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Summary

The well known heat equation with finite speed of propagation proposed by Cattaneo

is obtained by a more general fourth order PDE when a certain (small) parameters

is put equal to zero. It seems that this fourth order equation has been essentially

overlooked in the literature, in particular when it is subject to non homogeneous

boundary conditions. In this paper we examine its well posedness and the asymptotic

behavior when certain coefficients tend to singular values.
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1 INTRODUCTION

An attempt to remediate the problem of infinite velocity of diffusion of the standard heat equation led Cattaneo to propose its

famous equation

��′′ = −a�′ + bΔ� , a > 0 , b > 0 (1)

where � = �(x, t) is the temperature at time t and position x ∈ Ω ⊆ ℝ
d (in fact, Cattaneo considered the case d = 1) and Δ

denotes the laplacian, see1. This equation, which is a special instance of the telegraphists’ equation, is now widely applied in

the description of diffusion processes in systems with complex molecular structure as seen from a rapid search on the WEB (see

for example2 for a description of the use of Cattaneo equation when modeling diffusion of solutes in polymers) and it is the

prototype of the heat equation with memory proposed by Gurtin and Pipkin in3 since it can be written as

�′(t) = b

t

∫
−∞

e−a(t−s)Δ�(s) ds .

In the paper1, using statistical considerations, Cattaneo derived a general linear law for the flux of heat:

q = −�∇� + �∇�′ (2)

where q = q(x, t) is the flux, the prime denotes the time derivative and ∇ is the gradient. The parameter � is small and if put

equal to zero then we get the Fourier law which leads to the standard heat equation. Otherwise, as outlined in the next section,

we get the fourth order equation

�′′ = −a�′ + bΔ� − cΔ�′′

⎧
⎪⎨⎪⎩

a = �∕� > 0

b = �2∕(�
�) > 0

c = �∕(
�) > 0 .

(3)

When the infinitesimal (for � → 0) coefficient c is ignored then (3) reduces to the much studied equation (1) while it seems that

the complete equation (3) has not been considered, in particular in the case that the boundary conditions are nonhomogeneous.

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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Stimulated by the discussion in4, we present some observations on the fourth order Cattaneo equation (3) when coupled with

the following initial and boundary conditions:

�(0) = �0 , �′(0) = �1 
0� = f on Γ = )Ω . (4)

In fact, similar arguments can be adapted to study the case that the affine term f acts in the Neumann boundary conditions.

We investigate whether the problem (3)-(4) is well posed, i.e. whether it is solvable, the solution is unique and depends

continuously on the data in significant spaces. Roughly speaking, we prove:

• well posedness of Eq. (3) depends solely on the value of c.

• there exists an exceptional set of values of the (positive) parameter c such that the problem is not well posed (see Sect. 3.1).

The exceptional set is the codomain of a sequence which tends to zero. In terms of the parameter �, there exists a sequence

{�n} which converges to zero and such that the system is not well posed if � = �n.

• otherwise, as proved in Sect. 3.2, the problem is well posed. In this case we find a representation for the solutions.

• Similar to the standard heat equation we prove that signals propagates with infinite speed.

• Finally we investigate the behavior of the solutions when the parameters, either c or �, tend to singular values. In particular,

we study the case � → 0+.

For completeness in the next section we present the arguments of Cattaneo without the deletion of any term and we derive

Eq. (3).

2 THE DERIVATION OF THE FOURTH ORDER CATTANEO EQUATION

We outline the derivation of the Cattaneo equation as presented in1. Cattaneo first derives the heat-flux law (2) from statistical

considerations and notes that the Fourier law is the special case obtained by putting � = 0. Putting � = 0 removes “memory”

from the heat processes and Cattaneo notes that this can be justified in a statical regime, but likely not before equilibrium is

reached. To overcome this difficulty, instead of putting � = 0 from the outset, Cattaneo couples Eq. (2) with its time derivative,

and obtains the system {
q = −�∇� + �∇�′

q′ = −�∇�′ + �∇�′′ .

