDARN beams showed that enhancements in TEC were correlated with enhancements in SuperDARN SNR and positive LOS velocities. Finally, SuperDARN LOS velocities systematically switched polarities between the crests and the troughs of the MSTIDs, indicating the presence of polarization electric fields and an electrodynamic instability process during these MSTIDs.

Chirag Rathod

and 3 more

Density irregularities have been observed in subauroral polarization streams (SAPS). One hypothesis of the cause of this ionospheric turbulence, based on the background morphology, is the gradient drift instability (GDI). This work models the GDI using a 2D electrostatic fluid model to determine if it is a viable cause of turbulence generation in SAPS. The model solves a perturbed set of continuity, energy, and current closure equations using a pseudo-spectral method. A statistical study of different velocity profiles, based on SuperDARN radar and GPS total electron content data, is used to prescribe parameters in the numerical model. The parameter space of different SAPS profiles is explored to study the effect on GDI development. As the velocity shear is initialized closer to the unstable density gradient, the GDI becomes increasingly damped. For these cases, the density and electric potential turbulence cascades obtained from the numerical model follow power laws of about -5/3 or -2, which is in agreement with observational data. If the velocity shear significantly overlaps the unstable density gradient, the GDI becomes stabilized. Decreasing the velocity gradient scale length can cause instabilities that grow inside SAPS which have turbulence cascades with power laws of -6 for the density and -8 for the electric potential. In all parameter regimes explored, the instabilities are unable to propagate through the velocity shear. Turbulence is generated for a variety of SAPS relevant conditions; therefore, the GDI has been shown to be a viable candidate for generating ionospheric irregularities in SAPS.