References
1. Crimmins EM. Lifespan and Healthspan: Past, Present, and Promise.Gerontologist . Dec 2015;55(6):901-11. doi:10.1093/geront/gnv130
2. Riley JC. Estimates of Regional and Global Life Expectancy,
1800–2001 . vol 31. 2005.
3. Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future
life expectancy in 35 industrialised countries: projections with a
Bayesian model ensemble. Lancet . Apr 1 2017;389(10076):1323-1335.
doi:10.1016/S0140-6736(16)32381-9
4. Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2
diabetes. Diabetologia . Sep 2017;60(9):1586-1593.
doi:10.1007/s00125-017-4336-x
5. Corbett S, Courtiol A, Lummaa V, Moorad J, Stearns S. The transition
to modernity and chronic disease: mismatch and natural selection.Nat Rev Genet . Jul 2018;19(7):419-430.
doi:10.1038/s41576-018-0012-3
6. Bauer UE, Briss PA, Goodman RA, Bowman BA. Prevention of chronic
disease in the 21st century: elimination of the leading preventable
causes of premature death and disability in the USA. Lancet . Jul
5 2014;384(9937):45-52. doi:10.1016/S0140-6736(14)60648-6
7. Samb B, Desai N, Nishtar S, et al. Prevention and management of
chronic disease: a litmus test for health-systems strengthening in
low-income and middle-income countries. Lancet . Nov 20
2010;376(9754):1785-97. doi:10.1016/S0140-6736(10)61353-0
8. Divo MJ, Martinez CH, Mannino DM. Ageing and the epidemiology of
multimorbidity. Eur Respir J . Oct 2014;44(4):1055-68.
doi:10.1183/09031936.00059814
9. Kaeberlein M, Rabinovitch PS, Martin GM. Healthy aging: The ultimate
preventative medicine. Science . Dec 4 2015;350(6265):1191-3.
doi:10.1126/science.aad3267
10. Riera CE, Dillin A. Can aging be ’drugged’? Nat Med . Dec
2015;21(12):1400-5. doi:10.1038/nm.4005
11. Tchkonia T, Kirkland JL. Aging, Cell Senescence, and Chronic
Disease: Emerging Therapeutic Strategies. JAMA . Oct 2
2018;320(13):1319-1320. doi:10.1001/jama.2018.12440
12. Kennedy BK, Pennypacker JK. Drugs that modulate aging: the promising
yet difficult path ahead. Transl Res . May 2014;163(5):456-65.
doi:10.1016/j.trsl.2013.11.007
13. Clinical Trials.gov.https://clinicaltrials.gov/ct2/home
14. de Magalhaes JP, Stevens M, Thornton D. The Business of Anti-Aging
Science. Trends Biotechnol . Nov 2017;35(11):1062-1073.
doi:10.1016/j.tibtech.2017.07.004
15. Zhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye-Knudsen M,
Moskalev A, Aliper A. Artificial intelligence for aging and longevity
research: Recent advances and perspectives. Ageing Res Rev . Nov
22 2018;49:49-66. doi:10.1016/j.arr.2018.11.003
16. Wang A, Huen SC, Luan HH, et al. Opposing Effects of Fasting
Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation.Cell . 2016;166:1512-1525 e12. doi:10.1016/j.cell.2016.07.026
17. Kristan DM. Calorie restriction and susceptibility to intact
pathogens. Age (Dordr) . 2008;30:147-156.
doi:10.1007/s11357-008-9056-1
18. Caloric Restriction Mimetics against Age-Associated Disease:
Targets, Mechanisms, and Therapeutic Potential, (2019).
19. Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging
to chronic disease. Cell . Nov 6 2014;159(4):709-13.
doi:10.1016/j.cell.2014.10.039
20. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study
and the epidemiology of cardiovascular disease: a historical
perspective. Lancet . Mar 15 2014;383(9921):999-1008.
doi:10.1016/S0140-6736(13)61752-3
21. Mortality GBD, Causes of Death C. Global, regional, and national
life expectancy, all-cause mortality, and cause-specific mortality for
249 causes of death, 1980-2015: a systematic analysis for the Global
Burden of Disease Study 2015. Lancet . Oct 8
2016;388(10053):1459-1544. doi:10.1016/S0140-6736(16)31012-1
22. North BJ, Sinclair DA. The intersection between aging and
cardiovascular disease. Circ Res . Apr 13 2012;110(8):1097-108.
doi:10.1161/CIRCRESAHA.111.246876
23. Yazdanyar A, Newman AB. The burden of cardiovascular disease in the
elderly: morbidity, mortality, and costs. Clin Geriatr Med . Nov
2009;25(4):563-77, vii. doi:10.1016/j.cger.2009.07.007
24. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR.
Alzheimer’s disease and senile dementia: loss of neurons in the basal
forebrain. Science . Mar 5 1982;215(4537):1237-9.
25. Alzheimer’s A. 2015 Alzheimer’s disease facts and figures.Alzheimers Dement . Mar 2015;11(3):332-84.
26. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade
hypothesis. Science . Apr 10 1992;256(5054):184-5.
27. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease:
progress and problems on the road to therapeutics. Science . Jul
19 2002;297(5580):353-6. doi:10.1126/science.1072994
28. Palacios N, Gao X, McCullough ML, et al. Obesity, diabetes, and risk
of Parkinson’s disease. Mov Disord . Oct 2011;26(12):2253-9.
doi:10.1002/mds.23855
29. Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J
Neural Transm (Vienna) . Aug 2017;124(8):901-905.
doi:10.1007/s00702-017-1686-y
30. Trinh J, Farrer M. Advances in the genetics of Parkinson disease.Nat Rev Neurol . Aug 2013;9(8):445-54.
doi:10.1038/nrneurol.2013.132
31. Le WD, Xu P, Jankovic J, et al. Mutations in NR4A2 associated with
familial Parkinson disease. Nat Genet . Jan 2003;33(1):85-9.
doi:10.1038/ng1066
32. Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future
prospects. Nat Rev Genet . Apr 2006;7(4):306-18.
doi:10.1038/nrg1831
33. Langenberg C, Lotta LA. Genomic insights into the causes of type 2
diabetes. Lancet . Jun 16 2018;391(10138):2463-2474.
doi:10.1016/s0140-6736(18)31132-2
34. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces
of diabetes: a disease with increasing heterogeneity. Lancet
(London, England) . Mar 22 2014;383(9922):1084-94.
doi:10.1016/s0140-6736(13)62219-9
35. David AR, Zimmerman MR. Cancer: an old disease, a new disease or
something in between? Nat Rev Cancer . Oct 2010;10(10):728-33.
doi:10.1038/nrc2914
36. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation.Cell . Mar 4 2011;144(5):646-74. doi:10.1016/j.cell.2011.02.013
37. Berger NA, Savvides P, Koroukian SM, et al. Cancer in the elderly.Trans Am Clin Climatol Assoc . 2006;117:147-55; discussion 155-6.
38. Templeman NM, Murphy CT. Regulation of reproduction and longevity by
nutrient-sensing pathways. J Cell Biol . Jan 2 2018;217(1):93-106.
doi:10.1083/jcb.201707168
39. Rose M, Charlesworth B. A test of evolutionary theories of
senescence. Nature . Sep 11 1980;287(5778):141-2.
doi:10.1038/287141a0
40. Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and
pathways. Nature . Jan 15 2015;517(7534):302-10.
doi:10.1038/nature14190
41. Hanjani NA, Vafa M. Protein Restriction, Epigenetic Diet,
Intermittent Fasting as New Approaches for Preventing Age-associated
Diseases. Int J Prev Med . 2018;9:58.
doi:10.4103/ijpvm.IJPVM_397_16
42. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and
Disease. Cell . Mar 9 2017;168(6):960-976.
doi:10.1016/j.cell.2017.02.004
43. Paquette M, El-Houjeiri L, Pause A. mTOR Pathways in Cancer and
Autophagy. Cancers (Basel) . Jan 12
2018;10(1)doi:10.3390/cancers10010018
44. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of
ageing and age-related disease. Nature . 2013;493:338-345.
doi:10.1038/nature11861
45. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of
autophagy. FEBS Lett . Apr 2 2010;584(7):1287-95.
doi:10.1016/j.febslet.2010.01.017
46. Wauson EM, Zaganjor E, Lee AY, et al. The G protein-coupled taste
receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol Cell .
2012;47:851-862. doi:10.1016/j.molcel.2012.08.001
47. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard
controlling cell growth. Biochem J . 2008;412:179-190.
doi:10.1042/BJ20080281
48. Khatri S, Yepiskoposyan H, Gallo CA, Tandon P, Plas DR. FOXO3a
regulates glycolysis via transcriptional control of tumor suppressor
TSC1. J Biol Chem . 2010;285:15960-15965.
doi:10.1074/jbc.M110.121871
49. Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an
insulin-regulated inhibitor of the mTORC1 protein kinase. Mol
Cell . 2007;25:903-915. doi:10.1016/j.molcel.2007.03.003
50. AMP-activated protein kinase inhibits NF-κB signaling and
inflammation: Impact on healthspan and lifespan, (2011).
51. Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and
aging. Cell Metab . Jul 1 2014;20(1):10-25.
doi:10.1016/j.cmet.2014.03.002
52. Chen J, Ou Y, Li Y, Hu S, Shao LW, Liu Y. Metformin extends C.
elegans lifespan through lysosomal pathway. eLife . Oct 13
2017;6doi:10.7554/eLife.31268
53. Cameron AR, Morrison VL, Levin D, et al. Anti-Inflammatory Effects
of Metformin Irrespective of Diabetes Status. Circ Res .
2016;119:652-665. doi:10.1161/CIRCRESAHA.116.308445
54. Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid
oxidation by activating AMP-activated protein kinase. Nature .
2002;doi:10.1038/415339a
55. Iwabu M, Yamauchi T, Okada-Iwabu M, et al. Adiponectin and AdipoR1
regulate PGC-1α and mitochondria by Ca 2+ and AMPK/SIRT1. Nature .
