References
Amano H, Ito Y, Suzuki T, Kato S, Matsui Y, Ogawa F, et al. (2008).
Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix
metalloproteinase-9 and vascular endothelial growth factor during
enhancement of tumor metastasis. Cancer Science 100(12): 2318–2324.
Andreuzzi E, Colladel R, Pellicani R, Tarticchio G, Cannizzaro R,
Spessotto P, et al. (2017). The angiostatic molecule Multimerin 2 is
processed by MMP-9 to allow sprouting angiogenesis. Matrix Biology 64:
40-53.
Asada M, Shinomiya M, Suzuki M, Honda E, Sugimoto R, Ikekita M, et al.
(2009). Glycosaminoglycan affinity of the complete fibroblast growth
factor family. Biochimica et Biophysica Acta 1709(1): 40-48.
Ausprunk DH, Folkman J (1977). Migration and proliferation of
endothelial cells in preformed and newly formed blood vessels during
tumor angiogenesis. Microvascular research 14: 53-65.
Azzi S, Hebda JK, Gavard J (2013). Vascular permeability and drug
delivery in cancers. Frontiers in oncology 3: 211.
Baluk P, Hashizume H, McDonald DM (2005). Cellular abnormalities of
blood vessels as targets in cancer. Current Opinion in Genetics &
Development 15: 102-11.
Bambace NM 1, Holmes CE (2011). The platelet contribution to cancer
progression. Journal of Thrombosis and Haemostasis 9: 237-249.
Basudhar D, Glynn SA, Greer M, Somasundaram V, No JH, Scheiblin DA, et
al. (2017). Coexpression of NOS2 and COX2 accelerates tumor growth and
reduces survival in estrogen receptor-negative breast cancer.
Proceedings of the National Academy of Sciences of the United States of
America114(49).
Battinelli EM, Markens BA, Italiano JE Jr (2011). Release of
angiogenesis regulatory proteins from platelet alpha granules:
modulation of physiologic and pathologic angiogenesis. Blood 118(5):
1359-1369.
Bazzoni G, Dejana E (2004). Endothelial cell-to-cell junctions:
molecular organization and role in vascular homeostasis. Physiological
reviews 84: 869-901.
Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. (2000).
Matrix metalloproteinase-9 triggers the angiogenic switch during
carcinogenesis. Nature Cell Biology 2 (10): 737-744.
Bergers G, Song S (2005). The role of pericytes in blood-vessel
formation and maintenance. Neuro-Oncology 7: 452-464.
Beutler B, Cerami A (1986). Cachectin and tumour necrosis factor as two
sides of the same biological coin. Nature 320(17): 584-588.
Bielenberg DR, Zetter BR (2015). The Contribution of angiogenesis to the
process of metastasis. Cancer journal (Sudbury, Mass.) 21: 267-273.
Boonmasawai S, Akarasereenont P, Techatraisak K, Thaworn A,
Chotewuttakorn S, Palo T (2009). Effects of selective COX-inhibitors and
classical NSAIDs on endothelial cell proliferation and migration induced
by human cholangiocarcinoma cell culture. J Med Assoc Thai 92 (11):
1508-1515.
Borthwick GM, Johnson AS, Partington M, Burn J, Wilson R, Arthur HM
(2009). Therapeutic levels of aspirin and salicylate directly inhibit a
model of angiogenesis through a Cox-independent mechanism. The FASEB
Journal 20(12): 2009-16.
Cao Y, Nishihara R, Wu K, Wang M, Ogino S, Willett WC, et al. (2016).
Population-wide impact of long-term use of aspirin and the risk for
cancer. JAMA Oncology 2(6): 762-9.
Carmeliet P, Jain PK (2011). Principles and mechanisms of vessel
normalization for cancer and other angiogenic diseases. Nature Reviews
Drug Discovery 10(6): 417-27.
Carmeliet P, Jain RK (2011). Principles and mechanisms of vessel
normalization for cancer and other angiogenic diseases. Nature Reviews
Drug Discovery10(6): 417-427.
Cezar-de-Mello PF, Nascimento-Silva V, Villela CG, Fierro IM. (2006).
Aspirin-triggered Lipoxin A4 inhibition of VEGF-induced endothelial cell
migration involves actin polymerization and focal adhesion assembly.
