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Abstract: In our recent work, we study a few nonlinear time evolution equations by the sine-cosine

method and obtained a variety of generalized solitary and periodic solutions with distinct physical struc-

tures. The solutions include periodic solutions, soliton solutions, symmetric periodic soliton solutions,

double periodic solutions, multiple soliton solutions, breather solutions, and kink type solutions.
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1 Introduction

In the past decade, with the development of new mathematical formulations and approx-
imations, researchers are paying much interest in the solution of nonlinear systems by the
implementation of various tools and techniques. The approach of solving these systems
is mainly governed by Nonlinear Evolution Equations (NLEEs) along with others. How-
ever, these equations are being implemented directly or indirectly in Applied Physics and
Mathematics, Population Growth Dynamic models, Nonlinear Optics, and many more.
Hence the solution to NLEEs is drawing a great deal of attention in the research society
in these recent years. The analytical solution of NLEEs is of paramount importance in
solving mathematical and physical models. The process flow of finding an exact solution
to NLEEs involves many steps. First of all, a test function has to be constructed. Using
suitable mathematical conditions and approximations, the analytical solution of the func-
tion can be developed further which finds its real-time application in different models. As
a result of an extensive literature survey, it has been observed that the solution to NLEEs
can be performed by various methods. Some important methods include Variational Iter-
ation method [1, 2, 3], The (G

′

G
, 1
G

)-method [4, 5], Truncated Painlevae expansion method

[6], Adomionos Decomposition method [7, 8], The (G
′

G
) method [9, 10, 11], The Jacobi

Elliptic Functions method [12], The Sine-cosine method [13, 14] and many more. Among
these methods, We are motivated to implement the sine-cosine method which is based
on solving a non-linear partial differential equation with less computational work, which
provides nearly exact solution to NLEEs. The following models are taken to investigate
with their graphical analysis, they are listed below.

1. The Zoomeran equation;

1Asterisk/’*’ stands for corresponding author
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2. The Hirota-Ramani equation;

3. The Zarkhov-Kuznetsov-benjamin-Bona-Mohanty equation;

4. The Konno-Oono equation.

2 Analysis of the Sine-Cosine method

We start our discussion with NLEE, which can be specified as a combination of different
order dependent and independent terms and their partial derivative.

S(f, ft, fx, ftt, fxt, fxx, ...) = 0, (1)

Where f = f(x, t) being an trial function.
The major footsteps of the Sine-Cosine method are illustrates as below:
Step 1:To generalize the exact traveling wave solution of eq.(1), we are taking the wave
variable as below;

(φ) = (x− ct), (2)

therefore

f(x, t) = f(φ), (3)

The resulting following changes can be noted:

∂

∂t
= −c ∂

∂φ
,

∂2

∂t2
= c2

∂2

∂φ2
,

∂

∂x
=

∂

∂φ
,

∂2

∂x2
=

∂2

∂φ2
, (4)

and can be extended to higher orders.Now eq.(1) we can be written as,

s(f, fφ, fφφ, fφφφ, ...) = 0, (5)

Here fφ denotes df
dφ
.

We can integrate the obtained ODE (5) as many times to get a comparatively simpler
equation, for simplicity equate the constants of integration to zero.

Step 2: The sine-cosine method uses the following trigonometric trial solutions of many
nonlinear equations,the (cos) form can be expressed as:

f(x, t) = λ cosβ(µφ), [φ]<
π

2µ
, (6)

and the (sin) form expressed as:

f(x, t) = λ sinβ(µφ), [φ]<
π

2µ
, (7)

where λ,µ, and β are integers which will be determined later, µ and c are the wave number
and the wave speed, respectively. Eq.(6) can be generalized

f(φ) = λ cosβ(µφ), (8)
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(fn)φφ = −n2µ2β2λn cosn β(µφ) + nµ2λnβ(nβ1) cosnβ−2(µφ), (9)

and for eq.(7) we use

f(φ) = λ sinβ(µφ), (10)

(fn)φφ = −n2µ2β2λn sinn β(µφ) + nµ2λnβ(nβ1) sinn β2(µφ), (11)

