References
Amano H, Ito Y, Suzuki T, Kato S, Matsui Y, Ogawa F, et al. (2008). Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix metalloproteinase-9 and vascular endothelial growth factor during enhancement of tumor metastasis. Cancer Science 100(12): 2318–2324.
Andreuzzi E, Colladel R, Pellicani R, Tarticchio G, Cannizzaro R, Spessotto P, et al. (2017). The angiostatic molecule Multimerin 2 is processed by MMP-9 to allow sprouting angiogenesis. Matrix Biology 64: 40-53.
Asada M, Shinomiya M, Suzuki M, Honda E, Sugimoto R, Ikekita M, et al. (2009). Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochimica et Biophysica Acta 1709(1): 40-48.
Ausprunk DH, Folkman J (1977). Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvascular research 14: 53-65.
Azzi S, Hebda JK, Gavard J (2013). Vascular permeability and drug delivery in cancers. Frontiers in oncology 3: 211.
Baluk P, Hashizume H, McDonald DM (2005). Cellular abnormalities of blood vessels as targets in cancer. Current Opinion in Genetics & Development 15: 102-11.
Bambace NM 1, Holmes CE (2011). The platelet contribution to cancer progression. Journal of Thrombosis and Haemostasis 9: 237-249.
Basudhar D, Glynn SA, Greer M, Somasundaram V, No JH, Scheiblin DA, et al. (2017). Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America114(49).
Battinelli EM, Markens BA, Italiano JE Jr (2011). Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 118(5): 1359-1369.
Bazzoni G, Dejana E (2004). Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiological reviews 84: 869-901.
Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology 2 (10): 737-744.
Bergers G, Song S (2005). The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7: 452-464.
Beutler B, Cerami A (1986). Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 320(17): 584-588.
Bielenberg DR, Zetter BR (2015). The Contribution of angiogenesis to the process of metastasis. Cancer journal (Sudbury, Mass.) 21: 267-273.
Boonmasawai S, Akarasereenont P, Techatraisak K, Thaworn A, Chotewuttakorn S, Palo T (2009). Effects of selective COX-inhibitors and classical NSAIDs on endothelial cell proliferation and migration induced by human cholangiocarcinoma cell culture. J Med Assoc Thai 92 (11): 1508-1515.
Borthwick GM, Johnson AS, Partington M, Burn J, Wilson R, Arthur HM (2009). Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a Cox-independent mechanism. The FASEB Journal 20(12): 2009-16.
Cao Y, Nishihara R, Wu K, Wang M, Ogino S, Willett WC, et al. (2016). Population-wide impact of long-term use of aspirin and the risk for cancer. JAMA Oncology 2(6): 762-9.
Carmeliet P, Jain PK (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Reviews Drug Discovery 10(6): 417-27.
Carmeliet P, Jain RK (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Reviews Drug Discovery10(6): 417-427.
Cezar-de-Mello PF, Nascimento-Silva V, Villela CG, Fierro IM. (2006). Aspirin-triggered Lipoxin A4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene 25(1): 122-129.
Cezar-de-Mello PF, Vieira AM, Nascimento-Silva V, Villela CG, Barja-Fidalgo C, Fierro IM (2008). ATL-1, an analogue of aspirin-triggered lipoxin A 4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. British Journal of Pharmacology 153(5): 956-965.
Chen D, Tang J, Wan Q, Zhang J, Wang K, Shen Y, et al. (2017). E-prostanoid 3 receptor mediates sprouting angiogenesis through suppression of the protein kinase A/β-catenin/notch pathway. Arteriosclerosis, Thrombosis, and Vascular Biology 37: 856-866.
Christian S, Ahorn H, Novatchkova M, Garin-Chesa P, Park JE, Weber G, et al. (2001). Molecular cloning and characterization of EndoGlyx-1, an EMILIN-like multisubunit glycoprotein of vascular endothelium. The Journal of biological chemistry 276(51): 48588-48595.
Clària J, Serhan CN (1995). Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proceedings of the National Academy of Sciences of the United States of America 92: 9475-9479.
Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL (2009). The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proceedings of the National Academy of Sciences of the United States of America 106(10): 3806-3811.
Cross MJ, Claesson-Welsh L (2013). FGF and VEGF function in angiogenesis: signalling pathways,biological responses and therapeutic inhibition. RENDS in Pharmacological Sciences 22(4): 201-207.
Cryer B, Bhatt DL, Lanza FL, Dong JF, Lichtenberger LM, Marathi UK, et al. (2011). Low-dose aspirin-induced ulceration is attenuated by aspirin-phosphatidylcholine: a randomized clinical trial. Am J Gastroenterol 106(2): 272-277.
Dai X, Yan J, Fu X, Pan Q, Sun D, Xu Y, et al. (2017). Aspirin inhibits cancer metastasis and angiogenesis via targeting heparanase. Clinical Cancer Research 23(20): 6267-6278.
Desborough MJR, Keeling DM (2017). The aspirin story-from willow to wonder drug. British Journal of Haematology 5: 674-683.
Diasio RB, Harris BE (1989). Clinical Pharmacology of 5-Fluorouracil. Clinical Pharmacokinetics 16(4): 215-237.
Eilken HM, Adams RH (2010). Dynamics of endothelial cell behavior in sprouting angiogenesis. Current Opinion in Cell Biology 22: 617-625.
Elamin YY, Rafee S, Osman N, O Byrne KJ, Gately K (2016). Thymidine Phosphorylase in Cancer; Enemy or Friend? Cancer Microenviron 9( 1): 33-43.
Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, et al. (1985). Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proceedings of the National Academy of Sciences of the United States of America 82(19): 6507-11.
Etulain J, Fondevila C, Negrotto S, Schattner M (2013). Platelet-mediated angiogenesis is independent of VEGF and fully inhibited by aspirin. British journal of pharmacology 2: 255-265.
Fernández IS, Cuevas P, Angulo J, López-Navajas P, Canales-Mayordomo A, González-Corrochano R, et al. (2010). Gentisic acid, a compound associated with plant defense and a metabolite of aspirin, heads a new class of in vivo fibroblast growth factor inhibitors. The journal of biological chemistry 285(15): 11714-29.
Fierro IM, Kutok JL, Serhan CN (2002). Novel lipid mediator regulators of endothelial cell proliferation and migration: aspirin-triggered-15R-lipoxin A(4) and lipoxin A(4). The Journal of pharmacology and experimental therapeutics 300(2): 385-392.
Finetti F, Solito R, Morbidelli L, Giachetti A, Ziche M, Donnini S (2008). Prostaglandin E2 regulates angiogenesis via activation of fibroblast growth factor receptor-1. The Journal of biological chemistry 283(4): 2139–2146.
Finnis C, Dodsworth N, Pollitt CE, Carr G, Sleep D (1993). Thymidine phosphorylase activity of platelet-derived endothelial cell growth factor is responsible for endothelial cell mitogenicity. European journal of biochemistry 212: 201-210.
Folkman J (1971). Tumor angiogenesis: therapeutic implications. The New England Journal of Medicine 285(21): 1182-1186.
Fox SB, Moghaddam A, Westwood M, Turley H, Bicknell R, Gatter KC, et al. (1995). Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in normal tissues: an immunohistochemical study. The Journal of pathology 176(2): 183-190.
Ghezzo F, Cesano L, Mognetti B, Pesce E, Pirro E, Corvetti G, et al. (2005). Salicylate inhibition of rat mammary carcinogenesis and angiogenesis in female rat compatible with misoprostol administration. International journal of oncology 26(3): 697-702.
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, et al. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiological reviews 91: 1071-1121.
Gordon S, Martinez FO (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593-604.
Goveia J, Stapor P, Carmeliet P (2014). Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO molecular medicine 9: 1105-1120.
Griffioen AW, Molema G (2000). Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacological reviews 52: 237–268.
Grootveld M, Halliwell B (1988). 2,3-Dihydroxybenzoic acid is a product of human aspirin metabolism. Biochemical pharmacology 37(2): 271-80.