Oncogene 25(1): 122-129.
Cezar-de-Mello PF, Vieira AM, Nascimento-Silva V, Villela CG,
Barja-Fidalgo C, Fierro IM (2008). ATL-1, an analogue of
aspirin-triggered lipoxin A 4, is a potent inhibitor of several steps in
angiogenesis induced by vascular endothelial growth factor. British
Journal of Pharmacology 153(5): 956-965.
Chen D, Tang J, Wan Q, Zhang J, Wang K, Shen Y, et al. (2017).
E-prostanoid 3 receptor mediates sprouting angiogenesis through
suppression of the protein kinase A/β-catenin/notch pathway.
Arteriosclerosis, Thrombosis, and Vascular Biology 37: 856-866.
Christian S, Ahorn H, Novatchkova M, Garin-Chesa P, Park JE, Weber G, et
al. (2001). Molecular cloning and characterization of EndoGlyx-1, an
EMILIN-like multisubunit glycoprotein of vascular endothelium. The
Journal of biological chemistry 276(51): 48588-48595.
Clària J, Serhan CN (1995). Aspirin triggers previously undescribed
bioactive eicosanoids by human endothelial cell-leukocyte interactions.
Proceedings of the National Academy of Sciences of the United States of
America 92: 9475-9479.
Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL
(2009). The pro-inflammatory peptide LL-37 promotes ovarian tumor
progression through recruitment of multipotent mesenchymal stromal
cells. Proceedings of the National Academy of Sciences of the United
States of America 106(10): 3806-3811.
Cross MJ, Claesson-Welsh L (2013). FGF and VEGF function in
angiogenesis: signalling pathways,biological responses and therapeutic
inhibition. RENDS in Pharmacological Sciences 22(4): 201-207.
Cryer B, Bhatt DL, Lanza FL, Dong JF, Lichtenberger LM, Marathi UK, et
al. (2011). Low-dose aspirin-induced ulceration is attenuated by
aspirin-phosphatidylcholine: a randomized clinical trial. Am J
Gastroenterol 106(2): 272-277.
Dai X, Yan J, Fu X, Pan Q, Sun D, Xu Y, et al. (2017). Aspirin inhibits
cancer metastasis and angiogenesis via targeting heparanase. Clinical
Cancer Research 23(20): 6267-6278.
Desborough MJR, Keeling DM (2017). The aspirin story-from willow to
wonder drug. British Journal of Haematology 5: 674-683.
Diasio RB, Harris BE (1989). Clinical Pharmacology of 5-Fluorouracil.
Clinical Pharmacokinetics 16(4): 215-237.
Eilken HM, Adams RH (2010). Dynamics of endothelial cell behavior in
sprouting angiogenesis. Current Opinion in Cell Biology 22: 617-625.
Elamin YY, Rafee S, Osman N, O Byrne KJ, Gately K (2016). Thymidine
Phosphorylase in Cancer; Enemy or Friend? Cancer Microenviron 9( 1):
33-43.
Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, et al. (1985).
Primary structure of bovine pituitary basic fibroblast growth factor
(FGF) and comparison with the amino-terminal sequence of bovine brain
acidic FGF. Proceedings of the National Academy of Sciences of the
United States of America 82(19): 6507-11.
Etulain J, Fondevila C, Negrotto S, Schattner M (2013).
Platelet-mediated angiogenesis is independent of VEGF and fully
inhibited by aspirin. British journal of pharmacology 2: 255-265.
Fernández IS, Cuevas P, Angulo J, López-Navajas P, Canales-Mayordomo A,
González-Corrochano R, et al. (2010). Gentisic acid, a compound
associated with plant defense and a metabolite of aspirin, heads a new
class of in vivo fibroblast growth factor inhibitors. The journal of
biological chemistry 285(15): 11714-29.
Fierro IM, Kutok JL, Serhan CN (2002). Novel lipid mediator regulators
of endothelial cell proliferation and migration:
aspirin-triggered-15R-lipoxin A(4) and lipoxin A(4). The Journal of
pharmacology and experimental therapeutics 300(2): 385-392.
Finetti F, Solito R, Morbidelli L, Giachetti A, Ziche M, Donnini S
(2008). Prostaglandin E2 regulates angiogenesis via activation of
fibroblast growth factor receptor-1. The Journal of biological chemistry
283(4): 2139–2146.
