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Abstract

The aim of this work is to investigate the exponential mean-square stabili-

ty for neutral stochastic differential equations with time-varying delay and

Poisson jumps. We give some conditions that all the drift, diffusion and

jumps coefficients can be nonlinear, to obtain the stability of the analytic so-

lution. It is revealed that the implicit backward Euler-Maruyama numerical

solution can reproduce the corresponding stability of the analytic solution

under these nonlinear conditions. This is different from the explicit Euler-

Maruyama numerical solution whose stability depends on the linear growth

condition. With some requirements related to the delay function and the

property of compensated Poisson process, we deal with time-varying delay

and Poisson jumps. One highly nonlinear example is provided to confirm the
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effectiveness of our theory.
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Nonlinear condition; Backward Euler-Maruyama method; Exponential
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1. Introduction

Since Poisson jumps can characterize the unpredictable abrupt distur-

bance in the real world, to describe the discontinuous random effects in the

objective phenomena, they are usually introduced to stochastic systems. The

systems driven by both Brownian motions and Poisson jumps are considered

to be more accurate and extensive than the general stochastic systems only

driven by Brownian motions. They have important applications in many

fields such as economy, finance, medicine biology and so on [1–3].

As a class of specific models of stochastic systems, the neutral stochastic

delay differential equations (NSDDEs) ([4–7]) provide basis and reference for

the study of NSDDEs with Poisson jumps. For example, Milošević [6] studied

the almost sure (a.s.) exponential stability and convergence of the backward

Euler-Maruyama (BEM) numerical solution for NSDDEs. Liu et al. [7]

revealed that the stability between the NSDDEs and the Euler-Maruyama

(EM) numerical solution can be equivalent under certain conditions. When

Poisson jumps are also considered in the equations, Tan et al. [8] proved

the convergence of the EM method with strong order 1/2 to the analytic

solution under the local Lipschitz condition. Mo et al. [9] investigated the

exponential mean-square stability of the analytic solution and the split-step

θ-numerical solution. These works have focused on the corresponding equa-
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tions with constant time delay. Recently, in order to generalize the constant

time delay to the case of time-varying delay, Milošević [10, 11] considered

the convergence of EM method and BEM method, respectively. Later, the

author obtained the a.s. exponential stability of EM method for the same

equations (without jumps) by applying the semimartingale convergence the-

orem [12]. Since time-varying delay and Poisson jumps may be the source of

instability, when they coexist, it is important to analyze the stability of such

equations. However, little is known about the stability for neutral stochastic

differential equations (NSDEs) with time-varying delay and Poisson jumps.

It should be mentioned that conditions are vital for deriving stability.

With the linear growth condition on drift coefficient, the EM numerical so-

lution was shown to reproduce the exponential stability of analytic solution

for neutral stochastic functional (or delay) differential equation [13, 14]. Sev-

eral works showed that the linear growth condition was necessary to ensure

the stability of EM method [12, 13, 16, 17]. However, it was not required

for the same type of stability of the BEM method. We saw that, with the

one-sided Lipschitz condition, the BEM method was shown to preserve the

corresponding stability of analytic solution [10, 18, 19], which indicated its

superiority in condition compared to the EM method. In reality, the linear

growth condition restricts the application of such equations, for the reasons

that most realistic systems are nonlinear. Therefore, seeking nonlinear condi-

tions for stability is in great demand. For example, Zhou et al. [20, 21] gave

nonlinear conditions to investigate the stability and convergence of the BEM

method. Later, the extended polynomial growth condition was proposed for

the a.s. exponential stability of the BEM method for stochastic functional
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differential equation [22]. However, we want to know, under the nonlinear

conditions, whether the BEM method can preserve the stability of analytic

solution for the NSDEs with time-varying delay and Poisson jumps.

In this paper, we aim at establish the exponential mean-square stability

of the analytic solution and BEM numerical solution for NSDEs with time-

varying delay and Poisson jumps. The highlights of this work are twofold.

One is that we will give nonlinear conditions to deal with the equation driven

by both Brownian motion and Poisson jumps with time-varying delay, the

other is that the implicit BEM numerical solution is investigated. Finally, we

will show that the BEM method can reproduce the exponential mean-square

stability of the analytic solution under these nonlinear conditions.

The structure of this paper has six parts. Section 2 presents some basic

notation and assumptions. The exponential mean-square stability of the an-

alytic solution is shown in Section 3. Section 4 introduces the BEM method.

Section 5 proves the exponential stability of the BEM numerical solution. A

nonlinear example is given in Section 6 for illustrating our theory.

2. Preliminaries

We introduce some basic notations. Let (Ω,F , P ) be a complete proba-

bility space with a filtration {Ft}t≥0 satisfying the usual conditions. For a

scalar Brownian motion W (t) and a Poisson process N(t), which are both

defined on this probability space, we assume that they are independent with

each other. λ > 0 denotes the intensity of Poisson process. For a given

τ > 0, C([−τ, 0];Rn) represents the family of all continuous Rn-valued func-

tions ϕ on [−τ, 0], equipped with the norm ∥ϕ∥ = sup−τ6t60 |ϕ(t)|. Also, we
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use Cb
F0
([−τ, 0];Rn) to represent the family of all bounded, F0-measurable,

C([−τ, 0];Rn) valued random variables. Let the Euclidean norm be denoted

by |·|. For x, y in Rn, their inner product is denoted by ⟨x, y⟩ or xTy. a ∨ b

denotes max{a, b}, and a ∨ b represents min{a, b}.

We consider the following nonlinear NSDEs with time-varying delay and

Poisson jumps

d[x(t)− υ(x(t− δ(t)))] = f(x(t), x(t− δ(t)))dt+ g(x(t), x(t− δ(t)))dW (t)

+h(x(t), x(t− δ(t)))dN(t), t > 0, (1)

x(t) = ξ(t), −τ 6 t 6 0, (2)

where the initial data ξ(t) ∈ Cb
F0
([−τ, 0];Rn). Functions f, g, h : Rn × Rn →

Rn, υ : Rn → Rn are all Borel measurable. υ(x(t− δ(t))) means the neutral

term. Delay function δ : [0,+∞] → [0, τ ] is also Borel measurable. In

order to ensure Eq. (1) exists the trivial solution x(t) = 0, we assume that

υ(0) = 0, f(0, 0) = 0 and g(0, 0) = 0. Also, we introduce the compensated

Poisson process

Ñ(t) = N(t)− λt

to deal with jumps, which possesses the property of martingale.