Haussen J, Koczulla R, Shaykhiev R, Herr C, Pinkenburg O, Reimer D, et al. (2008). The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer 59: 12-23.
Heffelfinger SC (2007). The Renin angiotensin system in the regulation of angiogenesis. Current Pharmaceutical Design 13: 1215-1229.
Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ (1998). Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95: 365-377.
Holmes CE, Jasielec J, Levis JE, Skelly J, Muss HB (2013). Initiation of aspirin therapy modulates angiogenic protein levels in women with breast cancer receiving tamoxifen therapy. Clinical and translational science 6(5): 386-390.
Hsieh CC, Wang CH (2018). Aspirin disrupts the crosstalk of angiogenic and inflammatory cytokines between 4T1 breast cancer cells and macrophages. Mediators of Inflammation 2018: 638-643.
Hu C, Dandapat A, Mehta JL (2007). Angiotensin II induces capillary formation from endothelial cells via the LOX-1–dependent redox-sensitive pathway. Hypertension 50: 952-957.
Hu C, Dandapat A, Sun L, Khan JA, Liu Y, Hermonat PL, et al. (2008). Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. The Journal of biological chemistry 283(16):10226-10231.
Hu Y, Lou X, Wang R, Sun C, Liu X, Liu S, et al. (2014). Aspirin, a potential GLUT1 inhibitor in a vascular endothelial cell line. Open Medicine 14(1): 552-560.
Hua H, Zhang H, Kong Q, Wang J, Jiang Y (2019). Complex roles of the old drug aspirin in cancer chemoprevention and therapy. Medicinal research reviews 39(1): 114-145.
Huang Y, Lichtenberger LM, Taylor M, Bottsford-Miller JN, Haemmerle M, Wagner MJ, et al. (2016). Antitumor and Antiangiogenic Effects of Aspirin-PC in Ovarian Cancer. Molecular cancer therapeutics 15: 2894-2904.
Jain RK (1998). Delivery of molecular and cellular medicine to solid tumors. Journal of Controlled Release 53: 49–67.
Jones MK, Wang H, Peskar BM, Levin E, Itani RM, Sarfeh IJ, et al (1999). Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: Insight into mechanisms and implications for cancer growth and ulcer healing. Nature Medicine 5(12): 1418-1423.
Kapoor C, Vaidya S, Wadhwan V, Hitesh, Kaur G, Pathak A (2016). Seesaw of matrix metallo proteinases (MMPs). Journal of Cancer Research and Therapeutics 12(1): 28-35.
Khaidakov M, Mitra S, Mehta JL (2012). Adherence junction proteins in angiogenesis: modulation by aspirin and salicylic acid. Journal of Cardiovascular Medicine 13(3): 188-192.
Khaidakov M, Szwedo J, Mitra S, Ayyadevara S, Dobretsov M, Lu J, et al. (2010). Antiangiogenic and antimitotic effects of aspirin in hypoxia–reoxygenation modulation of the LOX-1-NADPH oxidase axis as a potential mechanism. Journal of cardiovascular pharmacology 56:635-641.
Khaidakov M, Szwedo J, Mitra S, Mehta JL (2011). Angiostatic effects of aspirin in hypoxia? Reoxygenation are linked to modulation of TGFb1 signaling. journal of cardiovascular pharmacology and therapeutics 16(1): 105-110.
Khokha R, Waterhouse P (1994). The role of tissue inhibitor of metalloproteinase-1 in specific aspects of cancer progression and reproduction. Journal of Neuro-Oncology 18(2): 123-127.
Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995). Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infection and immunity 63(4): 1291-7.
Lavie CJ, Howden CW, Scheiman J, Tursi J (2017). Upper gastrointestinal toxicity associated with long-term aspirin therapy: consequences and prevention. Curr Probl Cardio l42(5): 146-164.
Lawson ND, Weinstein BM (2002). In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Developmental Biology 248(2): 307-318.
Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N (1987). Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329(15): 630-632.
Li JP , Vlodavsky I (2009). Heparin, heparan sulfate and heparanase in inflammatory reactions. Thromb Haemost 102: 823-8.