Finnis C, Dodsworth N, Pollitt CE, Carr G, Sleep D (1993). Thymidine
phosphorylase activity of platelet-derived endothelial cell growth
factor is responsible for endothelial cell mitogenicity. European
journal of biochemistry 212: 201-210.
Folkman J (1971). Tumor angiogenesis: therapeutic implications. The New
England Journal of Medicine 285(21): 1182-1186.
Fox SB, Moghaddam A, Westwood M, Turley H, Bicknell R, Gatter KC, et al.
(1995). Platelet-derived endothelial cell growth factor/thymidine
phosphorylase expression in normal tissues: an immunohistochemical
study. The Journal of pathology 176(2): 183-190.
Ghezzo F, Cesano L, Mognetti B, Pesce E, Pirro E, Corvetti G, et al.
(2005). Salicylate inhibition of rat mammary carcinogenesis and
angiogenesis in female rat compatible with misoprostol administration.
International journal of oncology 26(3): 697-702.
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, et al. (2011).
Normalization of the vasculature for treatment of cancer and other
diseases. Physiological reviews 91: 1071-1121.
Gordon S, Martinez FO (2010). Alternative activation of macrophages:
mechanism and functions. Immunity 32(5):593-604.
Goveia J, Stapor P, Carmeliet P (2014). Principles of targeting
endothelial cell metabolism to treat angiogenesis and endothelial cell
dysfunction in disease. EMBO molecular medicine 9: 1105-1120.
Griffioen AW, Molema G (2000). Angiogenesis: potentials for
pharmacologic intervention in the treatment of cancer, cardiovascular
diseases, and chronic inflammation. Pharmacological reviews 52:
237–268.
Grootveld M, Halliwell B (1988). 2,3-Dihydroxybenzoic acid is a product
of human aspirin metabolism. Biochemical pharmacology 37(2): 271-80.
Haussen J, Koczulla R, Shaykhiev R, Herr C, Pinkenburg O, Reimer D, et
al. (2008). The host defence peptide LL-37/hCAP-18 is a growth factor
for lung cancer cells. Lung Cancer 59: 12-23.
Heffelfinger SC (2007). The Renin angiotensin system in the regulation
of angiogenesis. Current Pharmaceutical Design 13: 1215-1229.
Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ (1998). Matrix
metalloproteinases regulate neovascularization by acting as pericellular
fibrinolysins. Cell 95: 365-377.
Holmes CE, Jasielec J, Levis JE, Skelly J, Muss HB (2013). Initiation of
aspirin therapy modulates angiogenic protein levels in women with breast
cancer receiving tamoxifen therapy. Clinical and translational science
6(5): 386-390.
Hsieh CC, Wang CH (2018). Aspirin disrupts the crosstalk of angiogenic
and inflammatory cytokines between 4T1 breast cancer cells and
macrophages. Mediators of Inflammation 2018: 638-643.
Hu C, Dandapat A, Mehta JL (2007). Angiotensin II induces capillary
formation from endothelial cells via the LOX-1–dependent
redox-sensitive pathway. Hypertension 50: 952-957.
Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL, et al. (2008).
Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies
based on forced overexpression of TGFbeta1 in wild-type and lox-1
knock-out mouse cardiac fibroblasts. The Journal of biological chemistry
283(16):10226-10231.
Hu Y, Lou X, Wang R, Sun C, Liu X, Liu S, et al. (2014). Aspirin, a
potential GLUT1 inhibitor in a vascular endothelial cell line. Open
Medicine 14(1): 552-560.
Hua H, Zhang H, Kong Q, Wang J, Jiang Y (2019). Complex roles of the old
drug aspirin in cancer chemoprevention and therapy. Medicinal research
reviews 39(1): 114-145.
Huang Y, Lichtenberger LM, Taylor M, Bottsford-Miller JN, Haemmerle M,
Wagner MJ, et al. (2016). Antitumor and Antiangiogenic Effects of
Aspirin-PC in Ovarian Cancer. Molecular cancer therapeutics 15:
2894-2904.
Jain RK (1998). Delivery of molecular and cellular medicine to solid
tumors. Journal of Controlled Release 53: 49–67.
Jones MK, Wang H, Peskar BM, Levin E, Itani RM, Sarfeh IJ, et al (1999).
Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs:
Insight into mechanisms and implications for cancer growth and ulcer
healing. Nature Medicine 5(12): 1418-1423.
Kapoor C, Vaidya S, Wadhwan V, Hitesh, Kaur G, Pathak A (2016). Seesaw
of matrix metallo proteinases (MMPs). Journal of Cancer Research and
Therapeutics 12(1): 28-35.
Khaidakov M, Mitra S, Mehta JL (2012). Adherence junction proteins in
angiogenesis: modulation by aspirin and salicylic acid. Journal of
Cardiovascular Medicine 13(3): 188-192.
Khaidakov M, Szwedo J, Mitra S, Ayyadevara S, Dobretsov M, Lu J, et al.
(2010). Antiangiogenic and antimitotic effects of aspirin in
hypoxia–reoxygenation modulation of the LOX-1-NADPH oxidase axis as a
potential mechanism. Journal of cardiovascular pharmacology 56:635-641.
Khaidakov M, Szwedo J, Mitra S, Mehta JL (2011). Angiostatic effects of
aspirin in hypoxia? Reoxygenation are linked to modulation of TGFb1
signaling. journal of cardiovascular pharmacology and therapeutics
16(1): 105-110.
Khokha R, Waterhouse P (1994). The role of tissue inhibitor of
metalloproteinase-1 in specific aspects of cancer progression and
reproduction. Journal of Neuro-Oncology 18(2): 123-127.
Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995). Human
CAP18: a novel antimicrobial lipopolysaccharide-binding protein.
Infection and immunity 63(4): 1291-7.
Lavie CJ, Howden CW, Scheiman J, Tursi J (2017). Upper gastrointestinal
toxicity associated with long-term aspirin therapy: consequences and
prevention. Curr Probl Cardio l42(5): 146-164.
Lawson ND, Weinstein BM (2002). In Vivo Imaging of Embryonic Vascular
Development Using Transgenic Zebrafish. Developmental Biology 248(2):
307-318.
Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N
(1987). Macrophage-induced angiogenesis is mediated by tumour necrosis
factor-alpha. Nature 329(15): 630-632.
Li JP , Vlodavsky I (2009). Heparin, heparan sulfate and heparanase in
inflammatory reactions. Thromb Haemost 102: 823-8.
Li WW, Li VW, Hutnik M, Chiou AS (2012). Tumor angiogenesis as a target
for dietary cancer prevention. Journal of oncology 2012:879623.
LiekensS, De Clercq E, Neyts J (2001). Angiogenesis: regulators and
clinical applications. Biochemical Pharmacology 61: 253-270.
Liu Z, Kobayashi K, van Dinther M, van Heiningen SH, Valdimarsdottir G,
van Laar T, et al. (2009). VEGF and inhibitors of TGFbeta type-I
receptor kinase synergistically promote blood-vessel formation by
inducing alpha5-integrin expression. Journal of Cell Science 122:
3294-3302.
Ma J, Waxman DJ (2008). Combination of antiangiogenesis with
chemotherapy for more effective cancer treatment. Mol Cancer Ther 7:
3670-3684.
Maity G, Chakraborty J, Ghosh A, Haque I, Banerjee S, Banerjee SK
(2019). Aspirin suppresses tumor cell-induced angiogenesis and their
incongruity. Journal of Cell Communication and Signaling volume 13:
491-502.
Meade EA, Smith WL, DeWitt DL (1993). Differential inhibition of
prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin
and other non-steroidal anti-inflammatory drug. The Journal of
biological chemistry 268(9): 6610-6614
Méric JB, Rottey S, Olaussen K, Soria JC, Khayat D, Rixe O, et al.
(2006). Cyclooxygenase-2 as a target for anticancer drug development.
Critical Reviews in Oncology/Hematology 59(1): 51-64.
Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR (1993).
Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of
constitutive and inducible cyclooxygenase. Proceeding of the National
Academy of Sciences of the United States of America 90(24):11693-7.
Mitra S, Wang X, Khaidakov M, Ding Z, Ayyadevera S, Hearnsberger E, et
al. (2012). Aspirin downregulates angiotensin type 1 receptor
transcription implications in capillary formation from endothelial
cells. Journal of cardiovascular pharmacology 60(2): 187-192.