2010;doi:10.1038/nature08991
56. Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular
metabolism to attenuate aging. Cell Metab . Dec 3
2013;18(6):792-801. doi:10.1016/j.cmet.2013.08.018
57. Guarente L. Calorie restriction and sirtuins revisited. Genes
Dev . Oct 1 2013;27(19):2072-85. doi:10.1101/gad.227439.113
58. Zullo A, Simone E, Grimaldi M, Musto V, Mancini FP. Sirtuins as
Mediator of the Anti-Ageing Effects of Calorie Restriction in Skeletal
and Cardiac Muscle. Int J Mol Sci . Mar 21
2018;19(4)doi:10.3390/ijms19040928
59. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing
network that controls energy expenditure. Curr Opin Lipidol . Apr
2009;20(2):98-105. doi:10.1097/MOL.0b013e328328d0a4
60. Ruderman NB, Xu XJ, Nelson L, et al. AMPK and SIRT1: a long-standing
partnership? Am J Physiol Endocrinol Metab . Apr
2010;298(4):E751-60. doi:10.1152/ajpendo.00745.2009
61. Hori YS, Kuno A, Hosoda R, Horio Y. Regulation of FOXOs and p53 by
SIRT1 modulators under oxidative stress. PLoS One .
2013;8(9):e73875. doi:10.1371/journal.pone.0073875
62. Imai S, Yoshino J. The importance of NAMPT/NAD/SIRT1 in the systemic
regulation of metabolism and ageing. Diabetes Obes Metab . Sep
2013;15 Suppl 3:26-33. doi:10.1111/dom.12171
63. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and
growth control in tumour suppression. Nat Rev Cancer . Aug
2009;9(8):563-75. doi:10.1038/nrc2676
64. Murphy CT, Hu PJ. Insulin/insulin-like growth factor signaling in C.
elegans. WormBook . Dec 26 2013:1-43. doi:10.1895/wormbook.1.164.1
65. Selman C, Lingard S, Choudhury AI, et al. Evidence for lifespan
extension and delayed age-related biomarkers in insulin receptor
substrate 1 null mice. FASEB J . Mar 2008;22(3):807-18.
doi:10.1096/fj.07-9261com
66. Templeman NM, Murphy CT. Regulation of reproduction and longevity by
nutrient-sensing pathways. J Cell Biol . 2018;217:93-106.
doi:10.1083/jcb.201707168
67. Vitale G, Pellegrino G, Vollery M, Hofland LJ. ROLE of IGF-1 System
in the Modulation of Longevity: Controversies and New Insights From a
Centenarians’ Perspective. Front Endocrinol (Lausanne) .
2019;10:27. doi:10.3389/fendo.2019.00027
68. Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ. The
GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol . Jun
2013;9(6):366-376. doi:10.1038/nrendo.2013.67
69. Thomas I, Gregg B. Metformin; a review of its history and future:
from lilac to longevity. Pediatric diabetes . Feb
2017;18(1):10-16. doi:10.1111/pedi.12473
70. Triggle CR, Ding H. Metformin is not just an antihyperglycaemic drug
but also has protective effects on the vascular endothelium. Acta
physiologica (Oxford, England) . Jan 2017;219(1):138-151.
doi:10.1111/apha.12644
71. DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated
lactic acidosis: Current perspectives on causes and risk.Metabolism . Feb 2016;65(2):20-9.
doi:10.1016/j.metabol.2015.10.014
72. Chae YK, Arya A, Malecek MK, et al. Repurposing metformin for cancer
treatment: current clinical studies. Oncotarget . Jun 28
2016;7(26):40767-40780. doi:10.18632/oncotarget.8194
73. Vitek W, Alur S, Hoeger KM. Off-label drug use in the treatment of
polycystic ovary syndrome. Fertil Steril . Mar 2015;103(3):605-11.
doi:10.1016/j.fertnstert.2015.01.019
74. Check Hayden E. Anti-ageing pill pushed as bona fide drug.Nature . Jun 18 2015;522(7556):265-6. doi:10.1038/522265a
75. Mouchiroud L, Molin L, Dalliere N, Solari F. Life span extension by
resveratrol, rapamycin, and metformin: The promise of dietary
restriction mimetics for an healthy aging. BioFactors (Oxford,
England) . Sep-Oct 2010;36(5):377-82. doi:10.1002/biof.127
76. Xu T, Brandmaier S, Messias AC, et al. Effects of metformin on
metabolite profiles and LDL cholesterol in patients with type 2
diabetes. Diabetes Care . Oct 2015;38(10):1858-67.
doi:10.2337/dc15-0658
77. Adeyemo MA, Mcduffie JR, Kozlosky M, et al. Effects of metformin on
energy intake and satiety in obese children. Diabetes, Obesity and
Metabolism . 2015;doi:10.1111/dom.12426
78. Isoda K, Young JL, Zirlik A, et al. Metformin inhibits
proinflammatory responses and nuclear factor-κB in human vascular wall
cells. Arteriosclerosis, Thrombosis, and Vascular Biology .
