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Abstract

In this paper, we employ three integration algorithms namely, the well known Kudryashove method,
the new Kudryashov method and the unified Riccati equation expansion method to extract optical soliton
solutions for the generalized Kudryashov’s equation with power nonlinearities. Straddled soliton, bright
solitons, dark solitons and singular solitons have been found.
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1 Introduction

Nonlinear partial differential equations (NLPDEs) play an important role in various sections of mathematical
physical sciences as physics, biology, chemistry, fluid mechanics, plasma, optical fibers and other areas of
engineering. The analytical solutions of such equations are essential significance since a lot of mathemat-
ical physical model are described by NLPSDEs. In the last times, there were some mathematical models
describing the propagation of pulses in optic fibers [1-15]. All these models are the generalization of the non-
linear Schrödinger equation (NLSE) which are used for description of the wave packet envelope. Recently,
Kudryashov [16] has proposed the following new equation of an arbitrary power of nonlinearity:

iqt + iβ1qx + α1qxx + iβ2qxxx + α2qxxxx + γq

+
(
µ1 |q|n + µ2 |q|2n + µ3 |q|3n + µ4 |q|4n + ν1 |q|−n + ν2 |q|−2n

+ ν3 |q|−3n
+ ν4 |q|−4n

)
q = 0,

(1)

where γ and αl, βl, (l = 1, 2) and µm, νm, (m = 1, 2, 3, 4) are parameters, while i =
√
−1. The dependent

variable q = q(x, t) is the complex valued describing the pulse profile, while the independent variables x and
t represent spatial and temporal variables, respectively. If β1 = β2 = α2 = γ = µ3 = µ4 = ν3 = ν4 = 0, we
have the well-known Kudryashov’s equation [17]:

iqt + α1qxx +
(
µ1 |q|n + µ2 |q|2n + ν1 |q|−n + ν2 |q|−2n

)
q = 0, (2)

which has been studied by many authors, see for example [18,19]. Thus, Eq. (1) is the generalization
of Eq. (2). The two equations (1) and (2) describe the propagation of pulses in optic fibers with power
nonlinearities. In the present article, we demonstrate that Eq. (1) like Eq. (2) has a solution in the form of
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solitary waves, which can be considered as optical solitons.
This article is organized as follows: In section 2, mathematical analysis is discussed. In sections 3-5 we
solve Eq. (1) using the well known Kudryashov method, the new Kudryashov method and unified Riccati
equation expansion method. In section 6, the numerical simulations are introduced. In section 7, conclusions
are obtained. .

2 Mathematical analysis

To this aim, we assume that Eq.(1) has the formal solution:

q(x, t) = φ(ξ) exp[iψ(x, t)], (3)

where φ(ξ) and ψ(x, t) are real functions, such that

ξ = x− vt, ψ(x, t) = −κx+ ωt+ θ0, (4)

and v, k, ω and θ0 are real constants. Here φ(ξ) represents the pulse shape, v is the velocity of the soliton,
κ is the soliton frequency, ω is the soliton wave number and θ0 is a phase constant. Substituting (3) along
with (4) into Eq. (1) and separating the real and imaginary parts, one gets the real part in the form:

α2φ
′′′′ +

(
α1 + 3β2κ− 6α2κ

2
)
φ′′ +

(
γ − ω + β1κ− α1κ

2 − β2κ
3 + α2κ

4
)
φ

+µ1φ
1+n + µ2φ

1+2n + µ3φ
1+3n + µ4φ

1+4n + ν1φ
1−n + ν2φ

1−2n + ν3φ
1−3n + ν4φ

1−4n = 0,
(5)

and the imaginary part in the form:

(4α2κ− β2)φ′′′ +
(
v − β1 + 2α1κ− 4α2κ

3 + 3β2κ
2
)
φ′ = 0. (6)

The linearly independent principle is applied on (6) to get

4α2κ− β2 = 0, (7)

and

v − β1 + 2α1κ− 4α2κ
3 + 3β2κ

2 = 0. (8)

