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Abstract

Random sampling is a ubiquitous tool in simulations and modeling
in a variety of applications. There are efficient algorithms for these for
several known distributions, but in general, one must resort to comput-
ing or approximating the inverse to the distribution to generate random
samples, given a random number generator for a uniform distribution. In
certain physical and biomedical applications with which we have been par-
ticularly concerned, it has proven to be more efficient to provide random
times for a walk of a fixed length, rather than the conventional random
step lengths in a given time step for the walker. For these, the hitting-
time distributions which have to be sampled have been computed, and
proved to be complicated expressions with no efficient method to com-
pute the inverse. In this paper, we explore a well known probability (the
F-ratio distribution) – whose inverses are efficiently computable – as an
alternative to generating look-up tables and interpolations to obtain the
required time samples. We find that this distribution approximates the
hitting-time distribution well, and report on error measures for both the
approximation to the desired, and the error in the generated time sam-
ples. Future Monte Carlo simulations in a number of fields of application
may benefit from methods such as we report here.

Keywords: Random sampling, Hitting Time Distributions, F-distributions,
Monte Carlo simulations.

1 Introduction

Simulations of random processes are used very widely, and it is important then
to have efficient methods of generating random samples. In our work, we en-
countered this need in computational biomedicine; for example, in modeling
transport of molecules, from water to proteins, in tissue [4, 6]. For reasons
spelled out in the cited papers, we chose to use probabilistic representations of
solutions of the elliptic and the parabolic partial differential equations that are
required for those applications. The coefficients of the differential operators in
these equations represent physical phenomena such as, for example, diffusion,
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advection, and loss of a drug molecule that is being transported in tissue after
being injected therein in suspension in saline solution. In the cases of interest,
these are all inhomogeneous, i.e., the coefficients vary spatially. The general
representations of the solutions have been long known to mathematicians, and
we used the clear statements of these in the monograph of Freidlin [2]. An
essential component of such solvers is the random walk that needs to be simu-
lated to accumulate the solution to a specific problem. These random walks in
general, besides being dependent on the specified diffusivity, also have a deter-
ministic component that arises from the carrier fluid velocity (“drift”) as well
as an extinction rate due to losses, binding and degradation. The well-known
Feynman-Kac formula is required to accommodate these last phenomena, as is
described in detail in Freidlin’s monograph.

It has also been known, and discussed in a previous publication [3], that
efficient simulations of random walks require a perspective different from the
most direct method which would be to select a time step ∆t and then to se-
lect a random step length and direction to place the walker. The step length
distribution is the Gaussian familiar from studies on random walk, and there
are efficient simulations for these. However, to avoid excessive increase in the
number of samples, we would select the maximum step length possible, given
the medium inhomogeneities, and then select a random place on the sphere for
placement and a random hitting-time of arrival there. This method has been
popularized by Russian workers under the name “walk on spheres” method,
see for example [7]. Therefore, instead of the Gaussian distribution, we have
to simulate the hitting-time distributions (the hitting place offers no difficulty)
and these are much more complicated than the elementary Gaussian. We refer
to the already cited [4] and [6], as well as to [3] for background and motivation
on all these issues, as well as the detailed derivations for series representations
of the hitting-time distributions.

As mentioned, the application for our random number generation has been
adequately motivated and described in the cited publications. In brief, the prob-
abilistic representation of solutions to many partial differential equations (with
non-constant and spatially varying coefficients) of interest in applications are
useful in producing numerical solutions. Such methods demand simulations of
random walks, and efficient simulations require one to produce random times
(from a probability distribution given in Section 2.2 below) for a walk of given
length. However, it is clear that there are an increasing number of applications
having nothing to do with our interests where it would be useful to generate
samples from increasingly complicated distributions. Even the very particular
distribution that we computed in [3] is germane to applications where a random
walk combined with a deterministic velocity requires to be simulated, which
should be widely useful. Besides that, there are many other applications where
a complicated distribution is given either in series, or other non-invertible form.
It is customary to indicate several methods to generate random numbers from a
specified distribution. See, e.g., [9]: (i) inversion of the distribution; (ii) trans-
formation of the variable; (iii) acceptance/rejection and Monte Carlo methods;
and (iv) approximating with known and easily sampled distributions. As can
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be seen from Section 2.2 below, our distributions are given in the form of an
infinite series, which are not readily numerically tractable even for direct evalu-
ation. Indeed, as we noted in our previous publication [3], we found it beneficial
to use MathematicaTM (Wolfram Research, Inc., Version 10) in our evaluation.
Mathematica has apparently some built-in algorithms to accumulate exponents
in various factors before evaluation: thus large positive and negative exponents
are allowed to cancel each other. Providing the same formulas to MatlabTM