Step 3:After substituting eq.(6) or eq.(7) in eq.(5), we will get an equation of cosβ(µφ)
or sinβ(µφ) forms. Rationalizing the resulted equation for λ,β, and µ as follows:

1. At first balance the exponents by homogeneous balance to determine β;

2. Secondly collect the coefficients in terms same power of cosβ(µφ) or sinβ(µφ), and
equate them zero separately.

3. Finally λ, µ, and β can be calculated from the algebraic systems.

3 Application of Sine-Cosine Method.

The Sine-cosine method can be implemented to disclose more traveling wave solutions of
a class of NLEEs.

3.1 The Zoomeran Equation

The Zoomeran equation can be written as(
fxy
f

)
tt

−
(
fxy
f

)
xx

+ 2
(
f 2
)
xt

= 0 (12)

In order to solve eq.(12) by the sine-cosine method, we use the wave transformation
f(x, t) = f(φ) with wave variable φ = (x− cy − wt) eq.(12) takes the form of an ODE.

c(1− w2)f ′′ + 2wf 3 −Rf = 0 (13)

Here R stands for integration constant,by considering the (cos) term solution,

f(φ) = λ cosβ(µφ), (14)

(f)φ = −µβλ sinβ(µφ) cosβ−1(µφ), (15)

(f)φφ = −µ2β2λ cosβ(µφ) + µ2λβ(β − 1) cosβ−2(µφ), (16)

substituting these values in eq. (12), we will get

Rλ cosβ µξ + 2wλ3βµξ + c(1− w2)(λµ2β2 cosβ(µξ)− λµ2β(β − 1) cosβ−2(µξ)) = 0. (17)

Collecting the coefficients in terms same power of cosβ(µφ), and equating them zero
separately. The following set of algebraic systems can be realized:

(β − 1) 6= 0, (18)
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(β − 2) = 3β, (19)

R = −c(1− w2)µ2β2, (20)

2wλ2 = c(1− w2)µ2β(β − 1), (21)

after solving these we will get,

β = −1, µ =

√
−R

c(1− w2)
, λ =

√
−2R, (22)

the traveling wave solutions will be, for w < 0

f1(x, t) =
√
−2R sec

[√
−R

c(1− w2)
(x− ct)

]
, w < 0, (23)

Figure 1: (
Multiple periodic soliton solution corresponding to f1,when w > 0 with c = 1, w = 2)

f2(x, t) =
√
−2R csc

[√
−R

c(1− w2)
(x− ct)

]
, w < 0, (24)

Similarly for w > 0

Figure 2: (
Multiple soliton solution corresponding to f2,when w > 0 with c = 1, w = 2)

f3(x, t) =
√
−2R sech

[√
R

c(w2 − 1)
(x− ct)

]
, w > 0, (25)

f4(x, t) =
√
−2R csch

[√
R

c(w2 − 1)
(x− ct)

]
, w > 0, (26)
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Figure 3: (
Symmetric periodic multiple soliton solution corresponding to f3,when w < 0 with c = 1, w = −2)

Figure 4: (
Multiple soliton solution corresponding to f4,when w < 0 with c = 1, w = −2)

3.2 Hirota-Ramani Equation

Now we consider Hirota-ramani equation,

ft − fxxt + afx(1− ft) = 0, (27)

Here a 6= 0 and ’a’ is an integer, In order to solve eq.(27) by the sine-cosine method, we
use the wave transformation f(x, t) = f(φ) with wave variable φ = (x− ct) eq.(27) takes
the form of an ordinary differential equation.