Li WW, Li VW, Hutnik M, Chiou AS (2012). Tumor angiogenesis as a target for dietary cancer prevention. Journal of oncology 2012:879623.
LiekensS, De Clercq E, Neyts J (2001). Angiogenesis: regulators and clinical applications. Biochemical Pharmacology 61: 253-270.
Liu Z, Kobayashi K, van Dinther M, van Heiningen SH, Valdimarsdottir G, van Laar T, et al. (2009). VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. Journal of Cell Science 122: 3294-3302.
Ma J, Waxman DJ (2008). Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther 7: 3670-3684.
Maity G, Chakraborty J, Ghosh A, Haque I, Banerjee S, Banerjee SK (2019). Aspirin suppresses tumor cell-induced angiogenesis and their incongruity. Journal of Cell Communication and Signaling volume 13: 491-502.
Meade EA, Smith WL, DeWitt DL (1993). Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drug. The Journal of biological chemistry 268(9): 6610-6614
Méric JB, Rottey S, Olaussen K, Soria JC, Khayat D, Rixe O, et al. (2006). Cyclooxygenase-2 as a target for anticancer drug development. Critical Reviews in Oncology/Hematology 59(1): 51-64.
Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR (1993). Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proceeding of the National Academy of Sciences of the United States of America 90(24):11693-7.
Mitra S, Wang X, Khaidakov M, Ding Z, Ayyadevera S, Hearnsberger E, et al. (2012). Aspirin downregulates angiotensin type 1 receptor transcription implications in capillary formation from endothelial cells. Journal of cardiovascular pharmacology 60(2): 187-192.
Miyadera K, Sumizawa T, Haraguchi M, Yoshida H, Konstanty W, Yamada Y, et al. (1995). Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer research 55: 1687-1690.
Navone SE, Guarnaccia L, Cordiglieri C, Crisà FM, Caroli M, Locatelli M, et al. (2018). Aspirin affects tumor angiogenesis and sensitizes human glioblastoma endothelial cells to temozolomide, bevacizumab, and sunitinib, impairing vascular endothelial growth factor-related signaling. World Neurosurgery 120: 380-391.
Ott I, Kircher B, Bagowski CP, Vlecken DH, Ott EB, Will J, et al. (2009). Modulation of the Biological Properties of Aspirin by Formation of a Bioorganometallic Derivative. Angew. Chem. Int. Ed 48(6):1160-1163.
Ouyang N, Williams JL, Rigas B (2008). NO-donating aspirin inhibits angiogenesis by suppressing VEGF expression in HT-29human colon cancer mouse xenografts. Carcinogenesis 29 (9): 1794-1798.
Patan S (2000). Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of Neuro-Oncology 50 (1-2): 1-15.
Patzelt J, Langer HF (2012). Platelets in Angiogenesis. Current Vascular Pharmacology 10:570-577.
Pavón-Romero GF, Ramírez-Jiménez F, Roldán-Alvarez MA, Terán LM,Falfán-Valencia R (2017). Physiopathology and genetics in aspirin-exacerbated respiratory disease. Experimental lung research 43(8): 327-335.
Peach MJ (1977). Renin-angiotensin system: biochemistry and mechanisms of action. Physiological reviews 57(2): 313-370.
Pearce HR, Kalia N, Bardhan KD, Brown NJ (2003). Effects of aspirin and indomethacin on endothelial cell proliferation in vitro. Journal of Gastroenterology and Hepatology 18(10): 1180-7.
Pipili-Synetos E, Papadimitriou E, Maragoudakis ME (1998). Evidence that platelets promote tube formation by endothelial cells on matrigel. British Journal of Phar macology 125: 1252-1257.
Puyraimond A, Weitzman JB, Babiole E, Menashi S (1999). Examining the relationship between the gelatinolytic balance and the invasive capacity of endothelial cells. Journal of Cell Science 112: 1283-1290
Radziwon-Balicka A, Moncada de la Rosa C, Jurasz P (2012). Platelet-associated angiogenesis regulating factors: a pharmacological perspective. Can. J. Physiol. Pharmacol 90(6):679–688.