Miyadera K, Sumizawa T, Haraguchi M, Yoshida H, Konstanty W, Yamada Y,
et al. (1995). Role of thymidine phosphorylase activity in the
angiogenic effect of platelet derived endothelial cell growth
factor/thymidine phosphorylase. Cancer research 55: 1687-1690.
Navone SE, Guarnaccia L, Cordiglieri C, Crisà FM, Caroli M, Locatelli M,
et al. (2018). Aspirin affects tumor angiogenesis and sensitizes human
glioblastoma endothelial cells to temozolomide, bevacizumab, and
sunitinib, impairing vascular endothelial growth factor-related
signaling. World Neurosurgery 120: 380-391.
Ott I, Kircher B, Bagowski CP, Vlecken DH, Ott EB, Will J, et al.
(2009). Modulation of the Biological Properties of Aspirin by Formation
of a Bioorganometallic Derivative. Angew. Chem. Int. Ed 48(6):1160-1163.
Ouyang N, Williams JL, Rigas B (2008). NO-donating aspirin inhibits
angiogenesis by suppressing VEGF expression in HT-29human colon cancer
mouse xenografts. Carcinogenesis 29 (9): 1794-1798.
Patan S (2000). Vasculogenesis and angiogenesis as mechanisms of
vascular network formation, growth and remodeling. Journal of
Neuro-Oncology 50 (1-2): 1-15.
Patzelt J, Langer HF (2012). Platelets in Angiogenesis. Current Vascular
Pharmacology 10:570-577.
Pavón-Romero GF, Ramírez-Jiménez F, Roldán-Alvarez MA, Terán
LM,Falfán-Valencia R (2017). Physiopathology and genetics in
aspirin-exacerbated respiratory disease. Experimental lung research
43(8): 327-335.
Peach MJ (1977). Renin-angiotensin system: biochemistry and mechanisms
of action. Physiological reviews 57(2): 313-370.
Pearce HR, Kalia N, Bardhan KD, Brown NJ (2003). Effects of aspirin and
indomethacin on endothelial cell proliferation in vitro. Journal of
Gastroenterology and Hepatology 18(10): 1180-7.
Pipili-Synetos E, Papadimitriou E, Maragoudakis ME (1998). Evidence that
platelets promote tube formation by endothelial cells on matrigel.
British Journal of Phar macology 125: 1252-1257.
Puyraimond A, Weitzman JB, Babiole E, Menashi S (1999). Examining the
relationship between the gelatinolytic balance and the invasive capacity
of endothelial cells. Journal of Cell Science 112: 1283-1290
Radziwon-Balicka A, Moncada de la Rosa C, Jurasz P (2012).
Platelet-associated angiogenesis regulating factors: a pharmacological
perspective. Can. J. Physiol. Pharmacol 90(6):679–688.
Rauzi F, Kirkby NS, Edin ML, Whiteford J, Zeldin DC, Mitchell JA, et al.
(2016). Aspirin inhibits the production of proangiogenic 15(S)-HETE by
platelet cyclooxygenase-1. The FASEB Journal 30(12):4256-4266.
Ribeiro AL, Okamoto OK (2015). Combined effects of pericytes in the
tumor microenvironment. Stem cells international 2015: 868475.
Rigas B (2007). The use of nitric oxide-donating nonsteroidal
anti-inflammatory drugs in the chemoprevention of colorectal neoplasia.
Current opinion in gastroenterology 23(1): 55-59
Rivera LB, Bergers G (2014). Targeting vascular sprouts: Manipulating
metabolism could control angiogenesis. Science 344(6191): 1449-1450.
Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J, et
al (2000). Vascular endothelial growth factor (VEGF)-driven actin-based
motility is mediated by VEGFR2 and requires concerted activation of
stress-activated protein kinase 2(SAPK2/p38) and geldanamycin-sensitive
phosphorylation of focal adhesion kinase. The Journal of biological
chemistry 275(14): 10661-10672.
Rumble RH, Roberts MS, Wanwimolruk S (1981). Determination of aspirin
and its major metabolites in plasma by high-performance liquid
chromatography without solvent extraction. JonmaI of Chromatogmphy 225:
252-260.
Salcedo R, Zhang X, Young HA, Michael N, Wasserman K, Ma WH, et al.