(a− w)f ′ + wf ′′′ + wa(f ′)2 = 0, (28)

For simplicity let f ′ = g

(a− w)g + wg′′ + wa(g)2 = 0, (29)

and by taking (cos) term trial solution

f(φ) = λ cosβ(µφ), (30)

(g)φ = −µβλ sinβ(µφ) cosβ−1(µφ), (31)

(g)φφ = −µ2β2λ cosβ(µφ) + µ2λβ(β − 1) cosβ−2(µφ), (32)

substituting these values in eq.(27), we will get

(a− w)λ cosβ µφ+ waλ2 cos2β µφ+ wλµ2β(β − 1) cosβ−2(µφ)− λµ2β2 cosβ(µφ) = 0, (33)

Collecting the coefficients in terms same power of cosβ(µφ), and equating them zero
separately. The following set of algebraic systems can be realized:

(β − 1) 6= 0, (34)
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(β − 2) = 2β, (35)

(a− c) = µ2β2, (36)

aλ = µ2β(β − 1), (37)

after solving these we will get,

β = −2, µ = ±1

2

√
a− c, λ =

3(a− c)
2a

, (38)

the travelling wave solutions will be, for a > c

f5(x, t) =

∫
g5(φ)dφ =

∫
3(a− c)

2a
sec2

[
±1

2

√
a− c(x− ct)

]
dφ, a > c, (39)

Figure 5: (
Breather solution corresponding to f5, when a > c with c = 1, a = 2)

f6(x, t) =

∫
g6(φ)dφ =

∫
3(a− c)

2a
csc2

[
±1

2

√
a− c(x− ct)

]
dφ, a > c, (40)

Similarly for a < c

Figure 6: (
Multiple soliton solution corresponding to f6, when a > c with c = 2, a = 3)

f7(x, t) =

∫
g7(φ)dφ =

∫
3(c− a)

2a
sech2

[
±1

2

√
c− a(x− ct)

]
dφ, a < c, (41)

f8(x, t) =

∫
g8(φ)dφ =

∫
i
3(c− a)

2a
csch2

[
±1

2

√
c− a(x− ct)

]
dφ, a < c, i =

√
−1, (42)
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Figure 7: (
Breather solution corresponding to f7,when a < c with c = 1, a = −1)

Figure 8: (
Bidirectional soliton solution corresponding to f8,when a < c with c = 2, a = −2)

3.3 The Zarkhov-Kuznetsov-benjamin-Bona-Mohanty Equation

Now we will consider the Zarkhov-kuznetsov-benjamin-bona-mohanty equation,

ft + fx − 2affx − bfxxt = 0, (43)

In order to solve eq.(43) by the sine cosine method, we use the wave transformation
f(x, t) = f(φ) with wave variable φ = (x − ct) eq.(43) takes the form of an ordinary
differential equation.

(1− c)f − af 2 + bcf ′′ = 0 (44)

now consider the (cos) term trial solution as previously

f(φ) = λ cosβ(µφ), (45)

(f)φ = −µβλ sinβ(µφ) cosβ−1(µφ), (46)

(f)φφ = −µ2β2λ cosβ(µφ) + µ2λβ(β − 1) cosβ−2(µφ), (47)

substituting these values in eq.(43), we will get

(1− c)λ cosβ µφ− aλ2 cos2β µφ+ bcλµ2β(β − 1) cosβ−2(µφ)− bcλµ2β2 cosβ(µφ) = 0, (48)

Collecting the coefficients in terms same power of cosβ(µφ), and equating them zero
separately. The following set of algebraic systems can be realized:

(β − 1) 6= 0, (49)

(β − 2) = 2β, (50)
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(1− c) = bcµ2β2, (51)

aλ = bcµ2β(β − 1), (52)

after solving these we will get,

β = −2, µ = ±1

2

√
1− c
bc

, λ =
1.5(1− c)

a
, (53)

the traveling wave solutions will be, for a, b, c > 0

f9(x, t) =
1.5(1− c)

a
sec2

[
±1

2

√
1− c
bc

(x− ct)

]
, a, b, c > 0, (54)

Figure 9: (
Multiple soliton solution corresponding to f9,when b, c > a with c = 2, a = −1, b = 2)

f10(x, t) =
1.5(1− c)

a
csc2

[
±1

2

√
1− c
bc

(x− ct)

]
, a, b, c > 0, (55)