2006;doi:10.1161/01.ATV.0000201938.78044.75
79. Akuthota P, Carmo LAS, Bonjour K, et al. Extracellular microvesicle
production by human eosinophils activated by ”inflammatory” stimuli.Frontiers in Cell and Developmental Biology .
2016;doi:10.3389/fcell.2016.00117
80. Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated
kinase by antidiabetes drug metformin stimulates nitric oxide synthesis
in vivo by promoting the association of heat shock protein 90 and
endothelial nitric oxide synthase. Diabetes .
2006;doi:10.2337/diabetes.55.02.06.db05-1064
81. Zou MH, Kirkpatrick SS, Davis BJ, et al. Activation of the
AMP-activated protein kinase by the anti-diabetic drug metformin in
vivo: Role of mitochondrial reactive nitrogen species. Journal of
Biological Chemistry . 2004;doi:10.1074/jbc.M404421200
82. Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA.
Metformin prevents tobacco carcinogen-induced lung tumorigenesis.Cancer Prevention Research .
2010;doi:10.1158/1940-6207.CAPR-10-0055
83. Zhao H, Orhan YC, Zha X, Esencan E, Chatterton RT, Bulun SE.
AMP-activated protein kinase and energy balance in breast cancer.Am J Transl Res . 2017;9(2):197-213.
84. Martin-Montalvo A, Mercken EM, Mitchell SJ, et al. Metformin
improves healthspan and lifespan in mice. Nat Commun .
2013;4:2192. doi:10.1038/ncomms3192
85. Slack C, Foley A, Partridge L. Activation of AMPK by the putative
dietary restriction mimetic metformin is insufficient to extend lifespan
in Drosophila. PLoS One . 2012;7(10):e47699.
doi:10.1371/journal.pone.0047699
86. Wu L, Zhou B, Oshiro-Rapley N, et al. An Ancient, Unified Mechanism
for Metformin Growth Inhibition in C. elegans and Cancer. Cell .
Dec 15 2016;167(7):1705-1718.e13. doi:10.1016/j.cell.2016.11.055
87. Cabreiro F, Au C, Leung KY, et al. Metformin retards aging in C.
elegans by altering microbial folate and methionine metabolism.Cell . Mar 28 2013;153(1):228-39. doi:10.1016/j.cell.2013.02.035
88. Mitsuhashi A, Kiyokawa T, Sato Y, Shozu M. Effects of metformin on
endometrial cancer cell growth in vivo: a preoperative prospective
trial. Cancer . Oct 1 2014;120(19):2986-95. doi:10.1002/cncr.28853
89. Chen HP, Shieh JJ, Chang CC, et al. Metformin decreases
hepatocellular carcinoma risk in a dose-dependent manner:
population-based and in vitro studies. Gut . Apr
2013;62(4):606-15. doi:10.1136/gutjnl-2011-301708
90. Anisimov VN, Zabezhinski MA, Popovich IG, et al. Rapamycin increases
lifespan and inhibits spontaneous tumorigenesis in inbred female mice.Cell Cycle . Dec 15 2011;10(24):4230-6. doi:10.4161/cc.10.24.18486
91. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD.
Metformin and reduced risk of cancer in diabetic patients. Bmj .
Jun 4 2005;330(7503):1304-5. doi:10.1136/bmj.38415.708634.F7
92. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New
users of metformin are at low risk of incident cancer: a cohort study
among people with type 2 diabetes. Diabetes care . Sep
2009;32(9):1620-5. doi:10.2337/dc08-2175
93. Suissa S, Azoulay L. Metformin and the risk of cancer: time-related
biases in observational studies. Diabetes care . Dec
2012;35(12):2665-73. doi:10.2337/dc12-0788
94. Zi F, Zi H, Li Y, He J, Shi Q, Cai Z. Metformin and cancer: An
existing drug for cancer prevention and therapy. Oncol Lett . Jan
2018;15(1):683-690. doi:10.3892/ol.2017.7412
95. Home PD, Kahn SE, Jones NP, Noronha D, Beck-Nielsen H, Viberti G.
Experience of malignancies with oral glucose-lowering drugs in the
randomised controlled ADOPT (A Diabetes Outcome Progression Trial) and
RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes and
Regulation of Glycaemia in Diabetes) clinical trials.Diabetologia . Sep 2010;53(9):1838-45.
doi:10.1007/s00125-010-1804-y
96. Stevens RJ, Ali R, Bankhead CR, et al. Cancer outcomes and all-cause
mortality in adults allocated to metformin: systematic review and
collaborative meta-analysis of randomised clinical trials.Diabetologia . Oct 2012;55(10):2593-2603.
doi:10.1007/s00125-012-2653-7
97. Thakkar B, Aronis KN, Vamvini MT, Shields K, Mantzoros CS. Metformin
and sulfonylureas in relation to cancer risk in type II diabetes
patients: a meta-analysis using primary data of published studies.Metabolism . Jul 2013;62(7):922-34.
doi:10.1016/j.metabol.2013.01.014
98. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a
Tool to Target Aging. Cell Metab . Jun 14 2016;23(6):1060-1065.
doi:10.1016/j.cmet.2016.05.011
99. Kulkarni AS, Brutsaert EF, Anghel V, et al. Metformin regulates
metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous
adipose tissues of older adults. Aging Cell . Apr
2018;17(2)doi:10.1111/acel.12723
100. Eurich DT, Majumdar SR, McAlister FA, Tsuyuki RT, Johnson JA.
Improved clinical outcomes associated with metformin in patients with
diabetes and heart failure. Diabetes Care . Oct
2005;28(10):2345-51.