(2003). Angiogenic effects of prostaglandin E2 are mediated by
up-regulation of CXCR4 on human microvascular endothelial cells. Blood
102(6): 1966-77.
Salvado MD, Di Gennaro A, Lindbom L, Agerberth B, Haeggström JZ (2013).
Cathelicidin LL-37 induces angiogenesis via PGE2–EP3 signaling in
endothelial cells, in vivo inhibition by aspirin. Arteriosclerosis,
Thrombosis, and Vascular Biology 33(8): 1965-1972.
Saunders MA, Sansores-Garcia L, Gilroy DW, Wu KK (2001). Selective
suppression of CCAAT/enhancer-binding protein beta binding and
cyclooxygenase-2 promoter activity by sodium salicylate in quiescent
human fibroblasts. The Journal of biological chemistry 276:18897-18904.
Seeger FH, Sedding D, Langheinrich AC, Haendeler J, Zeiher AM, Dimmeler
S (2010). Inhibition of the p38 MAP kinase in vivo improves number and
functional activity of vasculogenic cells and reduces atherosclerotic
disease progression. Basic Res Cardiol 105: 389–397.
Semaan A, Munkarah AR, Arabi H, Bandyopadhyay S, Seward S, Kumar S, et
al. (2011). Expression of GLUT-1 in epithelial ovarian carcinoma:
Correlation with tumor cell proliferation, angiogenesis, survival and
ability to predict optimal cytoreduction. Gynecologic Oncology 121(1):
181-186.
Shi C, Zhang N, Feng Y, Cao J, Chen X, Liu B (2017). Aspirin inhibits
IKK-β-mediated prostate cancer cell invasion by targeting matrix
metalloproteinase-9 and urokinase-type plasminogen activator. Cell
Physiol Biochem 41: 1313-1324.
Shtivelband MI, Juneja HS, Lee S, Wu KK (2003). Aspirin and salicylate
inhibit colon cancer medium-and VEGF-induced endothelial tube formation:
correlation with suppression of cyclooxygenase-2 expression. Journal of
Thrombosis and Haemostasis 1(10):2225-2233.
Skultetyova D, Filipova S, Riecansky I, Skultety J (2007). The Role of
angiotensin type 1 receptor in inflammation and endothelial dysfunction.
Recent Patents on Cardiovascular Drug Discovery 2(1): 23-27.
Solinas G, Germano G, Mantovani A, Allavena P (2009). Tumor-associated
macrophages (TAM) as major players of the cancer-related inflammation.
Journal of Leukocyte Biology 86: 1065-1073.
Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, et al.
(2014). The role of macrophage phenotype in vascularization of tissue
engineering scaffolds. Biomaterials 35(15): 4477-4488.
Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, et al.
(2015). Sequential delivery of immunomodulatory cytokines to facilitate
the M1-to-M2 transition of macrophages and enhance vascularization of
bone scaffolds. Biomaterials 37:194-207.
Su BB, Chen JH, Shi H, Chen QQ, Wan J, et al. (2014). Aspirin may modify
tumor microenvironment via antiplatelet effect. Medical Hypotheses 83:
148-150.
Takebayashi Y, Akiyama S, Akiba S, Yamada K, Miyadera K, Sumizawa T, et
al. (1996). Clinicopathologic and prognostic significance of an
angiogenic factor, thymidine phosphorylase, in human colorectal
carcinoma. Journal of the National Cancer Institute 88(16): 1110-1117.
Talmadge JE, Fidler IJ(2010). AACR centennial series: the biology of
cancer metastasis: historical perspective. Cancer research 70(14):
5649-5669.
Thomas KA, Rios-Candelore M, Giménez-Gallego G, DiSalvo J, Bennett C,
Rodkey J, et al. (1985). Pure brain-derived acidic fibroblast growth
factor is a potent angiogenic vascular endothelial cell mitogen with
sequence homology to interleukin 1. Proceedings of the National Academy
of Sciences of the United States of America 82(19): 6409-13.
Tsujii M, Kawano S, Tsuji S. Sawaoka H, Horin M, Dubois RN (1998).
Cyclooxygenase regulates angiogenesis induced by colon cancer cells.
Cell 93: 705-716
Uefuji K, Ichikura T, Mochizuki H (2000). Cyclooxygenase-2 expression is
related to prostaglandin biosynthesis and angiogenesis in human gastric
cancer. Clinical Cancer Research 6: 135-138.