Consequently, the velocity of the soliton is reduced to

v = β1 − 2α1κ− 8α2κ
3. (9)

Inserting (7) into Eq. (5), one gets

α2φ
′′′′ +

(
α1 + 6α2κ

2
)
φ′′ +

(
γ − ω + β1κ− α1κ

2 − 3α2κ
4
)
φ

+µ1φ
1+n + µ2φ

1+2n + µ3φ
1+3n + µ4φ

1+4n + ν1φ
1−n + ν2φ

1−2n + ν3φ
1−3n + ν4φ

1−4n = 0.
(10)

Balancing φ′′′′ and φ1+4n in Eq. (10), yields the balance number N = 1
n , n > 1. Since the balance number

is not integer, then we take into consideration the transformation

φ(ξ) = [U(ξ)]
1/n

, (11)

where U(ξ) is a new function of ξ, such that U(ξ) > 0. Substituting (11) into (10), we have the new equation

n3α2U
3U ′′′′ − 4n2 (n− 1)α2U

2U ′U ′′′ +
[
6n (n− 1) (2n− 1)α2U

′2 + n3
(
α1 + 6α2κ

2
)
U2
]
UU ′′

−3n2 (n− 1)α2U
2U ′′2 − (3n− 1) (2n− 1)(n− 1)α2U

′4 − n2(n− 1)
(
α1 + 6α2κ

2
)
U2U ′2

+n4
[
ν4 + ν3U + ν2U

2 + ν1U
3 +

(
γ − ω + β1κ− α1κ

2 − 3α2κ
4
)
U4 + µ1U

5 + µ2U
6 + µ3U

7 + µ4U
8
]

= 0.

(12)

Balancing U3U ′′′′ and U8 in Eq. (12), gives the balance number N = 1. Now, we will solve Eq. (12) using
the following two methods:
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3 The well known Kudryashov method

According to this method [20,21], Eq. (12) has the formal solution

U(ξ) = σ0 + σ1Q(ξ), (13)

where σ0 and σ1 are real constants to be determined such that σ1 6= 0. Here Q(ξ) is the solution of the ODE

Q′(ξ) = Q2(ξ)−Q(ξ). (14)

It is well known that Eq. (14) has the solution:

Q(ξ) =
1

1 + εeξ
, (15)

where ε = ±1. Substituting (13) along with (14) into Eq. (12), collecting all the coefficients of Qr(ξ),
(r = 0, 1, 2, ...8) and setting them to zero, we have a set of algebraic equations, which can be solved by Maple
to get the results:

σ1 = −4n4ν1

∆1
, σ0 = −2n4ν1

∆1
, (16)

and

ω =
8n4

(
γ + β1κ− α1κ

2 − 3α2κ
4
)

+
[
44n2

(
α1 + 6α2κ

2
)

+
(
285n2 + 443

)
α2

]
8n4

,

µ1 = −
(n+ 2)

[
2n2

(
10α2 + α1 + 6α2κ

2
)

+ 25 (n+ 1)α2

]
∆1

4n8ν1
,

µ2 = −
(n+ 1)

[
n2
(
34α2 + α1 + 6α2κ

2
)

+ 27 (2n+ 1)α2

]
∆2

1

16n12ν2
1

,

µ3 = − (n+ 1) (3n+ 2) (2n+ 1)α2∆3
1

16n16ν3
1

, µ4 = − (n+ 1) (3n+ 1) (2n+ 1)α2∆4
1

256n20ν4
1

,

ν1 = ν1, ν2 =
9n4 (n− 1) ν2

1

[
n2
(
34α2 + α1 + 6α2κ

2
)
− 27α2 (2n− 1)

]
∆2

1

,

ν3 =
108n8

(
6n3 − 13n2 + 9n− 2

)
α2ν

3
1

∆3
1

, ν4 =
81n12

(
6n3 − 11n2 + 6n− 1

)
α2ν

4
1

∆4
1

,



(17)

where

∆1 = 3 (n− 2)
[
2n2

(
10α2 + α1 + 6α2κ

2
)
− 25 (n− 1)α2

]
. (18)

