References
- Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D.
Covid-19 Does Not Lead to a ”Typical” Acute Respiratory Distress
Syndrome. Am J Respir Crit Care Med, 201(10)(2020), pp. 1299-1300,
10.1164/rccm.202003-0817LE
- Reynolds AS, Lee AG, Renz J, DeSantis K, Liang J, Powell CA, et al.
Pulmonary Vascular Dilatation Detected by Automated Transcranial
Doppler in COVID-19 Pneumonia. Am J Respir Crit Care Med,
202(7)(2020), pp. 1037-1039, 10.1164/rccm.202006-2219LE
- Brito-Azevedo A, Pinto EC, Corrêa GAdCP, Bouskela E. SARS-CoV-2
infection causes pulmonary shunt by vasodilatation. J Med Virol,
(2020), 10.1002/jmv.26342
- Garvin MR, Alvarez C, Miller JI, Prates ET, Walker AM, Amos BK, et al.
A mechanistic model and therapeutic interventions for COVID-19
involving a RAS-mediated bradykinin storm. Elife 2020; 9: e59177.
Published 2020 Jul 7. doi:10.7554/eLife.59177
- Golias Ch, Charalabopoulos A, Stagikas D, Charalabopoulos K,
Batistatou A. The kinin system–bradykinin: biological effects and
clinical implications. Multiple role of the kinin
system–bradykinin. Hippokratia, 11(3)(2007), pp. 124-128.
- Eccles R. Understanding the symptoms of the common cold and influenza.
Lancet Infect Dis, 5(11)(2005), pp. 718-725, doi:
10.1016/S1473-3099(05)70270-X
- Wang Y, Chen J, Chen W, Liu L, Dong M, Ji J, Hu D, Zhang N. Does
Asthma Increase the Mortality of Patients with COVID-19?: A Systematic
Review and Meta-Analysis. Int Arch Allergy Immunol, 182(1)(2021), pp.
76-82, doi: 10.1159/000510953
- El-Anwar MW, Elzayat S, Fouad YA. ENT manifestation in COVID-19
patients. Auris Nasus Larynx, 47(4)(2020), pp. 559-564, doi:
10.1016/j.anl.2020.06.003
- Chiumello, D., Busana, M., Coppola, S. et al. Physiological and
quantitative CT-scan characterization of COVID-19 and typical ARDS: a
matched cohort study. Intensive Care Med, 46(2020), pp. 2187-2196,
https://doi.org/10.1007/s00134-020-06281-2
- Jain A, Doyle DJ. Stages or phenotypes? A critical look at COVID-19
pathophysiology. Intensive Care Med, 46(7)(2020), pp. 1494-1495, doi:
10.1007/s00134-020-06083-6
- Jain A, Doyle DJ, Mangal R. “Mosaic Perfusion Pattern” on
Dual-Energy CT in COVID-19 Pneumonia: Pulmonary Vasoplegia or
Vasoconstriction?. Radiol Cardiothorac Imaging, 2(5)(2020), e200433,
doi:10.1148/ryct.2020200433
- Lovering AT, Riemer RK, Thébaud B. Intrapulmonary arteriovenous
anastomoses. Physiological, pathophysiological, or both?. Ann Am
Thorac Soc, 10(5)(2013), pp. 504-508,
doi:10.1513/AnnalsATS.201308-265ED
- Dehnert C, Risse F, Ley S, Kuder TA, Buhmann R, Puderbach M, et al.
Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in
humans. Am J Respir Crit Care Med, 174(10)(2006), pp. 1132-1138, doi:
10.1164/rccm.200606-780OC
- Krowka MJ, Dickson ER, Cortese DA. Hepatopulmonary syndrome. Clinical
observations and lack of therapeutic response to somatostatin
analogue. Chest, 104(4)(1993), pp. 515-521, doi:
10.1378/chest.104.2.515
- Das A, Saffaran S, Chikhani M, Scott TE, Laviola M, Yehya N, et al. In
Silico Modeling of Coronavirus Disease 2019 Acute Respiratory Distress
Syndrome: Pathophysiologic Insights and Potential Management
Implications. Critical Care Explorations, 2(9)(2020), p. e0202,
https://doi.org/10.1097/CCE.0000000000000202
- Herrmann J, Mori V, Bates JHT, Suki B. Modeling lung perfusion
abnormalities to explain early COVID-19 hypoxemia. Nat Commun,
11(2020), p. 4883, https://doi.org/10.1038/s41467-020-18672-6
- Searles CD, Harrison DG. The interaction of nitric oxide, bradykinin,
and the angiotensin II type 2 receptor: lessons learned from
transgenic mice. J Clin Invest, 104(8)(1999), pp. 1013-1014.
- Orfanos SE, Armaganidis A, Glynos C, Psevdi E, Kaltsas P, Sarafidou P,
Catravas JD, Dafni UG, Langleben D, Roussos C. Pulmonary capillary
endothelium-bound angiotensin-converting enzyme activity in acute lung
injury. Circulation, 102(16)(2000), pp. 2011-2018, doi:
10.1161/01.cir.102.16.2011
- Idell S, Kueppers F, Lippmann M, Rosen H, Niederman M, Fein A.
Angiotensin converting enzyme in bronchoalveolar lavage in ARDS.