101. Evans JM, Ogston SA, Emslie-Smith A, Morris AD. Risk of mortality
and adverse cardiovascular outcomes in type 2 diabetes: a comparison of
patients treated with sulfonylureas and metformin. Diabetologia .
May 2006;49(5):930-6. doi:10.1007/s00125-006-0176-9
102. Roumie CL, Hung AM, Greevy RA, et al. Comparative effectiveness of
sulfonylurea and metformin monotherapy on cardiovascular events in type
2 diabetes mellitus: a cohort study. Annals of internal medicine .
Nov 6 2012;157(9):601-10. doi:10.7326/0003-4819-157-9-201211060-00003
103. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year
follow-up of intensive glucose control in type 2 diabetes. N Engl
J Med . Oct 9 2008;359(15):1577-89. doi:10.1056/NEJMoa0806470
104. Hong J, Zhang Y, Lai S, et al. Effects of metformin versus
glipizide on cardiovascular outcomes in patients with type 2 diabetes
and coronary artery disease. Diabetes Care . May
2013;36(5):1304-11. doi:10.2337/dc12-0719
105. Goldberg RB, Aroda VR, Bluemke DA, et al. Effect of Long-Term
Metformin and Lifestyle in the Diabetes Prevention Program and Its
Outcome Study on Coronary Artery Calcium. Circulation . Jul 4
2017;136(1):52-64. doi:10.1161/circulationaha.116.025483
106. Azoulay L, Schneider-Lindner V, Dell’aniello S, Schiffrin A, Suissa
S. Combination therapy with sulfonylureas and metformin and the
prevention of death in type 2 diabetes: a nested case-control study.Pharmacoepidemiology and drug safety . Apr 2010;19(4):335-42.
doi:10.1002/pds.1834
107. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of
myocardial infarction and death from cardiovascular causes. N Engl
J Med . Jun 14 2007;356(24):2457-71. doi:10.1056/NEJMoa072761
108. Korabecny J, Spilovska K, Mezeiova E, et al. A Systematic Review on
Donepezil-based Derivatives as Potential Cholinesterase Inhibitors for
Alzheimer’s Disease. Curr Med Chem . 2019;26(30):5625-5648.
doi:10.2174/0929867325666180517094023
109. Woodruff-Pak DS, Vogel RW, 3rd, Wenk GL. Galantamine: effect on
nicotinic receptor binding, acetylcholinesterase inhibition, and
learning. Proc Natl Acad Sci U S A . 2001;98(4):2089-2094.
doi:10.1073/pnas.031584398
110. Birks J, Grimley Evans J, Iakovidou V, Tsolaki M. Rivastigmine for
Alzheimer’s disease. Cochrane Database of Systematic Reviews .
2009;(2)doi:10.1002/14651858.CD001191.pub2
111. Kishi T, Matsunaga S, Oya K, Nomura I, Ikuta T, Iwata N. Memantine
for Alzheimer’s Disease: An Updated Systematic Review and Meta-analysis.J Alzheimers Dis . 2017;60(2):401-425. doi:10.3233/jad-170424
112. Koenig AM, Mechanic-Hamilton D, Xie SX, et al. Effects of the
Insulin Sensitizer Metformin in Alzheimer Disease: Pilot Data From a
Randomized Placebo-controlled Crossover Study. Alzheimer Dis Assoc
Disord . 31(2):107-113. doi:10.1097/wad.0000000000000202
113. Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other
antidiabetic drugs, and risk of Alzheimer’s disease: a population-based
case-control study. J Am Geriatr Soc . May 2012;60(5):916-21.
doi:10.1111/j.1532-5415.2012.03916.x
114. Chen Y, Zhou K, Wang R, et al. Antidiabetic drug metformin
(GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via
up-regulating BACE1 transcription. Proc Natl Acad Sci USA . Mar 10
2009;106(10):3907-12. doi:10.1073/pnas.0807991106
115. Li J, Deng J, Sheng W, Zuo Z. Metformin attenuates Alzheimer’s
disease-like neuropathology in obese, leptin-resistant mice.Pharmacol Biochem Behav . Jun 2012;101(4):564-74.
doi:10.1016/j.pbb.2012.03.002
116. Djamshidian A, Poewe W. Apomorphine and levodopa in Parkinson’s
disease: Two revolutionary drugs from the 1950’s. Parkinsonism
Relat Disord . 12 2016;33 Suppl 1:S9-s12.