Substituting (16) along with (15) into Eq. (13), we have the soliton solutions of Eq. (1) in the form:

q(x, t) =

{
−2n4υ1

∆1

[
3 + εe(x−vt)

1 + εe(x−vt)

]}1/n

ei(−κx+ωt+θ0), (19)

provided

υ1∆1 < 0 and ε = ±1. (20)
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If ε = 1, then Eq. (1) reveals the dark soliton in the form:

q(x, t) =

{
−2n4υ1

∆1

[
2− tanh

(
x− vt

2

)]}1/n

ei(−κx+ωt+θ0), (21)

while, if ε = −1, then Eq. (1) has the singular soliton in the form:

q(x, t) =

{
−2n4υ1

∆1

[
2− coth

(
x− vt

2

)]}1/n

ei(−κx+ωt+θ0). (22)

The solutions (19), (21) and (22) exist under the conditions (17).

4 New Kudryashov method

According to this new method [22], Eq. (12) has the solution:

U(ξ) = δ0 + δ1R(ξ), (23)

where δ0 and δ1 are real constants to be determined such that δ1 6= 0. Here R(ξ) is the solution of the ODE

R′2(ξ) = R2(ξ)
[
1− χR2(ξ)

]
, (24)

where χ is a constant. It is well known that Eq. (24) has the solution:

R(ξ) =
4a

4a2eξ + χe−ξ
, (25)

where a is a nonzero constant. Substituting (23) along with (24) into Eq. (12), collecting all the coefficients
of Rr(ξ)R′s(ξ), (r = 0, 1, 2, ...8; s = 0, 1) and setting them to zero, we have a set of algebraic equations,
which can be solved by Maple to get the results:

δ1 = −4n4ν1

∆2
, δ0 = −2n4ν1

∆2
, (26)

and

ω =
8n4(γ+β1κ−α1κ

2−3α2κ
4)−[60(n2+1)χ−5(5n2+7)χ2−8]α2−4n2(3χ−2)(α1+6α2κ

2)
8n4 ,

µ1 = − (n+2)χ∆2{2n2[α2(3χ−4)−(α1+6α2κ
2)]+(n+1)(7χ−6)α2}

8n4ν1
,

µ2 = − (n+1)χ∆2
2{n2[α2(9χ−4)−(α1+6α2κ

2)]+(2n+1)(7χ−62)α2}
16n12ν2

1
,

µ3 = − (n+1)(3n+2)(2n+1)α2χ
2∆3

2

32n16ν3
1

, µ4 = − (n+1)(3n+1)(2n+1)α2χ
2∆4

2

256n20ν4
1

, ν1 = ν1,

ν2 =
n4(n−1)ν2

1{n2[α2(9χ2−40χ+28)−(χ−4)(α1+6α2κ
2)]−(2n−1)(7χ2−30χ+24)α2}

∆2
2

,

ν3 =
2n8(n−1)(3n−2)(2n−1)(χ−2)(χ−4)α2ν

3
1

∆3
2

, ν4 =
n12(n−1)(3n−1)(2n−1)(χ−4)2α2ν

4
1

∆4
2

,



(27)

where

∆2 =
(n− 2)

2

[
2n2α2

(
3χ2 − 10χ+ 2

)
− 2n2 (χ− 2)

(
α1 + 6α2κ

2
)
− (n− 1)

(
7χ2 − 20χ+ 8

)
α2

]
. (28)
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Substituting (26) along with (25) into Eq. (23), we have the soliton solutions of Eq. (1) in the form:

q(x, t) =

{
−2n4υ1

∆2

[
1 +

8a

4a2e(x−vt) + χe−(x−vt)

]}1/n

ei(−κx+ωt+θ0), (29)

provided

υ1∆2 < 0. (30)

In particular if χ = 4a2, then Eq. (1) reveals the bright soliton in the form:

q(x, t) =

{
−2n4υ1

a∆2
[a+ sech (x− vt)]

}1/n

ei(−κx+ωt+θ0), (31)

while, if χ = −4a2, then Eq. (1) has the singular soliton in the form:

q(x, t) =

{
−2n4υ1

a∆2
[a+ csch (x− vt)]

}1/n

ei(−κx+ωt+θ0). (32)

The solutions (29), (31) and (32) exist under the conditions (27).