To guarantee the existence and uniqueness of the solution processes, we

should impose the local Lipschitz condition on functions f, g and h of Eq.

(1). Moreover, we need some assumptions.

A1 : There exists a constant ρ ∈ (0, 1) such that, for all x, y ∈ Rn,

|υ(x)− υ(y)| 6 ρ |x− y| . (3)

A2 : There exist constants a1, a2 > 0 such that for f ∈ C(Rn × Rn;Rn) and
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all q1, q2, y ∈ Rn

⟨q1 − q2, f(q1, y)− f(q2, y)⟩ 6 a1|q1 − q2|2,

⟨q1 − q2, f(y, q1)− f(y, q2)⟩ 6 a2|q1 − q2|2.

A3 : The delay function δ is continuously differentiable with δ′(t) 6 δ̄ < 1.

A4 : There exists a constant η ∈ (0, 1) such that

|δ(t)− δ(s)| 6 η |t− s| , t, s > 0.

A5 : For all x, y ∈ Rn, there are positive constants αi, α̂i, ki, k̂i, α and con-

stants σi, σ̂i, i ∈ {1, 2} such that,

2 (x− υ(y))T f(x, y) 6 −α1|x|2 + α2|y|2 − α̂1|x|α+2 + α̂2|y|α+2, (4)

2(x− υ(y))Th(x, y) 6 σ1|x|2 + σ2|y|2 + σ̂1|x|α+2 + σ̂2|y|α+2, (5)

|g(x, y)|2 ∨ |h(x, y)|2 6 k1|x|2 + k2|y|2 + k̂1|x|α+2 + k̂2|y|α+2. (6)

Definition 2.1.[23] The solution of Eq.(1) is said to be exponentially mean-

square stable, if for any initial data ξ(t) ∈ Cb
F0
([−τ, 0];Rn), there exists a

constant γ > 0 such that

lim sup
t→∞

1

t
log(E|x(t)|2) 6 −γ.

3. Exponential stability of the analytic solution

In this section, we will give some conditions and show that the analytic

solution of Eq. (1) is exponentially mean-square stable.

Theorem 3.1. Let assumptions A1,A3 and A5 hold. If the parameters

satisfy the following conditions

(I)

 α1 − k1 − λ(k1 + σ1)− [k2 + α2 + λ(k2 + σ2)]
1

1−δ̄
> 0

α̂1 − k̂1 − λ(k̂1 + σ̂1)− [k̂2 + α̂2 + λ(k̂2 + σ̂2)]
1

1−δ̄
> 0,
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(II)

 k2 + λ(σ2 + k2) > 0

k̂2 + λ(k̂2 + σ̂2) > 0,

then the analytic solution of Eq. (1) has the property that

lim sup
t→∞

1

t
log(E|x(t)|2) 6 −γ, (7)

where γ ∈ (0, γ1 ∧ γ2 ∧ γ3).

Proof. Let z(t) = x(t) − υ(x(t − δ(t))) for simplicity. For certain γ > 0,

applying the Itô formula to eγt |z(t)|2 yields

d(eγt |z(t)|2)

= eγt
[
γ|z(t)|2 + 2 ⟨z(t), f(t, x(t), x(t− δ(t)))⟩

]
dt

+eγt|g(t, x(t), x(t− δ(t)))|2dt+ 2eγt ⟨z(t), g(t, x(t), x(t− δ(t)))⟩ dW (t)

+eγt
(
|z(t) + h(t, x(t), x(t− δ(t)))|2 − |z(t)|2

)
dN(t). (8)

Based on Ñ(t) = N(t)− λt, (8) implies

eγt|z(t)|2

= |z(0)|2 +
∫ t

0

γeγs|z(s)|2ds

+

∫ t

0

eγs
[
2 ⟨z(s), f(s, x(s), x(s− δ(s)))⟩+ |g(s, x(s), x(s− δ(s)))|2

]
ds

+2

∫ t

0

eγs ⟨z(s), g(s, x(s), x(s− δ(s)))⟩ dW (s)

+λ

∫ t

0

eγs
(
|z(s) + h(s, x(s), x(s− δ(s)))|2 − |z(s)|2

)
ds

+

∫ t

0

eγs
(
|z(s) + h(s, x(s), x(s− δ(s)))|2 − |z(s)|2

)
dÑ(s).

With conditions (4)-(6), it follows that

eγtE|z(t)|2
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6 E|z(0)|2 + γ

∫ t

0

eγsE|z(s)|2ds+
∫ t

0

eγsE[(k1 − α1)|x(s)|2 + (k2 + α2)

×|x(s− δ(s))|2 + (k̂1 − α̂1)|x(s)|α+2 + (k̂2 + α̂2)|x(s− δ(s))|α+2]ds

+λ

∫ t

0

eγsE[(k1 + σ1)|x(s)|2 + (k2 + σ2)|x(s− δ(s))|2

+(k̂1 + σ̂1)|x(s)|α+2 + (k̂2 + σ̂2)|x(s− δ(s))|α+2]ds. (9)

Applying the Hölder inequality,

(a+ b)p ≤ (1 + ε)p−1(ap + ε1−pbp), a, b, ε > 0, p > 1,

for p = 2, with assumption A1, we get

|z(s)|2 = |x(s)− υ(x(s− δ(s)))|2 6 (1 + ε)|x(s)|2 + (1 +
1

ε
)ρ2|x(s− δ(s))|2.

The estimate (9) gives

eγtE|z(t)|2

6 E|z(0)|2 +
∫ t

0

γeγs
[
(1 + ε)E|x(s)|2 + (1 +

1

ε
)ρ2E|x(s− δ(s))|2

]
ds

+

∫ t

0

eγs [k1 − α1 + λ(k1 + σ1)]E|x(s)|2ds

+

∫ t

0

eγs [k2 + α2 + λ(k2 + σ2)]E|x(s− δ(s))|2ds

+

∫ t

0

eγs
[
k̂1 − α̂1 + λ(k̂1 + σ̂1)

]
E|x(s)|α+2ds

+

∫ t

0

eγs
[
k̂2 + α̂2 + λ(k̂2 + σ̂2)

]
E|x(s− δ(s))|α+2ds. (10)

