Reference
Adkins, J., Jordan, J., & Nielsen, D.
R. (2013). Engineering Escherichia coli for renewable production
of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate.Biotechnol Bioeng, 110 (6), 1726-1734. doi:10.1002/bit.24828
Akesson, M., Hagander, P., &
Axelsson, J. (2001). Avoiding Acetate Accumulation in Escherichia
coli Cultures Using Feedback Control of Glucose Feeding.Biotechnology and Bioengineering, 73 , 223-230.
doi:10.1002/bit.1054
Babu, T., Yun, E. J., Kim, S., Kim, D.
H., Liu, K. H., Kim, S. R., & Kim, K. H. (2015). EngineeringEscherichia coli for the production of adipic acid through the
reversed β-oxidation pathway. Process Biochemistry, 50 (12),
2066-2071. doi:https://doi.org/10.1016/j.procbio.2015.09.018
Bermúdez, M., León, S., Alemán, C., &
Muñoz-Guerra, S. (2000). Comparison of lamellar crystal structure and
morphology of nylon 46 and nylon 5. Polymer, 41 (25), 8961-8973.
Brose, S. A., Golovko, S. A., &
Golovko, M. Y. (2016). Fatty acid biosynthesis inhibition increases
reduction potential in neuronal cells under hypoxia. Frontiers in
neuroscience, 10 , 546-546. doi:10.3389/fnins.2016.00546
Castellan, A., Bart, J. C. J., &
Cavallaro, S. (1991). Industrial production and use of adipic acid.Catalysis Today, 9 (3), 237-254.
doi:https://doi.org/10.1016/0920-5861(91)80049-F
Gande, R., Dover, L. G., Krumbach, K.,
Besra, G. S., Sahm, H., Oikawa, T., & Eggeling, L. (2007). The two
carboxylases of Corynebacterium glutamicum essential for fatty
acid and mycolic acid synthesis. J Bacteriol, 189 (14), 5257-5264.
doi:10.1128/jb.00254-07
Gibson, D. G., Young, L., Chuang, R.
Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic
assembly of DNA molecules up to several hundred kilobases. Nature
Methods, 6 (5), 343-345. doi:10.1038/Nmeth.1318
Glazyrina, J., Materne, E.-M.,
Dreher, T., Storm, D., Junne, S., Adams, T., . . . Neubauer, P. (2010).
High cell density cultivation and recombinant protein production withEscherichia coli in a rocking-motion-type bioreactor.Microbial Cell Factories, 9 (1), 42. doi:10.1186/1475-2859-9-42
Heath, R. J., & Rock, C. O. (1995).
Regulation of malonyl-CoA metabolism by acyl-acyl carrier protein and
beta-ketoacyl-acyl carrier protein synthases in Escherichia coli .Journal of Biological Chemistry, 270 (26), 15531-15538.
Hong, Y.-G., Moon, Y.-M., Hong,
J.-W., No, S.-Y., Choi, T.-R., Jung, H.-R., . . . Yang, Y.-H. (2018).
Production of glutaric acid from 5-aminovaleric acid usingEscherichia coli whole cell bio-catalyst overexpressing GabTD
from Bacillus subtilis . Enzyme and Microbial Technology,
118 , 57-65. doi:https://doi.org/10.1016/j.enzmictec.2018.07.002
JC, F., & JR, G. (1977). Catabolism
of L-lysine by Pseudomonas aeruginosa . Journal of general
microbiology, 99 (1), 139.
Jiang, Y., Chen, B., Duan, C., Sun,
B., Yang, J., & Yang, S. (2015). Multigene editing in theEscherichia coli genome via the CRISPR-Cas9 system. Applied
and Environmental Microbiology, 81 (7), 2506-2514.
doi:10.1128/AEM.04023-14
Kim, H. T., Khang, T. U., Baritugo,
K.-A., Hyun, S. M., Kang, K. H., Jung, S. H., . . . Joo, J. C. (2019).