Rauzi F, Kirkby NS, Edin ML, Whiteford J, Zeldin DC, Mitchell JA, et al. (2016). Aspirin inhibits the production of proangiogenic 15(S)-HETE by platelet cyclooxygenase-1. The FASEB Journal 30(12):4256-4266.
Ribeiro AL, Okamoto OK (2015). Combined effects of pericytes in the tumor microenvironment. Stem cells international 2015: 868475.
Rigas B (2007). The use of nitric oxide-donating nonsteroidal anti-inflammatory drugs in the chemoprevention of colorectal neoplasia. Current opinion in gastroenterology 23(1): 55-59
Rivera LB, Bergers G (2014). Targeting vascular sprouts: Manipulating metabolism could control angiogenesis. Science 344(6191): 1449-1450.
Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J, et al (2000). Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2(SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. The Journal of biological chemistry 275(14): 10661-10672.
Rumble RH, Roberts MS, Wanwimolruk S (1981). Determination of aspirin and its major metabolites in plasma by high-performance liquid chromatography without solvent extraction. JonmaI of Chromatogmphy 225: 252-260.
Salcedo R, Zhang X, Young HA, Michael N, Wasserman K, Ma WH, et al. (2003). Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood 102(6): 1966-77.
Salvado MD, Di Gennaro A, Lindbom L, Agerberth B, Haeggström JZ (2013). Cathelicidin LL-37 induces angiogenesis via PGE2–EP3 signaling in endothelial cells, in vivo inhibition by aspirin. Arteriosclerosis, Thrombosis, and Vascular Biology 33(8): 1965-1972.
Saunders MA, Sansores-Garcia L, Gilroy DW, Wu KK (2001). Selective suppression of CCAAT/enhancer-binding protein beta binding and cyclooxygenase-2 promoter activity by sodium salicylate in quiescent human fibroblasts. The Journal of biological chemistry 276:18897-18904.
Seeger FH, Sedding D, Langheinrich AC, Haendeler J, Zeiher AM, Dimmeler S (2010). Inhibition of the p38 MAP kinase in vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res Cardiol 105: 389–397.
Semaan A, Munkarah AR, Arabi H, Bandyopadhyay S, Seward S, Kumar S, et al. (2011). Expression of GLUT-1 in epithelial ovarian carcinoma: Correlation with tumor cell proliferation, angiogenesis, survival and ability to predict optimal cytoreduction. Gynecologic Oncology 121(1): 181-186.
Shi C, Zhang N, Feng Y, Cao J, Chen X, Liu B (2017). Aspirin inhibits IKK-β-mediated prostate cancer cell invasion by targeting matrix metalloproteinase-9 and urokinase-type plasminogen activator. Cell Physiol Biochem 41: 1313-1324.
Shtivelband MI, Juneja HS, Lee S, Wu KK (2003). Aspirin and salicylate inhibit colon cancer medium-and VEGF-induced endothelial tube formation: correlation with suppression of cyclooxygenase-2 expression. Journal of Thrombosis and Haemostasis 1(10):2225-2233.
Skultetyova D, Filipova S, Riecansky I, Skultety J (2007). The Role of angiotensin type 1 receptor in inflammation and endothelial dysfunction. Recent Patents on Cardiovascular Drug Discovery 2(1): 23-27.
Solinas G, Germano G, Mantovani A, Allavena P (2009). Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. Journal of Leukocyte Biology 86: 1065-1073.
Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, et al. (2014). The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15): 4477-4488.
Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, et al. (2015). Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194-207.
Su BB, Chen JH, Shi H, Chen QQ, Wan J, et al. (2014). Aspirin may modify tumor microenvironment via antiplatelet effect. Medical Hypotheses 83: 148-150.
Takebayashi Y, Akiyama S, Akiba S, Yamada K, Miyadera K, Sumizawa T, et al. (1996). Clinicopathologic and prognostic significance of an angiogenic factor, thymidine phosphorylase, in human colorectal carcinoma. Journal of the National Cancer Institute 88(16): 1110-1117.