Elimination of ∇�′ gives

�q′ = −�q − �2∇� + �2∇�′′ . (5)

At this point Cattaneo notes that �2 is infinitesimal of higher order respect to � and deletes the last term, proceeding with the

computations below, which we perform without such semplification. Eq. (5) is coupled with the conservation of energy:{
�q′ = −�q − �2∇� + �2∇�′′


��′ + ∇ ⋅ q = 0 .

We equate the divergence of both the sides of the first equation and the time derivative of both the sides of the second equation.

Using ∇ ⋅ q = −
��′ (from the conservation of energy) we get the system{
�∇ ⋅ q′ = −�∇ ⋅ q − �2Δ� + �2Δ�′′ = �
��′ − �2Δ� + �2Δ�′′


��′′ + ∇ ⋅ q′ = 0 .

Finally we replace ∇ ⋅ q′ = −
��′′ from the second equation in the first one. We get Eq. (3) which, we repeat, reduces to (1) if,

relaying on the “smallness” of �, the last addendum is removed.

3 WELL POSEDNESS AND LACK OF WELL POSEDNESS OF THE FOURTH ORDER
CATTANEO EQUATION

We work in a bounded region Ω ⊆ ℝ
d with C2 boundary Γ and we introduce the Dirichlet laplacian in L2(Ω):

DomA = H2(Ω) ∩H1
0
(Ω) , A� = Δ� ∀� ∈ DomA .
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It is known that A is selfadjoint negative defined with compact resolvent so that the space L2(Ω) has an orthonormal basis {'n}

of eigenvalues of A:

A'n = −�2
n
'n .

Every eigenvalue −�2
n

has finite multiplicity.

Let us introduce the exceptional set for c

 =

{
1

�2
N

, −�2
N
∈ �p(A)

}
.

In this section we prove:

Theorem 1. The following statements hold:

1. if c ∈  then problem (3)-(4) is not well posed in the sense that there exist initial conditions �0 and �1 such that no solution

exist, not even with f = 0.

2. If c ∉  then problem (3)-(4) is well posed in the space L2(Ω) ×L2(Ω) ×W 2,p(0, T ;L2(Γ)) (any p ≥ 1) in the sense that

for every �0 and �1 in L2(Ω) and f ∈ W 2,p(0, T ;L2(Γ)), there exists a unique (mild) solution � ∈ C1([0, T ];L2(Ω)) (any

T > 0) and the transformation (�0, �1, f ) → � is continuous in the indicated spaces.

Note that the mild solutions are defined in Sect. 3.2.

3.1 The proof of the statement 1 of Theorem 1

We fix one of the eigenvalues −�2
N

of A and one of the corresponding eigenvectors, say 'N :

A'N = −�2
N
'N .

Let

c =
1

�2
N

.

We impose the initial conditions

�0 = �'N , �1 = �'N . (6)

The proof of of the statement 1 of Theorem 1 follows from the following observation:

Lemma 2. Let f = 0 and let a > 0, b > 0 be arbitrary while c = 1∕�2
N

. The equation (3) with the initial conditions (6) is

solvable only if the coefficients � and � satisfy the compatibility condition1

�

�
= −

b

a
�2
N
. (7)

Proof. We proceed by separation of variables: a solution, if it exists, has the series expansion

�(x, t) =

∞∑
n=1

'n(x)�n(t)

and �n(t) = 0 if n ≠ N while if n = N then �n(t) solves

a�′
N
(t) = −b�2

N
�n(t) .

In fact, due to the equality c = 1∕�2
N

, the two terms containing �′′ cancel out.

So that if the condition �N (0) = � has to be satisfied, it must be

�N (t) = e−(b�
2
N
∕a)t� .

The second condition �′(0) = �'N can be satisfied if and only if the compatibility condition (7) holds.

1whose significance is clarified in Remark 9.
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This ends the proof of the statement 1 of Theorem 1. This statement can be reformulated in terms of the physical parameters

of the system as follows. We introduce the exceptional set for �

 =

{

�

�2
n

, −�2
n
∈ �p(A)

}
. (8)

Then we can state:

Corollary 3. Let the coefficients a, b and c depend on � as specified in (3). The problem (3)-(4) is not well posed if � ∈ .

