References:
Bado, B. V., Lompo, F., Sedogo, M. P., & Cescas, M. P. (2010). Establishment of the critical limit of soil-available phosphorous for maize production in low acidic ultisols of west Africa. Communications in Soil Science & Plant Analysis, 41 (8), 968-976. doi: 10.1080/00103621003646055
Banger, K., Toor, G. S., Biswas, A., Sidhu, S. S., & Sudhir, K. (2010). Soil organic carbon fractions after 16-years of applications of fertilizers and organic manure in a Typic Rhodalfs in semi-arid tropics. Nutrient Cycling in Agroecosystems, 86 (3), 391-399. doi: 10.1007/s10705-009-9301-8
Bethlenfalvay, G. J., & Barea, J. M. (1994). Mycorrhizae in sustainable agriculture. I. Effects on seed yield and soil aggregation. American Journal of Alternative Agriculture, 9 (04), 157-161. doi: 10.1017/S0889189300005919
Blair, G. J., Lefroy, R., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems.Australian Journal of Agricultural Research, 46 (7), 393-406. doi: 10.1071/AR9951459
Bronick, C. J., & Lal, R. (2005). Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA. Soil and Tillage Research, 81 , 239-252. doi: 10.1016/j.still.2004.09.011
Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124 (1-2), 3-22. doi: 10.1016/j.geoderma.2004.03.005
Carter, M. R., Kunelius, H. T., & Angers, D. A. (1994). Soil structural form and stability, and organic matter under cool-season perennial grasses. Soil Science Society of America Journal, 58 (4), 1194-1199. doi: 10.2136/sssaj1994.03615995005800040027x
Chenu, C., Le Bissonnais, Y., & Arrouays, D. (2000). Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal, 64 (4), 1479. doi: 10.2136/sssaj2000.6441479x
Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., . . . Dou, Z. (2018). Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555 (7696), 363-366. doi: 10.1038/nature25785
Elliott, E. T. (1986). Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 50 (3), 627-633. doi: 10.2136/sssaj1986.03615995005000030017x
Gong, W., Yan, X., & Wang, J. (2012). The effect of chemical fertilizer on soil organic carbon renewal and CO2 emission—a pot experiment with maize.Plant & Soil, 353 (1-2), 85-94. doi: 10.1007/s11104-011-1011-8
Graf, F., & Frei, M. (2013). Soil aggregation and slope stability related to soil density, root length, and mycorrhiza. Egu General Assembly Conference EGU General Assembly Conference Abstracts
Hernandez-Soriano, M. C., Kerré, B., Kopittke, P. M., Horemans, B., & Smolders, E. (2016). Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study. Scientific Reports, 6 , 25127. doi: 10.1038/srep25127
Hu, J., Cui, X., Dai, J., Wang, J., & Lin, X. (2014). Interactive effects of Arbuscular Mycorrhizaeand maize (Zea mays L.) straws on wheat (Triticum aestivumL.) growth and organic carbon storage in a sandy loam soil. Soil & Water Research, 9 (3), 119-126. doi: 10.17221/77/2013-SWR
Huang, R., Lan, M., Liu, J., & Gao, M. (2017). Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning.Environmental Science & Pollution Research, 24 (36), 1-11. doi: 10.1007/s11356-017-0372-9
Huang, X., Jia, Z., Guo, J., Li, T., Sun, D., Meng, H., . . . Shen, Q. (2019). Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Cambisol. Geoderma, 355 , 113880. doi: 10.1016/j.geoderma.2019.113880
Jones, D. L., & Willett, V. B. (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38 (5), 991-999. doi: 10.1016/j.soilbio.2005.08.012
Kumar, U., Shahid, M., Tripathi, R., Mohanty, S., & Nayak, A. K. (2017). Variation of functional diversity of soil microbial community insub-humid tropical rice-rice cropping system under long-termorganic and inorganic fertilization.Ecological Indicators, 1 (73), 536-543. doi: 10.1016/j.ecolind.2016.10.014
Lal, R. (2009). Sequestering carbon in soils of arid ecosystems. Land Degradation & Development, 20 (4), 441-454. doi: 10.1002/ldr.934
Li, R., Tao, R., Ling, N., & Chu, G. (2017). Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil & Tillage Research, 167 , 30-38. doi: 10.1016/j.still.2016.11.001
Liang, B. C., Mackenzie, A. F., Schnitzer, M., Monreal, C. M., Voroney, P. R., & Beyaert, R. P. (1997). Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biology & Fertility of Soils, 26 (2), 88-94. doi: 10.1007/s003740050348