Similarly for a, b, c > 0

Figure 10: (
Kink and soliton solution corresponding to f10,when b, c > a with c = 2, a = −1, b = 2)

f11(x, t) =
1.5(1− c)

a
sech2

[
±1

2

√
1− c
bc

(x− ct)

]
, a, b, c > 0, (56)

f12(x, t) =
1.5(1− c)

a
csch2

[
±1

2

√
1− c
bc

(x− ct)

]
, a, b, c > 0, (57)
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Figure 11: (
Breather type soliton solution corresponding to f11, when a, b, c > 0 with c = 3, a = 1, b = 2)

Figure 12: (
Bidirectional soliton solution corresponding to f12, when a, b, c > 0 with c = 3, a = 1, b = 2)

3.4 The Konno-Oono equation

Now we consider The Konno-oono equation.

fxt − 2fg = 0, gt + 2ggx = 0, (58)

In order to solve eq.(58) by the sine cosine method, we use the wave transformation
f(x, t) = f(φ), g(x, t) = g(φ) with wave variable φ = (x− ct) eq.(58) takes the form of an
ODE.

−cf ′′ − 2fg = 0, (59)

−cf ′ + 2ff ′ = 0, (60)

After integrating equation eq.(60) with respect to (φ) we obtain

g =
1

c
(f 2 + d) (61)

Where d is an integral constant.Substituting eq.(61) into the eq.(59), we obtain

c2f ′′ + fd+ 2f 3 = 0, (62)

Similarly considering the (cos) term trial solution

f(φ) = λ cosβ(µφ), (63)

(f)φ = −µβλ sinβ(µφ) cosβ−1(µφ), (64)

(f)φφ = −µ2β2λ cosβ(µφ) + µ2λβ(β − 1) cosβ−2(µφ), (65)
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substituting these values, we will get

2dλ cosβ µφ+ 2λ3 cos3β µφ+ c2λµ2β(β − 1) cosβ−2(µφ)− c2λµ2β2 cosβ(µφ) = 0, (66)

Collecting the coefficients in terms same power of cosβ(µφ), and equating them zero
separately. The following set of algebraic systems can be realized:

(β − 1) 6= 0, (67)

(β − 2) = 3β, (68)

2d = −c2µ2β2, (69)

2λ2 = c2µ2β(β − 1), (70)

after solving these we will get,

β = −1, µ =

√
−2d

c2
, λ = ∓2

√
d, (71)

the travelling wave solutions will be, for d > 0

f13(x, t) = 2
√
d sec

[√
−2d

c2
(x− ct)

]
, d > 0, (72)

Figure 13: (
Singular kink soliton solution corresponding to f13, whend > 0 with c = 1, d = 2)

f14(x, t) = 2
√
d csc

[√
−2d

c2
(x− ct)

]
, d > 0, (73)

Similarly for d < 0

f15(x, t) = 2
√
d sech

[√
−2d

c2
(x− ct)

]
, d < 0, (74)

f16(x, t) = 2
√
d csch

[√
−2d

c2
(x− ct)

]
, d < 0, (75)
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Figure 14: (
Multiple soliton solution corresponding to f14, whend > 0 with c = 1, d = 2)

Figure 15: (
Multiple soliton solution corresponding to f15, when d < 0 with c = 1, d = −2)

Figure 16: (
Multiple soliton solution corresponding to f16, when d < 0 with c = 1, d = −2)

4 Conclusion

1. The sine-cosine method has been presented in detail and applied to generate multiple
exact traveling wave solutions involving some free parameters.

2. It is fascinating to notice that the general traveling wave solutions give a different type
of soliton solutions like periodic soliton solution, symmetric periodic soliton solutions,
breather type solutions, singular kink solutions and periodic solutions under some
special conditions.

3. The plots are very clear to understand the nature of the solutions.

4. Through there is a class of different methods available to handle NLEEs, our method
gives better solutions with less computational work.

5. The advantage of this method is more effective, reliable, compact, concise.

6. The authors encouraging the research community it will be a good option to find
traveling wave solution of any new NLEEs.

7. Further any modification of the method can give more solutions, It can be taken as
a challenge.
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