3.2 The proof of the statement 2 of Theorem 1

In this section we prove that the system is well posed if c ∉  . As usual in PDE, the first step is to define the solutions in a

suitable strong or mild sense. This can be easily achieved by noting that problem (3)-(4) can be rewritten as{
(1 + cΔ)

(
�′′(t) − (b∕c)�(t)

)
= ℎ = −a�′(t) − (b∕c)�(t) , in Ω


0
(
�′′(t) − (b∕c)�(t)

)
= f ′′ − (b∕c)f on Γ = )Ω

(9)

and so, at least when f ∈ W 1,2(0, T ;L2(Γ)), for every fixed t we have a Dirichlet problem which is well posed, since by

assumption −1∕c is not an eigenvector of the Dirichlet laplacian.

In order to proceed, we recall few known properties of this problem and we simplify the notations by introducing

H = L2(Ω) , U = L2(Γ)

and

Ã = I + cA on H with Dom Ã = DomA = H2(Ω) ∩H1
0
(Ω) (and A = Δ) .

It is known:

(I + cΔ)u = ℎ , 
0u = g ⇐⇒ u = Ã−1ℎ +Dg (10)

where D ∈ (U,H). Note that imD is not contained in H2(Ω) and u −Dg ∉ Dom Ã in general.

By definition, u = Ã−1ℎ+Dg is a mild solution of the Dirichlet problem (10) and the definition is justified by the fact that if f

is sufficiently smooth, and thanks to the assumption that )Ω is of class C2, u−Df ∈ Dom Ã (see5, Ch.IV par. 7). We endow Dom Ã

with the graph norm (which is equivalent to the H2(Ω) norm restricted to Dom Ã). It is known that that H has continuous and

dense injection in (Dom Ã)′ and Ã admits a continuous extension to H (as a (Dom Ã)′-valued function). Furthermore, when

H = 0 and f is smooth,

(1 + cΔ)u = (1 + cΔ)(u −Df ) = Ãu − ÃDf in (Dom Ã)′ .

Using these observations, when f ∈ W 2,2(0, T ;U ) we can rewrite problem (9) as

�′′ = (b∕c)(I − Ã−1)� − aÃ−1�′ − (b∕c)Df +Df ′′ . (11)

This system can be put in the form of a standard semigroup system. We introduce the notations

H = �Ã−1 , K =
b

c
(I − Ã−1) , � = b∕c

and we have:
d

dt

(
�

�′

)

⏟⏟⏟
=W

=

(
0 I

K −H

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=A

W − �

(
0

D

)

⏟⏟⏟
=D

f +

(
0

D

)

⏟⏟⏟
=D

f ′′ = AW − �Df +Df ′′ . (12)

The form (9) of the problem (3)-(4) and the previous observations suggest the following definition:

Definition 4. A mild solution of the problem (3)-(4) is the first component � of a mild solution W of the semigroup system (12).

The solution is a classical solution when the following properties hold :

�(t) ∈ C1([0, T ];L2(Ω)) , �(0) = �0 , �′(0) = �1 ;

y(t) = �(t) −Df (t) ∈ C2([0, T ];L2(Ω)) ;

y′′(t) − (b∕c)y(t) ∈ Dom Ã ;

Ã(y′′(t) − (b∕c)y(t)) = (b∕c)�(t) − a�′(t) .
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The study of the solution is now immediate, since D ∈ (U,H × H) and A ∈ (H × H). So A generates a uniformly

continuous and holomorphic group eAt of operators on H ×H and we have

W (t) = eAtW (0) − �

t

∫
0

eA(t−s)Df (s) ds +

t

∫
0

eA(t−s)Df ′′(s) ds . (13)

The fact that eAt is a holomorphic operator function shows that we can integrate by parts twice the second integral and we get:

W (t) = eAt
[
W (0) −Df ′(0) − ADf (0)

]
+Df ′(t) +ADf (t) +

t

∫
0

eA(t−s)
[
−�I + A

2
]
Df (s) ds . (14)

We stress the following facts:

• the previous computations used explicitly c ∉  ;

• the computations used f ∈ W 2,p(0, T ;L2(Γ)) (any p ≥ 1 and any T > 0) but the right hand side makes sense under the

weaker assumption that f ′ is continuous. So, the mild solutions are defined under this weaker condition.