(The MathWorks, Inc.), for example, immediately resulted in numerical in-
stability and overflow/underflow problems. We would have to do a lot more
preparatory work to bring even the direct evaluation of the distributions into
serviceable form in an application environment other than MathematicaTM. In
any case, inversion of this distribution is not available in analytic form. In [3],
we used extensive numerical testing to provide an ad-hoc but quite efficient set
of interpolating approximations to the inverse of the distribution, allowing fast
generation of samples. In this paper, we explore the last approach (iv) listed
above. As for the other remaining approaches, there is no transformation of
variable apparent that could reduce the complicated formulas for the distribu-
tions to a known distribution. The acceptance-rejection method would run into
intractable problems because it would require one to evaluate the distributions
(to check against a random variable with uniform distribution over the unit in-
terval). We have not developed methods for automatic checking of convergence
or numerical stability of the series evaluation (we did it “by hand” for the cases
where we checked against the approximate distribution). Thus we must treat
our distribution essentially as a numerical distribution, and we employed the
last approach, in particular, the F-ratio distribution well known in statistics, as
the approximating distribution for reasons described below.

1.1 Outline of paper

This paper presupposes a lot of material either well-known or previously pub-
lished. We therefore have chosen to quickly recapitulate these materials so
that this paper is self-contained for reading, although some motivations will be
unclear without the background. In Section 2, we summarize formulas from
our previous paper to exhibit the distributions (and some associated expres-
sions such as the moment generating functions) according to which we need to
generate samples. Similarly, Section 3 begins with introducing the well-known
F-distribution, and how we select the parameters for it and a distribution ob-
tained by an affine mapping of its argument, so that the first four moments of
the desired distribution are matched. We also examine an undesired cutoff that
is forced by the affine mapping, and examines its potential consequences for
limiting the applicability of our method. Section 4 summarizes our results: we
characterize the distributions themselves (the approximating and the desired)
using the Cramer–von Mises distance between the two; and finally the error in
generating the time samples themselves. We have previously argued [3] that
an L1 error seems the most appropriate, and we evaluate this error for both
our current and our previously published ad-hoc approximations. A concluding
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Table 1: Glossary of Symbols

Symbol Meaning

TH First hitting-time to a sphere from origin; TH ∈
]0,∞[

XH Hitting place on the sphere at time TH

v, v,D, D Drift vector field, v = ‖v‖, diffusion tensor field,
isotropic diffusion coefficient

V Dimensionless drift speed
pV (.), PV (.) Probability density function (pdf), (cumulative)

probability distribution of TH for drift speed V
E[◦] Expected value of random variable defined in the

parentheses
mi(V ), i = 1, 2, 3, 4 First four moments of TH , i.e., for the distribution

with density pV
M(V ),V(V ), S(V ),K(V ) Mean, variance, skewness, and kurtosis of the dis-

tribution with density pV
F

M(V ),
F

V(V ),
F

S(V ),
F

K(V ) Corresponding quantities for the F-distribution
with parameters a, b

←−
t V (.) (Exact) inverse function to PV ; maps the unit in-

terval onto the positive real line

p̂, P̂ , T̂ , t̂ Approximations to p, P, T,
←−
t , respectively, with

subscripts as for the unhatted symbols
τ ∈ ]0,∞[ (Dimensionless) argument of the hitting-time dis-

tributions
u ∈ ]0, 1[ (Dimensionless) argument of the inverse functions
Pn Legendre polynomial of order n

section discusses the utility of an approach such as the one we have here, as well
as questions we have left for the future.

To avoid excessive typography, we do not indicate the random variable in
the distributions: this must always be understood to be the hitting-time TH
unless otherwise specified (see below). Table 1 summarizes the symbols used
in the paper. We note that hatted symbols are used for the approximations,
whereas unhatted symbols are reserved for the exact or “true” distributions and
functions.

2 Hitting time distributions: summary of pre-
vious results

In this section, we summarize the formulas which will serve as the basis for
simulating random walks of fixed step length and random times, in contrast
to the conventional Gaussian process simulating the walk in a fixed time, with
random step lengths. Of course, there are many applications for such Monte
Carlo methods other than the few that we have examined. The detailed justi-
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fication and derivation of the formulas quoted below are available in [3], while
applications to Dirichlet problems are discussed in [4], and to Neumann prob-
lems in [5]. We quote only as much of the formulas as we need to proceed with
discussion of the problem of computing the inverse distribution for generating
samples. The distributions we focus on are for the times at which the random
walk reaches the boundary of a sphere of given length; it turns out (loc cit) that
the place on the sphere has a readily invertible distribution so that generating
the target points on the sphere is not a problem. Only the time distribution
offers a difficulty in that its inverse cannot be expressed by an analytic function
or simple reversion of the series for the distributions. We first quote the Pois-
son summation formula which we need for evaluating the distributions; after
that, to make contact with our previous work, we use dimensionless variables
corresponding to the time and the deterministic drift of the random walk. This
is of no importance for this particular paper, which proceeds on the basis of
only these dimensionless variables for efficiency of presentation, the application
being of no consequence here. All the equations can be easily reconverted in
terms of the physical parameters.