Since
∫ t

0
eγsE|x(s− δ(s))|2ds 6 eγτ

1−δ̄

[∫ 0

−τ
eγsE|x(s)|2ds+

∫ t

0
eγsE|x(s)|2ds

]
,

and similarly,∫ t

0

eγsE|x(s− δ(s))|α+2ds 6 eγτ

1− δ̄

[∫ 0

−τ

eγsE|x(s)|α+2ds+

∫ t

0

eγsE|x(s)|α+2ds

]
,
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we obtain

eγtE|z(t)|2

6 E|z(0)|2 + [γ(1 + ε) + (k1 − α1) + λ(k1 + σ1)]

∫ t

0

eγsE|x(s)|2ds

+

[
γ(1 +

1

ε
)ρ2 + (k2 + α2) + λ(k2 + σ2)

]
eγτ

1− δ̄
[

∫ 0

−τ

eγsE|x(s)|2ds

+

∫ t

0

eγsE|x(s)|2]ds+
∫ t

0

eγs
[
k̂1 − α̂1 + λ(k̂1 + σ̂1)

]
E|x(s)|α+2ds

+[k̂2 + α̂2 + λ(k̂2 + σ̂2)]
eγτ

1− δ̄

[∫ 0

−τ

eγsE|x(s)|α+2ds+

∫ t

0

eγsE|x(s)|α+2ds

]
,

which can be reformed as

eγtE|z(t)|2

6 E|z(0)|2 +
[
γ(1 +

1

ε
)ρ2 + (k2 + α2) + λ(k2 + σ2)

]
eγτ

1− δ̄

×
∫ 0

−τ

eγsE|x(s)|2ds+ [k̂2 + α̂2 + λ(k̂2 + σ̂2)]
eγτ

1− δ̄

∫ 0

−τ

eγsE|x(s)|α+2ds

+

{
γ(1 + ε) + (k1 − α1) + λ(k1 + σ1) +

[
γ(1 +

1

ε
)ρ2 + (k2 + α2)

+λ(k2 + σ2)]
eγτ

1− δ̄

}∫ t

0

eγsE|x(s)|2ds+
{
k̂1 − α̂1 + λ(k̂1 + σ̂1)

+[k̂2 + α̂2 + λ(k̂2 + σ̂2)]
eγτ

1− δ̄

}∫ t

0

eγsE|x(s)|α+2ds. (11)

Denote

H(γ) = γ(1 + ε) + k1 − α1 + λ(k1 + σ1) +

[
γ(1 +

1

ε
)ρ2 + k2 + α2

+λ(k2 + σ2)]
eγτ

1− δ̄
, (12)

and

Q(γ) = k̂1 − α̂1 + λ(k̂1 + σ̂1) + [k̂2 + α̂2 + λ(k̂2 + σ̂2)]
eγτ

1− δ̄
, (13)
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respectively. Let’s analyze the properties of these two functions. We see that

H ′(γ) = 1 + ε+ (1 +
1

ε
)ρ2

eγτ

1− δ̄
+ [γ(1 +

1

ε
)ρ2 + k2 + α2 + λ(k2 + σ2)]

τeγτ

1− δ̄

and

H(0) = (k1 − α1) + λ(k1 + σ1) + [k2 + α2 + λ(k2 + σ2)]
1

1− δ̄
.

With the first condition of (II) and A3, we find that H ′(γ) > 0. On the other

hand, we have H(0) < 0 under the first condition of (I). Thus for function

H, there exists a unique root γ1 satisfying H(γ1) = 0. In the same way, we

compute

Q′(γ) = [k̂2 + α̂2 + λ(k̂2 + σ̂2)]
τeγτ

1− δ̄

and

Q(0) = k̂1 − α̂1 + λ(k̂1 + σ̂1) + [k̂2 + α̂2 + λ(k̂2 + σ̂2)]
1

1− δ̄
.

Under the second conditions of (I) and (II), we get that Q′(γ) > 0 and

Q(0) < 0, which means that for function Q, there exists a unique root γ2

satisfying Q(γ2) = 0. Thus, when choosing γ ∈ (0, γ1 ∧ γ2), we have both

H(γ) < 0 and Q(γ) < 0. So, (11) becomes

eγtE|z(t)|2

6 E|x(0)− υ(x(−δ(0)))|2 +
[
γ(1 +

1

ε
)ρ2 + (k2 + α2) + λ(k2 + σ2)

]
× eγτ

1− δ̄

∫ 0

−τ

eγsE|ξ|2ds+ [k̂2 + α̂2 + λ(k̂2 + σ̂2)]
eγτ

1− δ̄

∫ 0

−τ

eγsE|ξ|α+2ds.

Denoting the right side of this estimate as ϕ(ξ), we have eγtE|z(t)|2 6 ϕ(ξ).

Bearing in mind that x(s) = z(s) + υ(x(s − δ(s))), by virtue of the Hölder

inequality with p = 2, one gets

|x(s)|2 = |z(s) + υ(x(s− δ(s)))|2 6 (1 + ε)[|z(s)|2 + ε−1ρ2|x(s− δ(s))|2].
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Let ε = ρ
1−ρ

in this inequality. For t > s > 0, taking the expectation yields

eγsE|x(s)|2 6 (1− ρ)−1eγsE|z(s)|2 + ρeγsE|x(s− δ(s))|2

6 (1− ρ)−1eγsE|z(s)|2 + ρeγτeγ(s−δ(s))E|x(s− δ(s))|2

6 (1− ρ)−1eγsE|z(s)|2 + ρeγτ sup
s−τ6θ6s

eγθE|x(θ)|2

6 (1− ρ)−1ϕ(ξ) + ρeγτ sup
−τ6θ6t

eγθE|x(θ)|2.

Consequently, we have

sup
−τ6s6t

eγsE|x(s)|2 6 (1− ρ)−1ϕ(ξ) + ρeγτ sup
−τ6θ6t

eγθE|x(θ)|2.