Metabolic engineering of Corynebacterium glutamicum for the production
of glutaric acid, a C5 dicarboxylic acid platform chemical.Metabolic Engineering, 51 , 99-109.
doi:https://doi.org/10.1016/j.ymben.2018.08.007
Lee, S. Y. (1996). High cell-density
culture of Escherichia coli . Trends in biotechnology,
14 (3), 98-105. doi:https://doi.org/10.1016/0167-7799(96)80930-9
Li, S. J., & Cronan, J. E., Jr.
(1992). The genes encoding the two carboxyltransferase subunits ofEscherichia coli acetyl-CoA carboxylase. J Biol Chem,
267 (24), 16841-16847.
Li, W., Ma, L., Shen, X., Wang, J.,
Feng, Q., Liu, L., . . . Yuan, Q. (2019). Targeting metabolic driving
and intermediate influx in lysine catabolism for high-level glutarate
production. Nature Communications, 10 (1), 3337.
doi:10.1038/s41467-019-11289-4
Lin, H., Castro, N., Bennett, G., &
San, K.-Y. (2006). Acetyl-CoA synthetase overexpression inEscherichia coli demonstrates more efficient acetate assimilation
and lower acetate accumulation: A potential tool in metabolic
engineering. Applied Microbiology and Biotechnology, 71 , 870-874.
doi:10.1007/s00253-005-0230-4
Luli, G. W., & Strohl, W. R. (1990).
Comparison of growth, acetate production, and acetate inhibition ofEscherichia coli strains in batch and fed-batch fermentations.Applied and Environmental Microbiology, 56 (4), 1004-1011.
Lussier, F.-X., Colatriano, D.,
Wiltshire, Z., Page, J., & Martin, V. (2012). Engineering Microbes for
Plant Polyketide Biosynthesis. Computational and structural
biotechnology journal, 3 , e201210020. doi:10.5936/csbj.201210020
Maria, R. C., Gideon, G., Michael,
K., Christoph, W., & Judith, B. (2016). Systems metabolic engineering
of Corynebacterium glutamicum for the production of the carbon-5
platform chemicals 5-aminovalerate and glutarate. Microbial Cell
Factories, 15 (1), 154.
Mazumdar, S., Clomburg, J. M., &
Gonzalez, R. (2010). Escherichia coli strains engineered for
homofermentative production of D-lactic acid from glycerol.Applied and Environmental Microbiology, 76 (13), 4327-4336.
doi:10.1128/AEM.00664-10
Miyahisa, I., Kaneko, M., Funa, N.,
Kawasaki, H., Kojima, H., Ohnishi, Y., & Horinouchi, S. (2005).
Efficient production of (2S)-flavanones by Escherichia colicontaining an artificial biosynthetic gene cluster. Appl Microbiol
Biotechnol, 68 (4), 498-504. doi:10.1007/s00253-005-1916-3
My, L., Rekoske, B., Lemke, J. J.,
Viala, J. P., Gourse, R. L., & Bouveret, E. (2013). Transcription of
the Escherichia coli fatty acid synthesis operon fabHDG is
directly activated by FadR and inhibited by ppGpp. Journal of
Bacteriology, 195 (16), 3784-3795. doi:10.1128/JB.00384-13
Nakano, K., Rischke, M., Sato, S., &
Märkl, H. (1997). Influence of acetic acid on the growth ofEscherichia coli K12 during high-cell-density cultivation in a
dialysis reactor. Applied Microbiology and Biotechnology, 48 (5),
597-601. doi:10.1007/s002530051101
Nastasia, M. (2001). Fermentation
bung device and method. In: US.
Nishikido, J., Tamura, N., &
Fukuoka, Y. (1979). Method for obtaining glutaric acid, succinic acid,
and adipic acid from an acid mixture comprising them.
Niu, W., Draths, K. M., & Frost, J.