Talmadge JE, Fidler IJ(2010). AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer research 70(14): 5649-5669.
Thomas KA, Rios-Candelore M, Giménez-Gallego G, DiSalvo J, Bennett C, Rodkey J, et al. (1985). Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proceedings of the National Academy of Sciences of the United States of America 82(19): 6409-13.
Tsujii M, Kawano S, Tsuji S. Sawaoka H, Horin M, Dubois RN (1998). Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93: 705-716
Uefuji K, Ichikura T, Mochizuki H (2000). Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer. Clinical Cancer Research 6: 135-138.
Ushio-Fukai M (2006). Redox signaling in angiogenesis: Role of NADPH oxidase. Cardiovascular Research 71(2): 226–235.
Vasudev NS, Reynolds AR (2014). Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis17(3): 471-494.
Vaupel P (2004). The Role of Hypoxia-Induced Factors in Tumor Progression. The Oncologist 9(5): 10-17.
Vlodavsky I, Friedmann Y (2001). Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. The Journal of Clinical Investigation 108: 341-347.
Vlodavsky I, Gross-Cohen M, Weissmann M, Ilan N, Sanderson RD (2018). Opposing functions of heparanase-1 and heparanase-2 in cancer progression. Trends in Biochemical Sciences43(1): 18-31.
Weber G, Chamorro CI, Granath F, Liljegren A, Zreika S, Saidak Z, et al. (2009). Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Research 11(1): R6.
Weis SM, Cheresh DA (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nature Medicine 17(11): 1359-1370.
Worathumrong N, Grimes AJ (1975). Anaerobic glycolysis in normal human erythrocytes incubated in vitro with sodium salicylate. Clinical Science and Molecular Medicine 49: 375-384.
Xu XM, Sansores-Garcia L, Chen XM, Matijevic-Aleksic N, Du M, Wu KK. (1999). Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate. Proceedings of the National Academy of Sciences of the United States of America 96(9):5292–5297.
Yang YY, Hu CJ, Chang SM, Tai TY, Leu SJ (2004). Aspirin inhibits monocyte chemoattractant protein-1 and interleukin-8 expression in TNF-αstimulated human umbilicaln vein endothelial cells. Atherosclerosis 174: 207-213.
Yeh RK, Chen J, Williams JL, Baluch M, Hundley TR, Rosenbaum RE, et al. (2004). NO-donating nonsteroidal antiinflammatory drugs (NSAIDs) inhibit colon cancer cell growth more potently than traditional NSAIDs: a general pharmacological property? Biochemical Pharmacology 67: 2197-2205.
Yoshida S, Amano H, Hayashi I, Kitasato H, Kamata M, Inukain M, et al. (2003). COX-2/VEGF-dependent facilitation of tumor-associated angiogenesis and tumor growth in vivo. Laboratory investigation; a journal of technical ethods andpathology 83(10): 1385-94.
Zapata-Morales JR, Galicia-Cruz OG, Franco M, Martinez Y, Morales F (2014). Hypoxia-inducible factor-1α (HIF-1α) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. The Journal of biological chemistry 289(1): 346-357.
Zaslavsky A, Baek KH, Lynch RC, Short S, Grillo J, Folkman J, et al. (2010). Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood 115(22):4605-4613.
Zhang B, Cao H, Rao GN (2005). 15(S)-Hydroxyeicosatetraenoic acid induces angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling. Cancer Res 65(16): 7283-7291.
Zhang X, Wang Z, Wang Z, Zhang Y, Jia Q, Wu L, et al. (2013). Impact of acetylsalicylic acid on tumor angiogenesis and lymphangiogenesis through inhibition of VEGF signaling in a murine sarcoma model. Oncology reports 29(5): 1907-1913.
Zhu GH, Schwartz EL (2003). Expression of the angiogenic factor thymidine phosphorylase in THP-1 monocytes: induction by autocrine tumor necrosis factor-alpha and inhibition by aspirin. Molecular pharmacology 64(5): 1251-1258.