Let γ3 = − 1
τ
log ρ, then for any γ ∈ (0, γ1 ∧ γ2 ∧ γ3),

eγtE|x(t)|2 6 (1− ρeγτ )−1(1− ρ)−1ϕ(ξ),

which gives the desired conclusion and the proof is completed. �
Remark 3.2. The conditions in assumption A5 are inspired by paper [25], in

which they are called superlinear growth conditions (or polynomial growth

conditions in [22]). With the appearance of superlinear terms |x|α+2 and

|y|α+2, more nonlinear functions may be involved and suitable to Eq.(1),

which make our model more extensive than that with the linear growth con-

ditions [17, 23]. Just for this reason, the given parameter conditions and the

proving process are somewhat complicated.
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4. Backward Euler-Maruyama method

Now, we give the BEM numerical approximations yk for Eq. (1).

yk = ξ(k△), k = −n∗,−n∗ + 1, · · · , 0

yk+1 = yk + υ(yk+1−[δ((k+1)∆)/∆])− υ(yk−[δ(k∆)/∆])

+f(yk+1, yk+1−[δ((k+1)∆)/∆])△+ g(yk, yk−[δ(k∆)/∆])△Wk

+h(yk, yk−[δ(k∆)/∆])△Nk, k = 0, 1, 2, · · ·

(14)

∆ > 0 is the stepsize with ∆ = τ/n∗ for some integer n∗ > τ . ∆Wk :=

W (tk+1)−W (tk), which has zero mean and ∆ variance; ∆Nk := N(tk+1)−

N(tk), which has λ∆ mean and λ∆ variance.

In order to show that the BEM method is an implicit method clearly, we

analyze the property of equation (14). For a fixed integer k, we introduce

the indicative function IA with IA = 1 if [δ((k + 1)∆)/∆] = 0, and IA = 0,

otherwise. Then, equation (14) can be written as:

yk+1 = yk + υ(yk+1)IA + υ(yk+1−[δ((k+1)∆)/∆])IAc − υ(yk−[δ(k∆)/∆])

+∆f(yk+1, yk+1)IA +∆f(yk+1, yk+1−[δ((k+1)∆)/∆])IAc

+g(yk, yk−[δ(k∆)/∆])∆Wk + h(yk, yk−[δ(k∆)/∆])∆Nk. (15)

In fact, we can see for yk+1, if equation (15) admits a solution, that is equiv-

alent to the following equation exists a unique solution,

x = b+ υ(x)IA +∆f(x, x)IA +∆f(x, a)IAc , (16)

for any a, b ∈ Rn. Then, we will give some conditions, which ensure equation

(16) exists a unique solution. The proof of Lemma 4.1 can be obtained with

the Brouwer’s fixed point theorem, which is the same as that in [10]. So we

only show the result.
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Lemma 4.1. Let assumptions A1 and A2 hold, if (a1 + a2)∆ + ρ < 1, then

there exists a unique solution to equation (16).

With the help of Lemma 4.1, the BEM method (14) is solvable under the

same conditions.

Definition 4.2. A discrete numerical solution yk is said to be exponentially

mean-square stable, if there exist constants γ > 0 and ∆∗ > 0 such that

lim sup
k→∞

log(E|yk|2)
k∆

6 −γ

for step size ∆ ∈ (0,∆∗) and any bounded initial condition ξ(k∆), k =

−n∗,−n∗ + 1, · · · , 0.

5. Exponential stability of the BEM numerical solution

In this section, the BEM numerical solution are shown to reproduce the

exponential mean-square stability of the analytic solution of Eq.(1). To deal

with the time-varying delay in the numerical analysis, by using the integral

function, the subscript expression of the numerical solution, such as expres-

sions i − [δ(i∆)/∆], may be equal for some i ∈ {0, 1, 2, ...}. So we need to

estimate the maximum number of such indices i. The following lemma plays

important roles in the proceeding stability analysis, which can be found in

[12].

Lemma 5.1.[12] Suppose that A4 holds. For an arbitrary but fixed i ∈

{0, 1, 2, ...}, let i − [δ(i∆)/∆] = a, where a ∈ {−n∗,−n∗ + 1, ...0, 1, ..., i}.

Then,

#{j ∈ {0, 1, 2, ...} : j − [δ(j∆)/∆] = a} 6 [(1− η)−1] + 1 (17)

where #S denotes the number of elements of the set S.
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Theorem 5.2. Suppose that assumptions A1,A2,A4,A5 hold, together with

condition (II) and, instead of (I), assume the parameters satisfy

(III)

 α1 − α2 − k1 − λ(k1 + σ1)− [k2 + α2 + λ(k2 + σ2)]([(1− η)−1] + 1) > 0

α̂1 − α̂2 − k̂1 − λ(k̂1 + σ̂1)− [k̂2 + α̂2 + λ(k̂2 + σ̂2)]([(1− η)−1] + 1) > 0,

(IV)

 k1 + λ(σ1 + k1) > 0

k̂1 + λ(σ̂1 + k̂1) > 0,

then there exists γ ∈ (0, log(C∗
1∧C∗

2)) and stepsize bound ∆∗ > 0 such that for

any stepsize ∆ < ∆∗, the BEM numerical solution defined by (14) satisfies

lim sup
k→∞

log(E|yk|2)
k∆

6 −γ, (18)

where C∗
1 and C∗

2 are the positive roots of equations H(C,∆) = 0 and P (C,∆) =

0, respectively; ∆∗ = 1−ρ
a1+a2

∧∆1 ∧∆2.

Proof. Let zk = yk − υ(yk−[δ(k∆)/∆]), based on (14), we have

zk+1 − f(yk+1, yk+1−[δ((k+1)∆)/∆])∆

= zk + g(yk, yk−[δ(k∆)/∆])∆Wk + h(yk, yk−[δ(k∆)/∆])∆Nk. (19)

Squaring both sides of the equality yields

|zk+1|2 6 |zk|2 +
∣∣g(yk, yk−[δ(k∆)/∆])∆Wk

∣∣2 + ∣∣h(yk, yk−[δ(k∆)/∆])∆Nk

∣∣2
+2

⟨
zk, g(yk, yk−[δ(k∆)/∆])∆Wk

⟩
+ 2

⟨
zk, h(yk, yk−[δ(k∆)/∆])∆Nk

⟩
+2

⟨
g(yk, yk−[δ(k∆)/∆])∆Wk, h(yk, yk−[δ(k∆)/∆])∆Nk

⟩
+2

⟨
zk+1, f(yk+1, yk+1−[δ((k+1)∆)/∆])∆

⟩
. (20)

Based on the properties that E(∆Wk) = 0, E(∆Wk)
2 = ∆, E(∆Nk) =

λ∆, E(∆Nk)
2 = λ∆(1 + λ∆), and yk, yk−[δ(k∆)/∆] are all Ftk-measurable,

14



we obtain

E
∣∣g(yk, yk−[δ(k∆)/∆])∆Wk

∣∣2 = ∆E
∣∣g(yk, yk−[δ(k∆)/∆])

∣∣2,
E
∣∣h(yk, yk−[δ(k∆)/∆])∆Nn

∣∣2 = λ∆(1 + λ∆)E
∣∣h(yk, yk−[δ(k∆)/∆])

∣∣2,
E
⟨
zk, g(yk, yk−[δ(k∆)/∆])∆Wk

⟩
= 0,

E
⟨
zk, h(yk, yk−[δ(k∆)/∆])∆Nk

⟩
= λ∆E

⟨
zk, h(yk, yk−[δ(k∆)/∆])

⟩
,

E
⟨
g(yk, yk−[δ(k∆)/∆])∆Wk, h(yk, yk−[δ(k∆)/∆])∆Nk

⟩
= 0.