Liang, L. Z., Zhao, X. Q., Yi, X. Y., Chen, Z. C., Dong, X. Y., Chen, R. F., & Shen, R. F. (2013). Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Yangtze River Delta, China. Soil Use & Management, 29 (2), 161-168. doi: 10.1111/sum.12035
Liu, S., Razavi, B. S., Su, X., Maharjan, M., Zarebanadkouki, M., Blagodatskaya, E., & Kuzyakov, Y. (2017). Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms. Soil Biology and Biochemistry, 112 , 100-109. doi: 10.1016/j.soilbio.2017.05.006
Ramesh, T., Bolan, N. S., Kirkham, M. B., Wijesekara, H., Kanchikerimath, M., Srinivasa Rao, C., . . . Freeman Ii, O. W. (2019). Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy,156, 1-107. doi: 10.1016/bs.agron.2019.02.001
Singh, S., Tripathi, A., Maji, D., Awasthi, A., Vajpayee, P., & Kalra, A. (2019). Evaluating the potential of combined inoculation of Trichoderma harzianum andBrevibacterium halotolerans for increased growth and oil yield in Mentha arvensis under greenhouse and field conditions. Industrial Crops and Products, 131 , 173-181. doi: 10.1016/j.indcrop.2019.01.039
Su, Y. Z., Wang, F., Suo, D. R., Zhang, Z. H., & Du, M. W. (2006). Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China.Nutrient Cycling in Agroecosystems, 75 (1-3), 285-295. doi: 10.1007/s10705-006-9034-x
Sui, Y. Y., Jiao, X. G., Liu, X. B., Zhang, X. Y., & Ding, G. W. (2012). Water-stable aggregates and their organic carbon distribution after five years of chemical fertilizer and manure treatments on eroded farmland of Chinese Mollisols.Canadian Journal of Soil Science, 92 (3), 551-557. doi: 10.4141/cjss2010-005
Tang, H., Xiao, X., Li, C., Wang, K., & Pan, X. (2018). Impact of long-term fertilization practices on the soil aggregation and humic substances under double-cropped rice fields.Environmental Science & Pollution Research, 25 (4), 11034-11044. doi: 10.1007/s11356-018-1365-z
TIisdall, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils.Journal of Soil Science, 32 , 141-163. doi: 10.1111/j.1365-2389.1982.tb01755.x
Tripathi, R., Nayak, A. K., Bhattacharyya, P., Shukla, A. K., & K., T. V. (2014). Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long-term fertilizer experiment in tropical rice-rice system.Geoderma, 213 , 280-286. doi: 10.1016/j.geoderma.2013.08.031
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant & Soil, 255 (2), 571-586. doi: 10.1023/a:1026037216893
Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R., & Brookes, P. C. (1990). Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biology & Biochemistry, 22 (8), 1167-1169. doi: 10.1016/0038-0717(90)90046-3
Wu, L., Chen, J., Wu, H., Qin, X., Wang, J., Wu, Y., . . . Luo, X. (2016). Insights into the regulation of rhizosphere bacterial communities by application of bio-organic fertilizer in Pseudostellaria heterophylla monoculture regime.Frontiers in Microbiology, 7 , 1788. doi: 10.3389/fmicb.2016.01788
Yilmaz, E., & Sönmez, M. (2017). The role of organic/bio–fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil & Tillage Research, 168 , 118-124. doi: 10.1016/j.still.2017.01.003
Zhang, F., Xu, X., Wang, G., Wu, B., & Xiao, Y. (2020). Medicago sativa and soil microbiome responses toTrichoderma as a biofertilizer in alkaline-saline soils.Applied Soil Ecology, 153 , 103573. doi: 10.1016/j.apsoil.2020.103573
Zhang, H., Ding, W., Yu, H., & He, X. (2015). Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment. Biology & Fertility of Soils, 51 (2), 137-150. doi: 10.1007/s00374-014-0957-0
Zhang, H., Liu, Z., Chen, H., & Tang, M. (2016). Symbiosis of Arbuscular Mycorrhizal fungi andRobinia pseudoacacia L. improves root tensile strength and soil aggregate stability. Plos One, 11 (4), e0153378. doi: 10.1371/journal.pone.0153378
Zhang, P., Wei, T., Jia, Z., Han, Q., Ren, X., & Li, Y. (2014). Effects of straw incorporation on soil organic matter and soil water-stable aggregates content in semiarid regions of northwest China. Plos One, 9 (3), e92839. doi: 10.1371/journal.pone.0092839
Zhang, S., Huang, S., Li, J., Guo, D., Lin, S., & Lu, G. (2017). Long-term manure amendments and chemical fertilizers enhanced soil organic carbon sequestration in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system. Journal of the Science of Food & Agriculture, 97 , págs. 2575-2581. doi: 10.1002/jsfa.807