So:

Theorem 5. Let c ∉  . Then the equation (3) is well posed in the space H × H× ∈ W 2,p(0, T ;L2(Γ)) in the sense that for

every �0 and �1 in H = L2(Ω) and every f ∈ W 2,p(0, T ;L2(Γ)) there exists a unique mild solution � ∈ C1([0, T ];H) and the

transformation

(�0, �1, f ) → �

is linear and continuous from H × H × W 2,p(0, T ;L2(Γ)) to C1([0, T ];H) for every T > 0 and also from H × H ×

C1([0, T ];L2(Γ)) to C1([0, T ];H) (where H = L2(Ω)).

In terms of the physical parameters, we have:

Corollary 6. Eq. (3) is well posed in the spaces specified in Theorem 5 if and only if � ∉  (the set  is defined in (8)).

Finally, we justify in the usual manner the definition of the mild solutions:

Theorem 7. Any mild solution �(t) is the C1([0, T ];H)-limit of a sequence of classical solutions.

Proof. It is sufficient to prove that the solution is classical when (�0, �1, f ) belong to a dense subset of L2(Ω) × L2(Ω) ×

W 2,p(0, T ;L2(Γ)). Using the linearity of the problem, we can study separately the initial condition and the boundary function

f . We confine ourselves to examine the contribution of f leaving the contribution of the initial conditions to the reader.

We assume f ∈ C∞([0, T ] × Γ) and we consider equality (13) (with W (0) = 0). The regularity of f (t) shows that W (t) ∈

C1([0, T ], L2(Ω) × L2(Ω)) (in fact also in Ck for every k) and the following equality holds for every t:

W ′(t) = AW (t) − �Df (t) + Df ′′(t)

so that

W ′(t) + �Df (t) − Df ′′(t) ∈ imA

and the equality (12) holds for t ∈ [0, T ]. The second component of the equality (12) gives

�′′(t) −Df ′′ − �(� −Df ) = Ã−1(−�� + ��) ∈ DomÃ .

From this equality, the properties required in Definition 4 are easily seen.

Remark 8. We note the similarity of Eq. (3) (when it is well posed) with the standard heat equation: when f = 0 the solutions

are analytic functions of t while the similarity with the wave equation is that the equation is reversible and the smoothness of

the initial condition W (0) is preserved.

The following observation is similar to that used in6,7,8. It might have an interest, although its physical significance is not

clear in the contest of Eq. (3). In the cited papers, this observation was used to solve a quadratic optimization problem.

When f ∈ W 2,p(0, T ;L2(Γ)), the formula (14) decouples f (0) and f ′(0) from f (t), t > 0 and introduces the parameters f0
(i.e.f (0)), f1 (i.e. f ′(0)). After this decoupling, formula (14) makes sense if f ′ is solely (square) integrable. Once this decoupling
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has been done, W (t) is not continuous. If f ∈ W 1(0, T ;L2(Γ)) then the formula may be used to define a solution W (t) in an

even weaker sense: it not continuous: as an element of L2(0, T ,H ×H) depends continuously on f f ∈ W 1(0, T ;L2(Γ)) and

on the parameter W1 = W (0) − Df1 −ADf0. Its first component �(t) is given by the equality

�(t) =
[
I 0

]
A

−1
(
eAt − I

)
W1 +Df (t) +

t

∫
0

[
I 0

]
eA(t−s)[−�I + A

2]Df (s) ds (15)

where 0 and I denote the zero and identity operators in H . This solution � ∈ L2([0, T ];H) depends continuously on W1 and

on f ∈ L2(0, T ;U ) and furthermore �(t) −Df (t) is continuous.

4 PROPAGATION SPEED

One of the reason for the introduction of Eq. (1) was that waves propagates with finite speed in a medium described by Eq. (1).

Instead, we are going to show the existence of solutions of Eq. (3) whose propagation speed is as great as we wish when the

coefficient c is strictly positive and c ∉  . Note that this fact is easily guessed in the case that Ω = ℝ. In this case for every fixed

t > 0 we can formally compute the Fourier transform �̂(�, t) of the solution. We have

(1 − c�2)�̂′′(�, t) + a�̂′(�, t) + �2b�̂(�, t) = 0

{
�̂(�, 0) = ŵ0(�)

�̂′(�, 0) = ŵ1(�)
(16)

(the apex denotes the time derivative).