doi:10.1016/j.parkreldis.2016.12.004
117. Mittur A, Gupta S, Modi NB. Pharmacokinetics of Rytary, An
Extended-Release Capsule Formulation of Carbidopa-Levodopa. Clin
Pharmacokinet . 09 2017;56(9):999-1014. doi:10.1007/s40262-017-0511-y
118. Weinreb O, Amit T, Bar-Am O, Youdim MB. Rasagiline: a novel
anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective
activity. Prog Neurobiol . Nov 2010;92(3):330-44.
doi:10.1016/j.pneurobio.2010.06.008
119. Oertel W, Eggert K, Pahwa R, et al. Randomized, placebo-controlled
trial of ADS-5102 (amantadine) extended-release capsules for
levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3).Mov Disord . Dec 2017;32(12):1701-1709. doi:10.1002/mds.27131
120. Mindham RHS, Lamb P, Bradley R. A Comparison of Piribedil,
Procyclidine and Placebo in the Control of Phenothiazine-induced
Parkinsonism. British Journal of Psychiatry . 1977;130(6):581-585.
doi:10.1192/bjp.130.6.581
121. Katila N, Bhurtel S, Shadfar S, et al. Metformin lowers α-synuclein
phosphorylation and upregulates neurotrophic factor in the MPTP mouse
model of Parkinson’s disease. Neuropharmacology . Oct
2017;125:396-407. doi:10.1016/j.neuropharm.2017.08.015
122. Przedborski S, Vila M. MPTP: a review of its mechanisms of
neurotoxicity. Clinical Neuroscience Research . 2001/12/01/
2001;1(6):407-418.
doi:https://doi.org/10.1016/S1566-2772(01)00019-6
123. Fitzgerald JC, Zimprich A, Carvajal Berrio DA, et al. Metformin
reverses TRAP1 mutation-associated alterations in mitochondrial function
in Parkinson’s disease. Brain . Sep 01 2017;140(9):2444-2459.
doi:10.1093/brain/awx202
124. Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin.Annu Rev Immunol . 1996;14:483-510.
doi:10.1146/annurev.immunol.14.1.483
125. Bove J, Martinez-Vicente M, Vila M. Fighting neurodegeneration with
rapamycin: mechanistic insights. Nat Rev Neurosci . Jul 20
2011;12(8):437-52. doi:10.1038/nrn3068
126. Dancey J. mTOR signaling and drug development in cancer. Nat
Rev Clin Oncol . Apr 2010;7(4):209-19. doi:10.1038/nrclinonc.2010.21
127. Knoll GA, Kokolo MB, Mallick R, et al. Effect of sirolimus on
malignancy and survival after kidney transplantation: systematic review
and meta-analysis of individual patient data. BMJ . Nov 24
2014;349:g6679. doi:10.1136/bmj.g6679
128. Moes DJ, Guchelaar HJ, de Fijter JW. Sirolimus and everolimus in
kidney transplantation. Drug Discov Today . Oct
2015;20(10):1243-9. doi:10.1016/j.drudis.2015.05.006
129. Lee KJ, Seto W, Benson L, Chaturvedi RR. Pharmacokinetics of
sirolimus-eluting stents implanted in the neonatal arterial duct.Circ Cardiovasc Interv . May
2015;8(5)doi:10.1161/CIRCINTERVENTIONS.114.002233
130. Lamming DW, Ye L, Sabatini DM, Baur JA. Rapalogs and mTOR
inhibitors as anti-aging therapeutics. J Clin Invest . Mar
2013;123(3):980-9. doi:10.1172/jci64099
131. Bee J, Fuller S, Miller S, Johnson SR. Lung function response and
side effects to rapamycin for lymphangioleiomyomatosis: a prospective
national cohort study. Thorax . Apr 2018;73(4):369-375.
doi:10.1136/thoraxjnl-2017-210872
132. Stallone G, Infante B, Grandaliano G, Gesualdo L. Management of
side effects of sirolimus therapy. Transplantation . Apr 27
2009;87(8 Suppl):S23-6. doi:10.1097/TP.0b013e3181a05b7a
133. Schreiber KH, Ortiz D, Academia EC, Anies AC, Liao CY, Kennedy BK.
Rapamycin-mediated mTORC2 inhibition is determined by the relative
expression of FK506-binding proteins. Aging Cell . Apr
2015;14(2):265-73. doi:10.1111/acel.12313
134. Lee H, Lee Y, Kim J, et al. Modulation of the gut microbiota by
metformin improves metabolic profiles in aged obese mice. Gut
Microbes . Mar 4 2018;9(2):155-165. doi:10.1080/19490976.2017.1405209
135. Gaubitz C, Prouteau M, Kusmider B, Loewith R. TORC2 Structure and
Function. Trends Biochem Sci . Jun 2016;41(6):532-545.