Chest, 91(1)(1987), pp. 52-56, doi: 10.1378/chest.91.1.52
- Zhu, Z., Cai, T., Fan, L. et al. The potential role of serum
angiotensin-converting enzyme in coronavirus disease 2019. BMC Infect
Dis, 20(2020), p. 883,
https://doi.org/10.1186/s12879-020-05619-x
- Yilin Z, Yandong N, Faguang J. Role of angiotensin-converting enzyme
(ACE) and ACE2 in a rat model of smoke inhalation induced acute
respiratory distress syndrome. Burns, 41(7)(2015). pp. 1468-77,
doi.org/10.1016/j.burns.2015.04.010.
- Ohkubo K, Lee CH, Baraniuk JN, Merida M, Hausfeld JN, Kaliner MA.
Angiotensin-converting enzyme in the human nasal mucosa. Am J Respir
Cell Mol Biol, 11(2)(1994), pp. 173-80, 10.1165/ajrcmb.11.2.8049077
- Bodro M, Compta Y, Llansó L, Esteller D, Doncel-Moriano A, Mesa A, et
al. Increased CSF levels of IL-1β, IL-6, and ACE in
SARS-CoV-2-associated encephalitis. Neurol Neuroimmunol Neuroinflamm,
7(2020), e821. doi:10.1212/NXI.0000000000000821
- Bullock GR, Steyaert I, Bilbe G, Carey RM, Kips J, De Paepe B, et al.
Distribution of type-1 and type-2 angiotensin receptors in the normal
human lung and in lungs from patients with chronic obstructive
pulmonary disease. Histochem Cell Biol 2001; 115: 1171124.
https://doi.org/10.1007/s004180000235
- Mandel MJ, Sapirstein LA. Effect of angiotensin infusion on regional
blood flow and regional vascular resistance in the rat. Circ Res,
10(1962), pp. 807-16, doi: 10.1161/01.res.10.5.807
- Iwamoto HS, Rudolph AM. Effects of angiotensin II on the blood flow
and its distribution in fetal lambs. Circ Res, 48(2)(1981), pp.
183-189, doi: 10.1161/01.res.48.2.183
- Zhao X, Li X, Trusa S, Olson SC. Angiotensin type 1 receptor is linked
to inhibition of nitric oxide production in pulmonary endothelial
cells. Regul Pept 2005; 132: 113-122.
- Hansen TN, Le Blanc AL, Gest AL. Hypoxia and angiotensin II infusion
redistribute lung blood flow in lambs. J Appl Physiol, 58(3)(1985),
pp. 812-818, https://doi.org/10.1152/jappl.1985.58.3.812
- Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, et al. AMPK: a balancer
of the renin-angiotensin system. Biosci Rep 2019; 39: BSR20181994.
Published 2019 Sep 3. doi:10.1042/BSR20181994
- Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and
biochemical indexes from 2019-nCoV infected patients linked to viral
loads and lung injury. Sci China Life Sci, 63(3)(2020), pp. 364-374,
doi: 10.1007/s11427-020-1643-8
- Zoufaly A, Poglitsch M, Aberle JH, Hoepler W, Seitz T, Traugott M, et
al. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir
Med, 8(11)(2020), pp. 1154-1158, doi: 10.1016/S2213-2600(20)30418-5
- Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, et al.
Potential for lung recruitment and ventilation-perfusion mismatch in
patients with the acute respiratory distress syndrome from coronavirus
disease. Crit Care Med 2020.
https://doi.org/10.1097/CCM.0000000000004386
- Vodoz JF, Cottin V, Glérant JC, Derumeaux G, Khouatra C, Blanchet AS
et al. Right-to-left shunt with hypoxemia in pulmonary hypertension.
BMC Cardiovasc Disord, 9(2009), p.15, doi: 10.1186/1471-2261-9-15
- Szekely Y, Lichter Y, Taieb P, Bani A, Hochstadt A, Merdler I. The
Spectrum of Cardiac Manifestations in Coronavirus Disease 2019
(COVID-19) - A Systematic Echocardiographic Study. Circulation,
142(4)(2020), pp. 342-353, doi: 10.1161/CIRCULATIONAHA.120.047971
- Santamarina MG, Boisier D, Contreras R, Baque M, Volpacchio M,
Beddings I. COVID-19: a hypothesis regarding the ventilation-perfusion
mismatch. Crit Care, 24(1)(2020), pp. 395-399,
doi.org/10.1186/s13054-020-03125-9
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT)
Working Group. Association Between Administration of Systemic
Corticosteroids and Mortality Among Critically Ill Patients With
COVID-19: A Meta-analysis. JAMA, 324(13)(2020), pp. 1330-1341, doi:
10.1001/jama.2020.17023
- Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is
associated with decreased mortality in severe coronavirus disease 2019
patients with coagulopathy. J Thromb Haemost, 18(5)(2020), pp.
1094-1099, doi: 10.1111/jth.14817
- Longobardo A, Montanari C, Shulman R, Benhalim S, Singer M,
Arulkumaran N. Inhaled nitric oxide minimally improves oxygenation in
COVID-19 related acute respiratory distress syndrome. Br J Anaesth,
126(1)(2021), e44-e46, doi: 10.1016/j.bja.2020.10.011
- Garfield B, McFadyen C, Briar C, Bleakley C, Vlachou A, Baldwin M, et
al. Potential for personalised application of inhaled nitric oxide in
COVID-19 pneumonia. Br J Anaesth, 126(2)(2021), e72-e75, doi:
10.1016/j.bja.2020.11.006
- Yan F, Huang F, Xu J, Yang P, Qin Y, Lv J, et al. Antihypertensive
drugs are associated with reduced fatal outcomes and improved clinical
characteristics in elderly COVID-19 patients. Cell Discov, 6(2020), p.
77, doi: 10.1038/s41421-020-00221-6