5 Unified Riccati equation expansion method

According to the unified Riccati equation expansion method [23], Eq. (12) has the formal solution:

U(ξ) = E0 + E1F (ξ), (33)

where E0 and E1 are constants to be determined, such that E1 6= 0 and F (ξ) satisfies the Riccati equation:

F ′(ξ) = h0 + h1F (ξ) + h2F
2(ξ). (34)

Here h0, h1 and h2 are constants to be determined such that h2 6= 0. It is well known that the Riccati
equation (34) has the following fractional solutions:

F (ξ) =



− h1

2h2
−

√
∆
[
r1 tanh

(√
∆
2 ξ
)

+ r2

]
2h2

[
r1 + r2 tanh

(√
∆
2 ξ
)] , if ∆ > 0 and r2

1 + r2
2 6= 0,

− h1

2h2
+

√
−∆

[
r3 tan

(√
−∆
2 ξ

)
− r4

]
2h2

[
r3 + r4 tan

(√
−∆
2 ξ

)] , if ∆ < 0 and r2
3 + r2

4 6= 0,

− h1

2h2
+

1

h2ξ + r5
, if ∆ = 0,

(35)

where ∆ = h2
1 − 4h0h2 and ri(i = 1, 2, ..., 5) are arbitrary constants. Substituting (33) along with (34) into

Eq. (12), collecting all the coefficients of F j(ξ) (j = 0, 1, ..., 8) and setting them to zero, we have a set of
algebraic equations, which can be solved by Maple to get the results:

E1 =
2

n2∆2
, E0 =

1

n2∆2
, h0 = −

√
2α2

n (α1 + 6α2κ2)
, h1 = 0, h2 =

√
2α2

n (α1 + 6α2κ2)
, (36)
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and

ω = γ + β1κ− α1κ
2 − 3α2κ

4 − α2

n3
−

(
15n2 + 37

)
α3

2

2n6 (α1 + 6α2κ2)
2 ,

µ1 =
(n+ 2)α2∆3

[
n3
(
α1 + 6α2κ

2
)2 − 5

(
2n2 + n+ 1

)
α2

2

]
n4 (α1 + 6α2κ2)

2 ,

µ2 = −
(n+ 1)α2∆2

3

[
n3
(
α1 + 6α2κ

2
)2

+ 2
(
n2 + 6n+ 3

)
α2

2

]
2n2 (α1 + 6α2κ2)

2 ,

µ3 =
(n+ 1) (3n+ 2) (2n+ 1)α3

2∆3
3

(α1 + 6α2κ2)
2 , µ4 = −n

2 (n+ 1) (3n+ 1) (2n+ 1)α3
2∆4

3

4 (α1 + 6α2κ2)
2 ,

ν1 = ν1, ν2 =
9α2 (n− 1)

[
n3
(
α1 + 6α2κ

2
)2

+ 2
(
n2 − 6n+ 3

)
α2

2

]
2n10∆2

3 (α1 + 6α2κ2)
2 ,

ν3 =
27α3

2

(
6n3 − 13n2 + 9n− 2

)
n12∆3

3 (α1 + 6α2κ2)
2 , ν4 =

81α3
2

(
6n3 − 11n2 + 6n− 1

)
4n14∆4

3 (α1 + 6α2κ2)
2 ,



(37)

where

∆3 =
3α2 (n− 2)

[
n3
(
α1 + 6α2κ

2
)2 − 5α2

2

(
2n2 − n+ 1

)]
n8ν1 (α1 + 6α2κ2)