doi:10.1016/j.tibs.2016.04.001
136. Caccamo A, Magrì A, Medina DX, et al. mTOR regulates tau
phosphorylation and degradation: Implications for Alzheimer’s disease
and other tauopathies. Aging Cell . 2013;doi:10.1111/acel.12057
137. Tramutola A, Triplett JC, Di Domenico F, et al. Alteration of mTOR
signaling occurs early in the progression of Alzheimer disease (AD):
Analysis of brain from subjects with pre-clinical AD, amnestic mild
cognitive impairment and late-stage AD. Journal of
Neurochemistry . 2015;doi:10.1111/jnc.13037
138. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular
interplay between mammalian target of rapamycin (mTOR), amyloid-beta,
and Tau: effects on cognitive impairments. J Biol Chem . Apr 23
2010;285(17):13107-20. doi:10.1074/jbc.M110.100420
139. Majumder S, Richardson A, Strong R, Oddo S. Inducing autophagy by
rapamycin before, but not after, the formation of plaques and tangles
ameliorates cognitive deficits. PLoS ONE .
2011;doi:10.1371/journal.pone.0025416
140. Peterson TR, Sengupta SS, Harris TE, et al. MTOR complex 1
regulates lipin 1 localization to control the srebp pathway.Cell . 2011;doi:10.1016/j.cell.2011.06.034
141. Porstmann T, Santos CR, Griffiths B, et al. SREBP Activity Is
Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth.Cell Metabolism . 2008;doi:10.1016/j.cmet.2008.07.007
142. Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de
novo pyrimidine synthesis by growth signaling through mTOR and S6K1.Science . 2013;doi:10.1126/science.1228792
143. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer.Cancer Cell . Jul 2007;12(1):9-22. doi:10.1016/j.ccr.2007.05.008
144. Liu H, Zhang L, Zhang X, Cui Z. PI3K/AKT/mTOR pathway promotes
progestin resistance in endometrial cancer cells by inhibition of
autophagy. Onco Targets Ther . 2017;10:2865-2871.
doi:10.2147/OTT.S95267
145. Nitta N, Nakasu S, Shima A, Nozaki K. mTORC1 signaling in primary
central nervous system lymphoma. Surg Neurol Int . 2016;7(Suppl
17):S475-80. doi:10.4103/2152-7806.185781
146. Bjedov I, Toivonen JM, Kerr F, et al. Mechanisms of life span
extension by rapamycin in the fruit fly Drosophila melanogaster.Cell Metab . Jan 2010;11(1):35-46. doi:10.1016/j.cmet.2009.11.010
147. Kaeberlein M, Powers RW, 3rd, Steffen KK, et al. Regulation of
yeast replicative life span by TOR and Sch9 in response to nutrients.Science . Nov 18 2005;310(5751):1193-6.
doi:10.1126/science.1115535
148. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F.
Genetics: influence of TOR kinase on lifespan in C. elegans.Nature . Dec 11 2003;426(6967):620. doi:10.1038/426620a
149. Aliper A, Jellen L, Cortese F, et al. Towards natural mimetics of
metformin and rapamycin. Aging (Albany NY) . Nov 15
2017;9(11):2245-2268. doi:10.18632/aging.101319
150. Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life
extends lifespan in genetically heterogeneous mice. Nature . Jul
16 2009;460(7253):392-5. doi:10.1038/nature08221
151. Miller RA, Harrison DE, Astle CM, et al. Rapamycin-mediated
lifespan increase in mice is dose and sex dependent and metabolically
distinct from dietary restriction. Aging cell . Jun
2014;13(3):468-77. doi:10.1111/acel.12194
152. Nadon NL, Strong R, Miller RA, Harrison DE. NIA Interventions
Testing Program: Investigating Putative Aging Intervention Agents in a
Genetically Heterogeneous Mouse Model. EBioMedicine . Jul
2017;21:3-4. doi:10.1016/j.ebiom.2016.11.038
153. Interventions Testing Program.https://www.nia.nih.gov/research/dab/interventions-testing-program-itp
154. Mannick JB, Del Giudice G, Lattanzi M, et al. mTOR inhibition
improves immune function in the elderly. Sci Transl Med . Dec 24
2014;6(268):268ra179. doi:10.1126/scitranslmed.3009892
155. Mannick JB, Morris M, Hockey HP, et al. TORC1 inhibition enhances
immune function and reduces infections in the elderly. Sci Transl
Med . Jul 11 2018;10(449)doi:10.1126/scitranslmed.aaq1564
156. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular
interplay between mammalian target of rapamycin (mTOR), amyloid-β, and
Tau: Effects on cognitive impairments. Journal of Biological
Chemistry . 2010;doi:10.1074/jbc.M110.100420
157. Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR by
rapamycin abolishes cognitive deficits and reduces amyloid-beta levels
in a mouse model of Alzheimer’s disease. PLoS One . Apr 1
2010;5(4):e9979. doi:10.1371/journal.pone.0009979
158. Lin AL, Jahrling JB, Zhang W, et al. Rapamycin rescues vascular,
metabolic and learning deficits in apolipoprotein E4 transgenic mice
with pre-symptomatic Alzheimer’s disease. Journal of cerebral
blood flow and metabolism : official journal of the International
Society of Cerebral Blood Flow and Metabolism . Jan 2017;37(1):217-226.