Taking expectation on both sides of (20), one gets

E|zk+1|2 6 E|zk|2 +∆E
∣∣g(yk, yk−[δ(k∆)/∆])

∣∣2
+λ∆(1 + λ∆)E

∣∣h(yk, yk−[δ(k∆)/∆])
∣∣2

+2λ∆E
⟨
zk, h(yk, yk−[δ(k∆)/∆])

⟩
+2E

⟨
zk+1, f(yk+1, yk+1−[δ((k+1)∆)/∆])∆

⟩
,

which with assumption A5, can be estimated as

E|zk+1|2

6 E|zk|2 + [1 + λ(1 + λ∆)]∆E[k1|yk|2 + k2
∣∣yk−[δ(k∆)/∆]

∣∣2 + k̂1|yk|α+2

+k̂2
∣∣yk−[δ(k∆)/∆]

∣∣α+2
] + λ∆E[σ1|yk|2+σ2

∣∣yk−[δ(k∆)/∆]

∣∣2 + σ̂1|yk|α+2

+σ̂2

∣∣yk−[δ(k∆)/∆]

∣∣α+2
] + ∆E[−α1|yk+1|2 + α2

∣∣yk+1−[δ((k+1)∆)/∆]

∣∣2
−α̂1|yk+1|α+2 + α̂2

∣∣yk+1−[δ((k+1)∆)/∆]

∣∣α+2
]. (21)

Expression (21) can be rearranged to

E|zk+1|2

6 E|zk|2 + l1E|yk|2 + l2E
∣∣yk−[δ(k∆)/∆]

∣∣2 + l3E|yk|α+2 + l4E
∣∣yk−[δ(k∆)/∆]

∣∣α+2

−α1∆E|yk+1|2 + α2∆E
∣∣yk+1−[δ((k+1)∆)/∆]

∣∣2 − α̂1∆E|yk+1|α+2

15



+α̂2∆E
∣∣yk+1−[δ((k+1)∆)/∆]

∣∣α+2
, (22)

where l1 = [1+λ(1+λ∆)]∆k1+λ∆σ1, l2 = [1+λ(1+λ∆)]∆k2+λ∆σ2, l3 =

[1+λ(1+λ∆)]∆k̂1+λ∆σ̂1, l4 = [1+λ(1+λ∆)]∆k̂2+λ∆σ̂2. For any constant

C > 1, we derive

C(k+1)∆E|zk+1|2 − Ck∆E|zk|2

6 (1− C−∆)C(k+1)∆E|zk|2 + l1C
(k+1)∆E|yk|2 + l2C

(k+1)∆E
∣∣yk−[δ(k∆)/∆]

∣∣2
+l3C

(k+1)∆E|yk|α+2 + l4C
(k+1)∆E

∣∣yk−[δ(k∆)/∆]

∣∣α+2 − α1∆C(k+1)∆E|yk+1|2

+α2∆C(k+1)∆E
∣∣yk+1−[δ((k+1)∆)/∆]

∣∣2 − α̂1∆C(k+1)∆E|yk+1|α+2

+α̂2∆C(k+1)∆E
∣∣yk+1−[δ((k+1)∆)/∆]

∣∣α+2
. (23)

Note that

|zk|2 =
∣∣yk − υ(yk−[δ(k∆)/∆])

∣∣2 6 2|yk|2 + 2ρ2
∣∣yk−[δ(k∆)/∆]

∣∣2.
Inequality (23) turns to be

Ck∆E|zk|2

6 E|z0|2 +
k−1∑
j=0

(1− C−∆)C(j+1)∆2(E|yj|2 + ρ2E
∣∣yj−[δ(j∆)/∆]

∣∣2)
+l1

k−1∑
j=0

C(j+1)∆E|yj|2 + l2

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣2
+l3

k−1∑
j=0

C(j+1)∆E|yj|α+2 + l4

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣α+2

−
k−1∑
j=0

C(j+1)∆α1∆E|yj+1|2 +
k−1∑
j=0

C(j+1)∆α2∆E
∣∣yj+1−[δ((j+1)∆)/∆]

∣∣2
−

k−1∑
j=0

C(j+1)∆α̂1∆E|yj+1|α+2 +
k−1∑
j=0

C(j+1)∆α̂2∆E
∣∣yj+1−[δ((j+1)∆)/∆]

∣∣α+2
.(24)
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We see that,

k−1∑
j=0

C(j+1)∆E
∣∣yj+1−[δ((j+1)∆)/∆]

∣∣2 = k∑
j=1

Cj∆E
∣∣yj−[δ(j∆)/∆]

∣∣2
= C−∆

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣2 − E
∣∣y−[δ(0)/∆]

∣∣2+Ck∆E
∣∣yk−[δ(k∆)/∆]

∣∣2.
Similarly,

k−1∑
j=0

C(j+1)∆E
∣∣yj+1−[δ((j+1)∆)/∆]

∣∣α+2

=C−∆

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣α+2 − E
∣∣y−[δ(0)/∆]

∣∣α+2
+Ck∆E

∣∣yk−[δ(k∆)/∆]

∣∣α+2
.