2 , (38)

provided

α2

(
α1 + 6α2κ

2
)
> 0. (39)

By the aid of solutions (35), we find the following solutions for Eq. (1):

Since ∆ > 0, then substituting (36) along with (35) into Eq. (33), we have straddled soliton of Eq. (1) in
the form:

q(x, t) =


1

n2∆3

1−
2

[
r1 tanh

(√
2α2

n (α1 + 6α2κ2)
(x− vt)

)
+ r2

]
r1 + r2 tanh

(√
2α2

n (α1 + 6α2κ2)
(x− vt)

)



1/n

ei(−κx+ωt+θ0). (40)

In particular, if r1 6= 0 and r2 = 0 in (40), then Eq. (1) reveals the dark soliton in the form:

q(x, t) =

{
1

n2∆3

[
1− 2 tanh

(√
2α2

n (α1 + 6α2κ2)
(x− vt)

)]}1/n

ei(−κx+ωt+θ0), (41)

while if r1 = 0 and r2 6= 0, Eq. (1) gives the singular soliton:

q(x, t) =

{
1

n2∆3

[
1− 2 coth

(√
2α2

n (α1 + 6α2κ2)
(x− vt)

)]}1/n

ei(−κx+ωt+θ0). (42)

The solutions (40)− (42) exist under the conditions (37).
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6 Numerical simulations

In this section, we present the graphs of some solutions for Eq.(1). Let us now examine Figures, 1-6. as it
illustrates some of our solutions obtained in this paper. To this aim, we select some special values of the
obtained parameters.

Figure 1: The numerical simulations of the dark soliton solution (21) with the parameter values κ =
1, α1 = −0.5, α2 = 0.25, β1 = 2, ν1 = −2, n = 3, γ = 2, ω = 1.521604939, v = 1.

Figure 2: The numerical simulations of the singular soliton solution (22) with the parameter values
κ = 1, α1 = −0.5, α2 = 0.25, β1 = 2, ν1 = −2, n = 3, γ = 2, ω = 1.521604939, v = 1.
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Figure 3: The numerical simulations of the bright soliton solution (31) with the parameter values
κ = 1, α1 = −0.5, α2 = 0.25, β1 = 2, ν1 = 2, n = 3, γ = 2, χ = 4, a = 1, ω = 1.521604939, v = 1.

Figure 4: The numerical simulations of the singular soliton solution (32) with the parameter values
κ = 1, α1 = −0.5, α2 = 0.25, β1 = 2, ν1 = −2, n = 3, γ = 2, χ = −4, a = 1, ω = 1.521604939, v = 1.
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Figure 5: The numerical simulations of the dark soliton solution (41) with the parameter values κ =
1, α1 = −0.5, α2 = 0.25, β1 = 2, ν1 = 2, n = 3, γ = 2, ω = 1.521604939, v = 1.

Figure 6: The numerical simulations of the singular soliton solution (42) with the parameter values
κ = 1, α1 = −0.5, α2 = 0.25, β1 = 2, ν1 = 2, n = 3, γ = 2, ω = 1.521604939, v = 1.

From the above Figures, one can see that the obtained solutions possess the dark soliton solutions, the
bright soliton solutions and the singular soliton solutions of Eq. (1). Also, these figures express the behavior
of these solutions which give some perspective reader show the behavior solutions are produced.
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7 Conclusions

This paper introduced the optical soliton solutions to the generalized Kudryashov’s equation with power
nonlinearities (1). The well known Kudryashov method, the new Kudryashov method and the unified
Riccati equation expansion method have been applied in this paper to find straddled soliton, bright solitons,
dark solitons and singular solitons to Eq. (1). We demonstrate that Eq. (1) has a solution in the form of
solitary waves, which can be considered as optical solitons. Therefore, integrability for Eq. (1) was possible
with phase-matching condition. These very valuable outcomes sequentially are going to be presented.
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