Let w0 = 0 and let w1 have compact support. If signals propagate with finite speed then x → w(x, t) has compact support

for every t > 0. Then the function � → ŵ(�, t) has to be entire (and in fact it must have stronger properties, see Paley-Wiener

Theorem in9, p. 132).

Eq. (16) is an ordinary differential equation for every fixed value of �, whose solution is

�̂(�, t) = A(�) exp

{[
−a +

√
a2 − 4b�2(1 − c�2)

2(1 − c�2)

]
t

}
− A(�) exp

{[
−a −

√
a2 − 4b�2(1 − c�2)

2(1 − c�2)

]
t

}
(17)

and

A(�) =
1 − c�2√

a2 − 4b�2(1 − c�2)
ŵ1(�) .

The function ŵ1(�) is entire and so the function A(�) has a zero of finite order for � = ±
√
c. It cannot compensate the essential

singularity for � = ±
√
c of the second exponential in (17) (the first exponential remains bounded for � → ±

√
c as it is easily

seen by expanding the square root with the binomial formula).

An argument which applies also to bounded regions is easily seen from formula (14). Let W0 = 0. We fix any T > 0 and we

consider the sequence of C∞ input functions

fn(t) =
1

n
e−n(T−t)f0 , any f0 ∈ U = L2(Γ) such that Df0 ≠ 0 .

Note that
lim

n→+∞
fn(t) = 0 uniformly for t ∈ [0, T ]

lim
n→+∞

f ′
n
(t) = 0 in L2(0, T ;U ) (uniformly for t ∈ [0, T − �], any � > 0)

f ′
n
(T ) = f0 for every n .

Let Wn(t) be the solution. Formula (14) gives

lim
n→+∞

Wn(T ) = Df0 in H = L2(Ω) . (18)

The element Df0 ∈ H is non zero. Hence there exists a (nonempty) subregion Ω1 ⊆ Ω (so Ω1 of positive measure) at positive

distance d from )Ω such that

∫
Ω1

‖Df‖2 dx = � > 0 .
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The property (18) shows the existence of N(T ) such that if n > N(T ) then we have

∫
Ω1

‖wn(T )‖2 dx = �∕2 > 0 .

We recall that we can fix T > 0, as small as we wish. So, for every (small) T > 0 there exist waves excited on the boundary

which cover the distance d in time less then T .

5 THE SOLUTIONS WHEN C AND � TENDS TO EXCEPTIONAL VALUES

Eq. (1) is the special case of Eq. (3) when the coefficient c is put equal zero thanks to the fact that it is small when compared with

the other coefficients. It is not stated in1 that the case c = 0 is obtained as the limit of (3) for c → 0. And in fact, we are going to

see that in general the solutions, as a function of c, do not have limits. Even more so because the parameter which should tend

to zero is the physical parameter �. In terms of �, Eq. (3) is the equation

��′′ + a�′ = bΔ� − �cΔ�′′ where we redefined

⎧
⎪⎨⎪⎩

a = �

b = �2∕(
�)

c = 1∕(
�) .

(19)

From this point of view, we might expect that the solutions of Eq. (3) when � → 0+ converge to those of the heat equation

a�′ = bΔ�

at least when the initial conditions satisfy the compatibility condition (7). We disprove also this conjecture.

We sum up: in this section we consider three significant limit processes:

1. when a, b are kept fixed and c → 1∕�2
n
;

2. when a and b are kept fixed and c → 0 while being c ∉  ;

3. when the complete dependence on � is considered and so the equation is (19). We prove the existence of solutions which

do not converge when � → 0+ with the condition � ∉  (the set  is defined in (8)) not even if the initial conditions w0

and w1 satisfy the compatibility condition aw1 = bΔw0 imposed by the heat equation.

The interesting case are the second and third ones but the computation in the first case provides preliminary formulas.