Ushio-Fukai M (2006). Redox signaling in angiogenesis: Role of NADPH
oxidase. Cardiovascular Research 71(2): 226–235.
Vasudev NS, Reynolds AR (2014). Anti-angiogenic therapy for cancer:
current progress, unresolved questions and future directions.
Angiogenesis17(3): 471-494.
Vaupel P (2004). The Role of Hypoxia-Induced Factors in Tumor
Progression. The Oncologist 9(5): 10-17.
Vlodavsky I, Friedmann Y (2001). Molecular properties and involvement of
heparanase in cancer metastasis and angiogenesis. The Journal of
Clinical Investigation 108: 341-347.
Vlodavsky I, Gross-Cohen M, Weissmann M, Ilan N, Sanderson RD (2018).
Opposing functions of heparanase-1 and heparanase-2 in cancer
progression. Trends in Biochemical Sciences43(1): 18-31.
Weber G, Chamorro CI, Granath F, Liljegren A, Zreika S, Saidak Z, et al.
(2009). Human antimicrobial protein hCAP18/LL-37 promotes a metastatic
phenotype in breast cancer. Breast Cancer Research 11(1): R6.
Weis SM, Cheresh DA (2011). Tumor angiogenesis: molecular pathways and
therapeutic targets. Nature Medicine 17(11): 1359-1370.
Worathumrong N, Grimes AJ (1975). Anaerobic glycolysis in normal human
erythrocytes incubated in vitro with sodium salicylate. Clinical Science
and Molecular Medicine 49: 375-384.
Xu XM, Sansores-Garcia L, Chen XM, Matijevic-Aleksic N, Du M, Wu KK.
(1999). Suppression of inducible cyclooxygenase 2 gene transcription by
aspirin and sodium salicylate. Proceedings of the National Academy of
Sciences of the United States of America 96(9):5292–5297.
Yang YY, Hu CJ, Chang SM, Tai TY, Leu SJ (2004). Aspirin inhibits
monocyte chemoattractant protein-1 and interleukin-8 expression in
TNF-αstimulated human umbilicaln vein endothelial cells. Atherosclerosis
174: 207-213.
Yeh RK, Chen J, Williams JL, Baluch M, Hundley TR, Rosenbaum RE, et al.
(2004). NO-donating nonsteroidal antiinflammatory drugs (NSAIDs) inhibit
colon cancer cell growth more potently than traditional NSAIDs: a
general pharmacological property? Biochemical Pharmacology 67:
2197-2205.
Yoshida S, Amano H, Hayashi I, Kitasato H, Kamata M, Inukain M, et al.
(2003). COX-2/VEGF-dependent facilitation of tumor-associated
angiogenesis and tumor growth in vivo. Laboratory investigation; a
journal of technical ethods andpathology 83(10): 1385-94.
Zapata-Morales JR, Galicia-Cruz OG, Franco M, Martinez Y, Morales F
(2014). Hypoxia-inducible factor-1α (HIF-1α) protein diminishes sodium
glucose transport 1 (SGLT1) and SGLT2 protein expression in renal
epithelial tubular cells (LLC-PK1) under hypoxia. The Journal of
biological chemistry 289(1): 346-357.
Zaslavsky A, Baek KH, Lynch RC, Short S, Grillo J, Folkman J, et al.
(2010). Platelet-derived thrombospondin-1 is a critical negative
regulator and potential biomarker of angiogenesis. Blood
115(22):4605-4613.
Zhang B, Cao H, Rao GN (2005). 15(S)-Hydroxyeicosatetraenoic acid
induces angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling.
Cancer Res 65(16): 7283-7291.
Zhang X, Wang Z, Wang Z, Zhang Y, Jia Q, Wu L, et al. (2013). Impact of
acetylsalicylic acid on tumor angiogenesis and lymphangiogenesis through
inhibition of VEGF signaling in a murine sarcoma model. Oncology reports
29(5): 1907-1913.
Zhu GH, Schwartz EL (2003). Expression of the angiogenic factor
thymidine phosphorylase in THP-1 monocytes: induction by autocrine tumor
necrosis factor-alpha and inhibition by aspirin. Molecular pharmacology
64(5): 1251-1258.