Then the estimate (24) becomes

Ck∆E|zk|2 + α2∆E
∣∣y−[δ(0)/∆]

∣∣2 + α̂2∆E
∣∣y−[δ(0)/∆]

∣∣α+2

6 E|z0|2 + [l1 + 2(1− C−∆)]
k−1∑
j=0

C(j+1)∆E|yj|2 + l3

k−1∑
j=0

C(j+1)∆E|yj|α+2

+[l2 + 2ρ2(1− C−∆)]
k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣2
+l4

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣α+2 −
k−1∑
j=0

C(j+1)∆α1∆E|yj+1|2

+α2∆C−∆

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣2 + α2∆Ck∆E
∣∣yk−[δ(k∆)/∆]

∣∣2
−

k−1∑
j=0

C(j+1)∆α̂1∆E|yj+1|α+2 + α̂2∆C−∆

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣α+2

+α̂2∆Ck∆E
∣∣yk−[δ(k∆)/∆]

∣∣α+2
. (25)

We find that

α2∆Ck∆E
∣∣yk−[δ(k∆)/∆]

∣∣2
17



6 α2∆Ck∆E|yk|2 + α2∆Ck∆E
∣∣yk−[δ(k∆)/∆]

∣∣2I{[δ(k∆)/∆] ̸=0}

6 α2∆Ck∆E|yk|2 + α2∆C([δ(k∆)/∆]−1)∆C(k−[δ(k∆)/∆]+1)∆E
∣∣yk−[δ(k∆)/∆]

∣∣2
6 α2∆Ck∆E|yk|2 + α2∆C(n∗−1)∆

k−1∑
j=−n∗

C(j+1)∆E|yj|2. (26)

Likewise,

α̂2∆Ck∆E
∣∣yk−[δ(k∆)/∆]

∣∣α+2

6 α̂2∆Ck∆E|yk|α+2 + α̂2∆C(n∗−1)∆

k−1∑
j=−n∗

C(j+1)∆E|yj|α+2. (27)

On the basis of (26) and (27), (25) can be read as

Ck∆E|zk|2 + α2∆E
∣∣y−[δ(0)/∆]

∣∣2 + α̂2∆E
∣∣y−[δ(0)/∆]

∣∣α+2 − α2∆Ck∆E|yk|2

−α̂2∆Ck∆E|yk|α+2

6 E|z0|2 + [l1 + 2(1− C−∆) + α2∆C(n∗−1)∆]
k−1∑
j=0

C(j+1)∆E|yj|2

+(l3 + α̂2∆C(n∗−1)∆)
k−1∑
j=0

C(j+1)∆E|yj|α+2

+[l2 + 2ρ2(1− C−∆) + α2∆C−∆]
k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣2
+(l4 + α̂2∆C−∆)

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣α+2

−
k−1∑
j=0

C(j+1)∆α1∆E|yj+1|2 −
k−1∑
j=0

C(j+1)∆α̂1∆E|yj+1|α+2

+α2∆C(n∗−1)∆

−1∑
j=−n∗

C(j+1)∆E|yj|2

+α̂2∆C(n∗−1)∆

−1∑
j=−n∗

C(j+1)∆E|yj|α+2. (28)
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We also have that

α1∆
k−1∑
j=0

C(j+1)∆E|yj+1|2

= α1∆C−∆

k∑
j=1

C(j+1)∆E|yj|2

= α1∆C−∆

k−1∑
j=0

C(j+1)∆E|yj|2 − α1∆E|y0|2 + α1∆Ck∆E|yk|2, (29)

and

α̂1∆
k−1∑
j=0

C(j+1)∆E|yj+1|α+2

= α̂1∆C−∆

k−1∑
j=0

C(j+1)∆E|yj|α+2 − α̂1∆E|y0|α+2 + α̂1∆Ck∆E|yk|α+2.(30)

Substituting (29) and (30) into (28), we get

Ck∆E|zk|2 + α2∆E
∣∣y−[δ(0)/∆]

∣∣2 + α̂2∆E
∣∣y−[δ(0)/∆]

∣∣α+2

+(α1 − α2)∆Ck∆E|yk|2 + (α̂1 − α̂2)∆Ck∆E|yk|α+2

6 E|z0|2 + [l1 + 2(1− C−∆) + α2∆C(n∗−1)∆ − α1∆C−∆]
k−1∑
j=0

C(j+1)∆E|yj|2

+(l3 + α̂2∆C(n∗−1)∆ − α̂1∆C−∆)
k−1∑
j=0

C(j+1)∆E|yj|α+2

+[l2 + 2ρ2(1− C−∆) + α2∆C−∆]
k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣2
+(l4 + α̂2∆C−∆)

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣α+2

+α1∆E|y0|2 + α̂1∆E|y0|α+2 + α2∆C(n∗−1)∆

−1∑
j=−n∗

C(j+1)∆E|yj|2
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+α̂2∆C(n∗−1)∆

−1∑
j=−n∗

C(j+1)∆E|yj|α+2. (31)

Using Lemma 5.1, we obtain

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣2
6

k−1∑
j=0

Cn∗∆C(j−[δ(j∆)/∆]+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣2
6 (

[
(1− η)−1]+ 1)Cn∗∆

k−1∑
j=−n∗

C(j+1)∆E|yj|2, (32)

and

k−1∑
j=0

C(j+1)∆E
∣∣yj−[δ(j∆)/∆]

∣∣α+2 6 (
[
(1− η)−1]+ 1)Cn∗∆

k−1∑
j=−n∗

C(j+1)∆E|yj|α+2.

Thus, expression (31) can be reformed as

Ck∆E|zk|2 + α2∆E
∣∣y−[δ(0)/∆]

∣∣2 + α̂2∆E
∣∣y−[δ(0)/∆]

∣∣α+2

+(α1 − α2)∆Ck∆E|yk|2 + (α̂1 − α̂2)∆Ck∆E|yk|α+2

6 E|z0|2 + α1∆E|y0|2 + α̂1∆E|y0|α+2 + α2∆C(n∗−1)∆

−1∑
j=−n∗

C(j+1)∆E|yj|2

+[l2 + 2ρ2(1− C−∆) + α2∆C−∆]([(1− η)−1] + 1)Cn∗∆
−1∑

j=−n∗

C(j+1)∆E|yj|2

+[α̂2∆C(n∗−1)∆ + (l4 + α̂2∆C−∆)([(1− η)−1] + 1)Cn∗∆]

×
−1∑

j=−n∗

C(j+1)∆E|yj|α+2 +H(C,∆)
k−1∑
j=0

C(j+1)∆E|yj|2

+P (C,∆)
k−1∑
j=0

C(j+1)∆E|yj|α+2, (33)
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where

H(C,∆) = l1 + 2(1− C−∆) + α2∆C(n∗−1)∆ − α1∆C−∆

+[l2 + 2ρ2(1− C−∆) + α2∆C−∆]× ([(1− η)−1] + 1)Cn∗∆,

P (C,∆) = l3 + α̂2∆C(n∗−1)∆ − α̂1∆C−∆ + (l4 + α̂2∆C−∆)

×([(1− η)−1] + 1)Cn∗∆.