5.1 The first limiting process: when c → 1∕�2
n

with c ∉ 
We recall the definition of the exceptional set

 =

{
1

�2
n

, −�2
n
∈ �p(A)

}

and we recall that the problem is well posed if and only if c ∉  . We show the existence of initial conditions such that the

corresponding solution does not have limit when c → 1∕�2
n

for a fixed value of n. An obvious guess is that the limit should not

exist if the initial condition does not satisfy the compatibility condition (7), for example if

f = 0 , �0 = 0 , �1 = 'n

where 'n is an eigenvector of the eigenvalue �2
n
. This is true and we leave the verification to the reader since we can prove

a stronger and possibly unexpected property: the limit does not exist even if the compatibility condition is satisfied. So, we

consider the solution with f = 0 and

�(0) = −
a

b�2
n

'n , �′(0) = 'n .

Proceeding by separation of variables as in Sect 3.1 but with c ≠ 1∕�2
n

we see that the solution is

�(t) = �n(t)'n = A exp

{
−a + �

2(1 − c�2
n
)
t

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�1,c (t)

+B exp

{
−

a + �

2(1 − c�2
n
)
t

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�2,c (t)
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where

� =

√
a2 − 4b�2

n
(1 − c�2

n
) = a

[
1 −

2b�2
n

a2
(1 − c�2

n
) −

2b2�4
n

a4
(1 − c�2

n
)2 + o(1 − c�2

n
)2

]
. (20)

The coefficients A and B are found by imposing the initial condition to �n(t):

�n(0) = −a∕b�2
n
, �′

n
(0) = 1

and it turns out that

A =
2b�2

n
(1 − c�n)

2 − a(a + �)

2b��2
n

, B = −
a(� − a) + 2b�2

n
(1 − c�2

n
)

2b��2
n

.

In these expressions, n and �2
n

are fixed while we consider the limit for c → 1∕�2
n
. It is easily seen that

⎧
⎪⎨⎪⎩

limc→1∕�2
n
A = −a∕b�2

n

limc→1∕�2
n
B = 0

and B =
b�2

n

a3
(1 − c�2

n
)2 + o(1 − c�2

n
)

⎧
⎪⎪⎨⎪⎪⎩

limc→(1∕�2
n
)

−a+�

2(1−c�2
n
)
= −2b�2

n
∕a

limc→(1∕�2
n
)+ [−

a+�

2(1−c�2
n
)
] = +∞

limc→(1∕�2
n
)− [−

a+�

2(1−c�2
n
)
] = −∞ .

So we have for t > 0: ⎧⎪⎨⎪⎩

limc→1∕�2
n
�1,c(t) = −

a

b�2
n

e−(2b�
2
n
∕a)t

limc→(1∕�2
n
)+ �2,c(t) = ∞

limc→(1∕�2
n
)− �2,c(t) = 0 .

5.2 The second limiting process: when c → 0 with the condition c ∉ 
Here we show the existence of solutions of Eq. (3) which do not converge when c → 0+. An example is as follows:

Let the initial condition be

�0 = 0 , �1 =

∞∑
n=1

1

n
'n .

Then, with �n,c the solution in (21), the solution � = �c(t) is

�c(t) =

∞∑
n=1

1

n
'n�n,c(t)

where �n = �n,c(t) solves

(1 − c�2
n
)�′′

n
+ a�′

n
+ b�2

n
�n = 0 �n(0) = 0 , �′

n
(0) = 1 . (21)

The solution is

�n,c(t) =
1 − c�2

n

�

[
exp

{
−a + �

2(1 − c�2
n
)
t

}
− exp

{
−

a + �

2(1 − c�2
n
)
t

}]
(22)

and � is in (20).

We want to study the limit of �c(t) when c → 0 while staying outside of the exceptional set  .

For every t and every fixed n we have

‖�c(t)‖H ≥ 1

n
|�n,c(t)| so that ‖�c(t)‖H ≥ sup

{
1

n
|�n,c(t)|

}
. (23)

We prove

lim
c
sup

{
1

n
|�n,c(t)|

}
= +∞ (24)

the limit being computed while c → 0 along the sequence

ck =
1

�2
k

+ 

1

�3
k

.

The number 
 > 0 is fixed and chosen in such a way that ck ∉  . The number 
 exists since  is denumerable.