W. (2002). Benzene-free synthesis of adipic acid. Biotechnol Prog,
18 (2), 201-211.
Park, S. J., Kim, E. Y., Noh, W.,
Park, H. M., Oh, Y. H., Lee, S. H., . . . Lee, S. Y. (2013). Metabolic
engineering of Escherichia coli for the production of
5-aminovalerate and glutarate as C5 platform chemicals. Metabolic
Engineering, 16 , 42-47.
Pitera, D. J., Paddon, C. J., Newman,
J. D., & Keasling, J. D. (2007). Balancing a heterologous mevalonate
pathway for improved isoprenoid production in Escherichia coli .Metab Eng, 9 (2), 193-207. doi:10.1016/j.ymben.2006.11.002
Polen, T., Spelberg, M., & Bott, M.
(2013). Toward biotechnological production of adipic acid and precursors
from biorenewables. Journal of biotechnology, 167 (2), 75-84.
doi:10.1016/j.jbiotec.2012.07.008.
Pollak, P., & Romeder, G. (2000).
Malonic Acid and Derivatives. In.
Revelles, O., Espinosa-Urgel, M.,
Fuhrer, T., Sauer, U., & Ramos, J. L. (2005). Multiple and
Interconnected Pathways for L-Lysine Catabolism in Pseudomonas putida
KT2440. Journal of Bacteriology, 187 (21), 7500.
Revelles, O., Wittich, R. M., &
Ramos, J. L. (2007). Identification of the initial steps in D-lysine
catabolism in Pseudomonas putida. Journal of Bacteriology,
189 (7), 2787.
Rogers, J. K., & Church, G. M.
(2016). Genetically encoded sensors enable real-time observation of
metabolite production. Proceedings of the National Academy of
Sciences of the United States of America, 113 (9), 2388.
Rohles, C., Gläser, L., Kohlstedt,
M., Giesselmann, G., Pearson, S., Campo, A., . . . Wittmann, C. (2018).
A bio-based route to the carbon-5 chemical glutaric acid and to
bionylon-6,5 using metabolically engineered Corynebacterium glutamicum.Green Chemistry, 20 . doi:10.1039/C8GC01901K
Sato, K., Aoki, M., & Noyori, R.
(1998). A ”Green” route to adipic acid: direct oxidation of cyclohexenes
with 30 percent hydrogen peroxide. Science, 281 (5383), 1646-1647.
Shin, J. H., Park, S. H., Oh, Y. H.,
Choi, J. W., Lee, M. H., Cho, J. S., . . . Si, J. P. (2016). Metabolic
engineering of Corynebacterium glutamicum for enhanced production of
5-aminovaleric acid. Microbial Cell Factories, 15 (1), 174.
Sui, X., Zhao, M., Liu, Y., Wang, J.,
Li, G., Zhang, X., & Deng, Y. (2020). Enhancing glutaric acid
production in Escherichia coli by uptake of malonic acid.Journal of Industrial Microbiology & Biotechnology, 47 (3),
311-318. doi:10.1007/s10295-020-02268-6
Thuronyi, B. W., Privalsky, T. M., &
Chang, M. C. Y. (2017). Engineered Fluorine Metabolism and Fluoropolymer
Production in Living Cells. Angewandte Chemie International
Edition, 56 (44), 13637-13640. doi:10.1002/anie.201706696
Tokuyama, K., Toya, Y., Matsuda, F.,
Cress, B. F., Koffas, M. A. G., & Shimizu, H. (2019). Magnesium
starvation improves production of malonyl-CoA-derived metabolites inEscherichia coli . Metabolic Engineering, 52 , 215-223.
doi:10.1016/j.ymben.2018.12.002
Walker, M. C., Thuronyi, B. W.,
Charkoudian, L. K., Lowry, B., Khosla, C., & Chang, M. C. Y. (2013).