doi:10.1177/0271678x15621575
159. Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits
primary and metastatic tumor growth by antiangiogenesis: involvement of
vascular endothelial growth factor. Nat Med . Feb
2002;8(2):128-35. doi:10.1038/nm0202-128
160. Chiarini F, Evangelisti C, McCubrey JA, Martelli AM. Current
treatment strategies for inhibiting mTOR in cancer. Trends
Pharmacol Sci . Feb 2015;36(2):124-35. doi:10.1016/j.tips.2014.11.004
161. Matter MS, Decaens T, Andersen JB, Thorgeirsson SS. Targeting the
mTOR pathway in hepatocellular carcinoma: current state and future
trends. J Hepatol . Apr 2014;60(4):855-65.
doi:10.1016/j.jhep.2013.11.031
162. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for
phase III failure and novel perspectives on trial design. Clin
Cancer Res . Apr 15 2014;20(8):2072-9. doi:10.1158/1078-0432.CCR-13-0547
163. Meng LH, Zheng XF. Toward rapamycin analog (rapalog)-based
precision cancer therapy. Acta Pharmacol Sin . Oct
2015;36(10):1163-9. doi:10.1038/aps.2015.68
164. Hasnain M, Vieweg WV, Hollett B. Weight gain and glucose
dysregulation with second-generation antipsychotics and antidepressants:
a review for primary care physicians. Postgraduate medicine . Jul
2012;124(4):154-67. doi:10.3810/pgm.2012.07.2577
165. Granville CA, Warfel N, Tsurutani J, et al. Identification of a
highly effective rapamycin schedule that markedly reduces the size,
multiplicity, and phenotypic progression of tobacco carcinogen-induced
murine lung tumors. Clin Cancer Res . Apr 1 2007;13(7):2281-9.
doi:10.1158/1078-0432.ccr-06-2570
166. Coll AP, Chen M, Taskar P, et al. GDF15 mediates the effects of
metformin on body weight and energy balance. Nature . Dec 25
2019;doi:10.1038/s41586-019-1911-y
167. Day EA, Ford RJ, Smith BK, et al. Metformin-induced increases in
GDF15 are important for suppressing appetite and promoting weight loss.Nature Metabolism . 2019/12/01 2019;1(12):1202-1208.
doi:10.1038/s42255-019-0146-4
168. Anisimov VN, Piskunova TS, Popovich IG, et al. Gender differences
in metformin effect on aging, life span and spontaneous tumorigenesis in
129/Sv mice. Aging (Albany NY) . Dec 2010;2(12):945-58.
doi:10.18632/aging.100245
169. Aroda VR, Edelstein SL, Goldberg RB, et al. Long-term Metformin Use
and Vitamin B12 Deficiency in the Diabetes Prevention Program Outcomes
Study. J Clin Endocrinol Metab . Apr 2016;101(4):1754-61.
doi:10.1210/jc.2015-3754
170. Liu Q, Li S, Quan H, Li J. Vitamin B12 status in metformin treated
patients: systematic review. PLoS One . 2014;9(6):e100379.
doi:10.1371/journal.pone.0100379
171. Zhou Y, Guo Y, Ye W, et al. RS11212617 is associated with metformin
treatment response in type 2 diabetes in Shanghai local Chinese
population. Int J Clin Pract . Dec 2014;68(12):1462-6.
doi:10.1111/ijcp.12534
172. Administration USFaD. Rapamune Prescribing Information.https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021083s058,021110s075lbl.pdf
173. Kraig E, Linehan LA, Liang H, et al. A randomized control trial to
establish the feasibility and safety of rapamycin treatment in an older
human cohort: Immunological, physical performance, and cognitive
effects. Exp Gerontol . May 2018;105:53-69.
doi:10.1016/j.exger.2017.12.026
174. Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW.
Intermittent Administration of Rapamycin Extends the Life Span of Female
C57BL/6J Mice. J Gerontol A Biol Sci Med Sci . Jul
2016;71(7):876-81. doi:10.1093/gerona/glw064
175. Aldea M, Craciun L, Tomuleasa C, et al. Repositioning metformin in
cancer: genetics, drug targets, and new ways of delivery. Tumour
Biol . Jun 2014;35(6):5101-10. doi:10.1007/s13277-014-1676-8
176. Martin-Castillo B, Vazquez-Martin A, Oliveras-Ferraros C, Menendez
JA. Metformin and cancer: doses, mechanisms and the dandelion and
hormetic phenomena. Cell Cycle . Mar 15 2010;9(6):1057-64.
doi:10.4161/cc.9.6.10994
177. Farmer RE, Ford D, Forbes HJ, et al. Metformin and cancer in type 2
diabetes: a systematic review and comprehensive bias evaluation.International journal of epidemiology . Apr 1 2017;46(2):728-744.
doi:10.1093/ije/dyw275
178. Valencia WM, Palacio A, Tamariz L, Florez H. Metformin and ageing:
improving ageing outcomes beyond glycaemic control. Diabetologia .
Sep 2017;60(9):1630-1638. doi:10.1007/s00125-017-4349-5