In order to verify (24) it is sufficient that we prove

lim
c=ck→0+

1

k
|�k,ck (t)| = +∞ .
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We note that

ck�
2
k
= 1 +




�k
, , 1 − ck�

2
k
= −




�k
, � =

√
a2 + 4b
�k .

The common coefficient of �k,ck(t) is

1

k

1 − c�2
k

�
= −




k�k

1√
a2 + 4b
�k

→ 0 .

Weyl estimate of the eigenvalues of the Dirichlet laplacian in a bounded region of ℝd (see10,5) gives

�k ≍ k1∕d d = dimΩ

so that

1

k

1 − c�2
k

�
≍

1

k1+(3∕2d)
. (25)

The first exponential remains bounded since the exponent is negative:

−a + �

2(1 − c�2
n
)
t =

−a +
√
a2 + 4b
�k

−2

�kt ≤ 0 .

So, the contribution of the first addendum tends to zero. Instead, we prove that the second addendum diverges for every fixed

t > 0. Thanks to the estimate (25), it is sufficient that we examine the exponent, which is

−
a + �

2(1 − c�2
n
)
t = −a

1 +
√
1 + 4b
�k∕a

2

−2

�kt ≍ k

3

2d .

The required property (24) follows.

This observation confirms the fact that Eq. (1) is not the limit of (3).

5.3 The third limiting process: when � → 0

In spite of the fact that this may look as the most natural limit process to be considered, also in this case we prove the existence

of solutions which do not converge.

We consider the following example:

Ω = (0, �) so that �2
n
= −n2 (simple eigenvalue)

and the problem

��′′ = −2�′ + Δ� −
�2

4
Δ�′′ ,

⎧⎪⎨⎪⎩

�(0) =

∞∑
n=1

1

n4
'n , �′(0) = −

∞∑
n=1

1

2n2
'n ,

�(0, t) = �(�, t) = 0 .

(26)

Remark 9. We note:

• the initial conditions �0 and �1 satisfy the compatibility condition imposed by the heat equation 2�′ = Δ�:

2�1 = 2�′(0) = Δ�(0) = Δ�0

and this compatibility condition imposed by the heat equation is precisely the condition that the components �0,n and �1,n
of the initial data satisfy the compatibility conditions (7).

• the coefficients of the system are obtained when the values of the physical parameters are � = 2 and 
� = 4, compare (3)

and (19). So, this example is not artificial.

The condition � → 0 and � ∉  is the condition

� → 0 , � ≠ 4

k2
∀k . (27)

We shall choose the sequence {�k}

�k =
5

k2

so that � ∉  since
√
5 is irrational.
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We solve (26) by separation of variables:

�(x, t) =

∞∑
n=1

'n(x)�n(t)

where �n(t) solves (
� −

1

4
�2n2

)
�′′ = −2�′

n
− n2�n �n(0) =

1

n4
, �′

n
(0) = −

1

2n2
.

It is easily computed that

�n(t) = −
1

8n4
(4 − �n2)2

n2� − 2
exp

{
−

2n2

4 − �n2
t

}
+

�2

8(n2� − 2)
exp

{
−
2

�
t
}

.

Now we use a similar idea to that used in the study of the second limit. We fix any t > 0 and we denote explicitly the

dependense of �:

�(x, t) = ��(x, t) , �n(t) = �n,�(t) .

Then, for every � > 0, � ∉ , we have

‖��(t, ⋅)‖L2(0,�) > |�n,�(t)| and so ‖��(t, ⋅)‖L2(0,�) > sup{|�n,�(t)| , n ∈ ℕ} . (28)

Now we evaluate both the addenda of �k,�(t) when � = �k = 5∕k2.

• the first addendum is (1∕24k2)e2k
2t
→ +∞. We have (1∕24k2)e2k

2t > 2k if k is large.

• the second addendum is (25∕24k4)e−2k
2t∕5 < 2∕k4 < 2.

And then, there exists k such that

|�k,�k(t)|L2(0,�) > k so that ‖�5∕k2(t, ⋅)‖L2(0,�) >→ +∞ .

It follows that �5∕k2(t) does not converge to a solution of the standard heat equation.
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