Expanding the Fluorine Chemistry of Living Systems Using Engineered
Polyketide Synthase Pathways. Science, 341 (6150), 1089-1094.
doi:10.1126/science.1242345
Wolfe, A. J. (2005). The Acetate
Switch. Microbiology and Molecular Biology Reviews, 69 (1), 12.
doi:10.1128/MMBR.69.1.12-50.2005
Wu, J., Du, G., Zhou, J., & Chen, J.
(2013). Metabolic engineering of Escherichia coli for
(2S)-pinocembrin production from glucose by a modular metabolic
strategy. Metab Eng, 16 , 48-55. doi:10.1016/j.ymben.2012.11.009
Xiao, Y., Ruan, Z., Liu, Z., Wu, S.
G., Varman, A. M., Liu, Y., & Tang, Y. J. (2013). EngineeringEscherichia coli to convert acetic acid to free fatty acids.Biochemical Engineering Journal, 76 , 60-69.
doi:https://doi.org/10.1016/j.bej.2013.04.013
Xu, P., Li, L., Zhang, F.,
Stephanopoulos, G., & Koffas, M. (2014). Improving fatty acids
production by engineering dynamic pathway regulation and metabolic
control. Proceedings of the National Academy of Sciences,
111 (31), 11299. doi:10.1073/pnas.1406401111
Yang, J., & Nie, Q. (2016).
Engineering Escherichia coli to convert acetic acid to
β-caryophyllene. Microbial Cell Factories, 15 , 74-74.
doi:10.1186/s12934-016-0475-x
Yang, S.-Y., Choi, T.-R., Jung,
H.-R., Park, Y.-L., Han, Y.-H., Song, H.-S., Bhatia, S.-K., Park, K.,
Ahn, J.-O., Jeon, W.-Y., Kim, J.-S., Yang, Y.-H. (2019). Production of
glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized
with polyvinyl alcohol and polyethylene glycol. Enzyme and
Microbial Technology, 128 , 72-78.
doi:https://doi.org/10.1016/j.enzmictec.2019.05.003
Yu, J.-L., Xia, X.-X., Zhong, J.-J.,
& Qian, Z.-G. (2017). Enhanced production of glutarate by using
anaerobic-aerobic shift cultivation and an anaerobically inducible
promoter in an engineered Escherichia coli . Process
Biochemistry, 62 . doi:10.1016/j.procbio.2017.09.001
Zha, W., Rubin-Pitel, S. B., Shao,
Z., & Zhao, H. (2009). Improving cellular malonyl-CoA level inEscherichia coli via metabolic engineering. Metabolic
Engineering, 11 (3), 192-198.
doi:https://doi.org/10.1016/j.ymben.2009.01.005
Zhang, M., Gao, C., Guo, X., Guo, S.,
Kang, Z., Xiao, D.,Yan, J., Tao, F., Zhang, W., Dong, W., Liu, P., Yang,
C., Ma, C., & Xu, P. (2018). Increased glutarate production by blocking
the glutaryl-CoA dehydrogenation pathway and a catabolic pathway
involving l-2-hydroxyglutarate. Nature Communications, 9 (1),
2114. doi:10.1038/s41467-018-04513-0
Zhao, M., Huang, D., Zhang, X.,
Koffas, M., Zhou, J., & Deng, Y. (2018). Metabolic engineering ofEscherichia coli for producing adipic acid through the reverse
adipate-degradation pathway. Metabolic Engineering, 47 .
doi:10.1016/j.ymben.2018.04.002
Zhao, M., Li, G., & Deng, Y. (2018).
Engineering Escherichia coli for glutarate production as the C5
platform backbone. Applied and Environmental Microbiology,
84 (16), e00814-00818.
doi:10.1128/AEM.00814-18
Zhu, S., Wu, J., Du, G., Zhou, J., &
Chen, J. (2014). Efficient synthesis of eriodictyol from L-tyrosine in
Escherichia coli. Appl Environ Microbiol, 80 (10), 3072-3080.
doi:10.1128/aem.03986-13