We analyze the properties of functions H(C,∆) and P (C,∆). Bearing in

mind that n∗∆ = τ , one can easily obtain

∂

∂C
H(C,∆)

= 2∆C−∆−1 + α2∆(τ −∆)Cτ−∆−1 + α1∆
2C−∆−1

+[l2τC
τ−1 + 2ρ2(τCτ−1 − (τ −∆)Cτ−∆−1) + α2∆(τ −∆)Cτ−∆−1]

×([(1− η)−1] + 1),

and

H(1,∆) = l1 + α2∆− α1∆+ (l2 + α2∆)([(1− η)−1] + 1)

= ∆ {(1 + λ(1 + λ∆))k1 + λσ1 + α2 − α1

+[(1 + λ(1 + λ∆))k2 + λσ2 + α2]× ([(1− η)−1] + 1)
}
.

With the first condition of (II), we have l2 = [1+λ(1+λ∆)]∆k2+λ∆σ2 > 0,

which makes ∂
∂C

H(C,∆) > 0 for all C > 1. Let

∆1 =
α1 − α2 − λσ1 − (1 + λ)k1 − [α2 + λσ2 + (1 + λ)k2]([(1− η)−1] + 1)

λ2(k1 + k2([(1− η)−1] + 1))
,

for any ∆ ∈ (0,∆1 ∧ 1−ρ
a1+a2

), we have H(1,∆) < 0 under the first condition

of (III). So, there exists a unique C∗
1 > 1 such that H(C∗

1 ,∆) = 0 for ∆ ∈
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(0,∆1 ∧ 1−ρ
a1+a2

). Meanwhile, we observe that

∂

∂C
P (C,∆) = α̂2∆(τ −∆)Cτ−∆−1 + α̂1∆

2C−∆−1

+[l4τC
τ−1 + α̂2∆(τ −∆)Cτ−∆−1]([(1− η)−1] + 1),

and

P (1,∆) = l3 + α̂2∆− α̂1∆+ (l4 + α̂2∆)([(1− η)−1] + 1)

= ∆
{
λσ̂1 + (1 + λ(1 + λ∆))k̂1 + α̂2−α̂1

+
[
λσ̂2 + (1 + λ(1 + λ∆))k̂2 + α̂2

]
× ([(1− η)−1] + 1)

}
.

When the second conditions of (II) and (III) are satisfied, we get ∂
∂C

P (C,∆) >

0 for all C > 1, and P (1,∆) < 0 for any ∆ ∈ (0,∆2 ∧ 1−ρ
a1+a2

), where

∆2 =
α̂1 − α̂2 − λσ̂1 − (1 + λ)k̂1 − [α̂2 + λσ̂2 + (1 + λ)k̂2]([(1− η)−1] + 1)

λ2(k̂1 + k̂2([(1− η)−1] + 1))
.

It is shown that there exists a unique C∗
2 > 1 such that P (C∗

2 ,∆) = 0 for

∆ ∈ (0,∆2 ∧ 1−ρ
a1+a2

). Thus, by choosing C∗ ∈ (1, C∗
1 ∧ C∗

2), we have both

H(C∗,∆) < 0 and P (C∗,∆) < 0 when ∆ ∈ (0,∆1 ∧∆2 ∧ 1−ρ
a1+a2

). Therefore,

inequality (33) becomes

Ck∆E|zk|2 + α2∆E
∣∣y−[δ(0)/∆]

∣∣2 + α̂2∆E
∣∣y−[δ(0)/∆]

∣∣α+2

+(α1 − α2)∆Ck∆E|yk|2 + (α̂1 − α̂2)∆Ck∆E|yk|α+2 6 φ(ξ), (34)

where φ(ξ) = (2 + 2ρ2 + α1∆ + α2τC
τ−∆)E∥ξ∥2 + α̂1∆E∥ξ∥α+2 + [(1 +

λ(1+λ∆))k2+λσ2+2ρ2(1−C−∆)/∆+α2C
−∆]([(1− η)−1]+1)CττE∥ξ∥2+{

α̂2C
τ−∆ + [(1 + λ(1 + λ∆))k̂2 + λσ̂2 + α̂2C

−∆]([(1− η)−1] + 1)Cτ
}
τE∥ξ∥α+2,

which is a positive constant depending on the initial value ξ. Applying the
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condition (IV), which ensure that α1 −α2 > 0 and α̂1 − α̂2 > 0, we conclude

from (34) that

(α1 − α2)∆C∗k∆E|yk|2 6 φ(ξ).

Let γ = logC∗,

E|yk|2 6
1

(α1 − α2)∆
φ(ξ)e−γk∆,

which implies (18). �
Remark 5.3. Let us analyze the conditions A5. Please note that the pa-

rameters σi, σ̂i, (i ∈ {1, 2}) related to jumps in (5) are constants, which are

different from the parameters related to drift coefficient f in (4)(positive

constants). In Theorem 3.1 and Theorems 5.2, to obtain the stability of ana-

lytic solution and numerical solution, we propose condition (II) and condition

(IV), respectively, to strengthen constraints mainly for jumps parameters. It

is not difficult to see, if we assume that σi, σ̂i are all positive constants, then

conditions (II) and (IV) will no longer be required in these two theorems,

because they will hold obviously in the case that conditions (4) and (6) are

unchanged. However, the proposed conditions (II) and (IV) are weaker than

the assumptions of positive parameter, although they seem a little compli-

cated. In other words, we give relatively weak conditions for jumps. Later,

we will give an example to show that all these conditions can be satisfied.

Remark 5.4. Under some nonlinear conditions and parameter conditions,

the BEM numerical solution is shown to reproduce the exponential mean-

square stability of the analytic solution by Theorem 5.2. In particular, if Eq.

(1) with no jumps is considered, that is h(t, x(t), x(t− δ(t))) = 0, σi = σ̂i =

0(i ∈ {1, 2}), and if the superlinear terms |x|α+2 and |y|α+2 are not involved,

condition (III) will only become α1−α2−k1− (α2+k2)([(1− η)−1]+1) > 0,

23



which is the condition of formula (70) in [10] by letting α1 = β1, α2 = β2, k1 =

β3, k2 = β4. It is worth noting that, the jumps and time-varying delay

are dealt with under the nonlinear condition. The exponential mean-square

stability we obtained can deduce the a.s. exponential stability with the linear

growth condition by using the Chebyshev inequality as well as the Borel-

Cantelli lemma [16]. Therefore, this work generalizes some results of [9, 10]

to more general conditions and the case with Poisson jumps.

6. Illustrating example

Consider the nonlinear scalar NSDEs with time-varying delay and Poisson

jumps:

d[x(t)− 1
9
sin(x(t− δ(t)))] = [−3x(t)− 3x3(t)− 1

2
x(t− δ(t))]dt

−1
2
x2(t− δ(t))dW (t)

−1
2
(x(t) + x2(t− δ(t)))dN(t), t > 0, (35)

x(t) = t+ 1, −1 6 t 6 0.

We show this example satisfies the presented conditions. Let y denotes x(t−

δ(t)), and δ(t) = 1− 1
4
sin t, we deduce

2 (x− υ(y))T f(x, y) = 2(x− 1

9
sin y)(−3x− 3x3 − 1

2
y)

= −6x2 − 6x4 − xy +
2

3
x sin y +

2

3
x3 sin y +

1

9
y sin y

6 −6x2 − 6x4 +
1

2
(x2 + y2) +

1

3
[x2 + (sin y)2] +

2

3
[
3

4
x4 +

1

4
(sin y)4]

+
1

9
[
1

2
y2 +

1

2
(sin y)2]

6 −6x2 − 6x4 +
5

6
x2 +

1

2
y2 +

1

3
y2 +

1

2
x4 +

1

6
y4 +

1

9
y2

= −31

6
x2 +

17

18
y2 − 11

2
x4 +

1

6
y4,
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which implies that condition (4) holds with α1 = 31
6
, α2 = 17

18
, α̂1 = 11

2
, α̂2 =

1
6
, α = 2. In the same way, we get

2 (x− υ(y))T h(x, y) = 2(x− 1

9
sin y)

1

2
(−x− y2)

= −x2 − xy2 +
1

9
x sin y +

1

9
y2 sin y

6 −x2 +
1

2
(x2 + y4) +

1

18
[x2 + (sin y)2] +

1

9
y2

6 −4

9
x2 +

1

6
y2 +

1

2
y4,

which means that σ1 = −4
9
, σ2 =

1
6
, σ̂1 = 0, σ̂2 =

1
2
in condition (5). We also

have that

|h(x, y)|2 = 1

4
(x+ y2)2 =

1

4
(x2 + y4 + 2xy2) 6 1

2
(x2 + y4),

which reveals that k1 =
1
2
, k2 = 0, k̂1 = 0, k̂2 =

1
2
in condition (6).

Now, we set λ = 1
4
, and note that δ̄ = 1

4
, η = 1

4
. It is easy to verify

α1 − k1 − λ(k1 + σ1)− [k2 + α2 + λ(k2 + σ2)]
1

1− δ̄

=
31

6
− 1

2
− 1

4
(
1

2
− 4

9
)− (

17

18
+

1

4
· 1
6
)

1

1− 0.25
=

31

6
− 49

27
− 1

64
> 0,

and

α̂1 − k̂1 − λ(k̂1 + σ̂1)− [k̂2 + α̂2 + λ(k̂2 + σ̂2)]
1

1− δ̄

=
11

2
− [

1

2
+

1

6
+

1

4
(
1

2
+

1

6
)]

1

1− 0.25
=

77

18
> 0.

Besides, we find that k2 + λ(σ2 + k2) > 0 and k̂2 + λ(σ̂2 + k̂2) > 0. So, the

conditions of Theorem 3.1 hold, which means that the analytic solution of

Eq.(1) is exponentially mean-square stable.
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Then we check the conditions of stability about the numerical solution.

Firstly, we observe that, for any q1, q2, y ∈ R,

⟨q1 − q2, f(q1, y)− f(q2, y)⟩ = −3(q1 − q2)
2(1 + q21 + q22 + q1q2)

6 a1|q1 − q2|2,

⟨q1 − q2, f(y, q1)− f(y, q2)⟩ = −1

2
(q1 − q2)

2 6 a2|q1 − q2|2,

which show that assumption A2 holds for any a1 > 0 and a2 > 0. So, the

BEM method for Eq. (35) is well defined when step size ∆ ∈ (0, 1). Secondly,

we have that

α1 − α2 − k1 − λ(k1 + σ1)− [k2 + α2 + λ(k2 + σ2)]([(1− η)−1] + 1)

=
31

6
− 17

18
− 1

2
− 1

4
(
1

2
− 4

9
)− [

17

18
+

1

4
· 1
6
]([(1− 1

4
)−1] + 1) =

125

72
> 0,

and

α̂1 − α̂2 − k̂1 − λ(k̂1 + σ̂1)− [k̂2 + α̂2 + λ(k̂2 + σ̂2)]([(1− η)−1] + 1)

=
11

2
− 1

6
− [

1

2
+

1

6
+

1

4
(
1

2
+

1

2
)]([(1− 1

4
)−1] + 1) =

21

6
> 0.

At last, we have that k1 + λ(σ1 + k1) > 0 and k̂1 + λ(σ̂1 + k̂1) > 0. Thus,

the conditions of Theorem 5.2 are also fulfilled, which means that the BEM

numerical solution can achieve their exponential mean-square stability.

For the purpose of testing the exponential stability of BEM numerical

solution, we generate 500 sample paths (green color) with stepsize ∆ = 0.018,

which is revealed in Fig.1. We can see that their mean-square curve (red

color) tends to a common value, which means the numerical solutions are

exponentially mean-square stable. For a clear show of one path, we have

Fig.2, which reveals the trajectory tends to be stable as the time goes on.
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Then we let the step size be ∆ = 0.058 and ∆ = 0.07, we obtain Fig. 3 and

Fig. 4, respectively, which show that the numerical solutions achieve their

exponential mean-square stability.

Fig. 1. Mean square stability of numerical solutions yk with ∆ = 0.018.
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Fig. 2. A sample path of BEM numerical solution yk with ∆ = 0.018.
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Fig. 3. Mean square stability of numerical solutions yk with ∆ = 0.058.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y(
t)

E(|y(t)|2)

Fig. 4. Mean square stability of numerical solutions yk with ∆ = 0.07.

7. Conclusion

In this paper, we proved that the analytic solution was exponential mean-

square stable under some general nonlinear conditions, for NSDEs with time-

varying delay and Poisson jumps. Our work reveals that the BEM method

can reproduce the corresponding stability of the analytic solution without

the linear growth condition, which is different from the EM method of some

28



existing results. The exponential mean-square stability we have obtained

is stronger than the a.s. exponential stability. The results generalize the

stability of NSDEs with constant delay to the case of NSDEs with time-

varying delay and Poisson jumps.
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