2.1 The Poisson resummation

The Poisson summation formula is often used to improve the convergence of
a series in certain ranges. We quote this formula here as follows. Define the
Fourier transform

F (x) :=
∞
∫
−∞

dy exp(−i2πxy)f(y) (1)

Then for ‘nicely’ behaved functions

∞∑
n=−∞

f(n) =

∞∑
k=−∞

F (k) (2)

(Any text or online source may be consulted for the conditions for validity of
the Poisson summation.)

2.2 Dimensionless variables

We define the dimensionless time and speed variables:

τ :=
D

R2
T ; V :=

1

2

vR

π2D
(3)

where D is the isotropic diffusion coefficient of the random walk with dimension
length2/time, v is the magnitude of the deterministic drift velocity, R is the
step length that is taken, and T is the time, the distribution of which needs to
be computed. This distribution depends on the dimensional variables D, T , R,
and v only through these two dimensionless combinations. We are considering
isotropic diffusion, so R is the radius of a hitting sphere. The density func-
tion (since it is not dimensionless itself) also depends on the Jacobian, which
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in this case just means using the chain rule. For the development henceforth,
we may just take as given that we have a family of distributions for the dimen-
sionless hitting-time (the argument for this being denoted τ), while the family
is parametrized by V . In applications, this is the speed of a particle with a
given (vector) velocity and isotropic diffusion coefficient D. It turns out that
the hitting-time distributions can be fully characterized in terms of these two
parameters. In applications, we have allowed the dimensionless speed V to be
either vanishing (pure diffusion) or in the range from e−5 ∼ 0.007 to e5 ∼ 150.
We now summarize results we have obtained previously for the hitting-time
distributions.

2.3 Summary of hitting-time distributions

The zero speed cumulative distribution is

P0(τ) = 1 + 2

∞∑
n=1

(−1)n exp(−n2π2τ) =

∞∑
n=−∞

(−1)n exp(−n2π2τ) (4)

Its Poisson resummed form (indicated by the superscript PS) is

PS

P 0(τ) =

∞∑
k=−∞

1√
πτ

exp[−(2k − 1)2/4τ ] (5)

The distribution for non-zero speed is

PV (τ) = 1 + 2N exp[−π4V 2τ ]

∞∑
n=1

(−1)n
n2

n2 + π2V 2
exp(−π2τn2) (6)

and its Poisson-resummed form

PS

P V (τ) =
sinh(π2V )

π2V
exp[−π4V 2τ ]

∞∑
k=−∞

1√
πτ

exp[−(2k − 1)2/4τ ]

+
1

2
sinh(π2V )

∞∑
k=−∞

{
exp[−|2k − 1|π2V ]erfc

[
|2k − 1| − 2π2τV

2
√
τ

]

− exp[|2k − 1|π2V ]erfc

[
|2k − 1|+ 2π2τV

2
√
τ

]}
(7)

The Laplace transform, equivalent to the moment generating function, is

MV (α) := E[(−ατ)]pV (τ) =
sinh(π2V )

π2V

√
α+ π4V 2

sinh(
√
α+ π4V 2)

(8)

from which the moments are obtained by differentiation (and paying attention to
the sign). Since we will be matching the first four moments, we give the expres-
sions for these, obtained by successive differentiation of the moment generating
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function above:

m1(V ) =
π2V coth(π2V )− 1

2π4V 2
(9)

m2(V ) =
π4V 2 coth2(π2V ) + π4V 2cosech2(π2V )− π2V coth(π2V )− 1

4π8V 4
(10)

m3(V ) =
(
8π12V 6

)−1
×
{
π2V coth

(
π2V

) [
5π4V 2 cosech2

(
π2V

)
− 3
]

+ π6V 3 coth3
(
π2V

)
− 3
}
(11)

m4(V ) =
(
16π16V 8

)−1
×
{

3π4V 2 coth2
(
π2V

) [
6π4V 2cosech2

(
π2V

)
− 1
]

+ 5π2V coth
(
π2V

) [
2π4V 2cosech2

(
π2V

)
− 3
]

+ 5π8V 4cosech4
(
π2V

)
− 3π4V 2cosech2

(
π2V

)
+ π8V 4 coth4

(
π2V

)
+2π6V 3 coth3

(
π2V

)
− 15

}
(12)

The values of these moments for the pure diffusive process (V = 0) are

m1(0) = 1/6; m2(0) = 7/180;

m3(0) = 31/2520; m4(0) = 127/25200
(13)

The above expressions for the moments are not suitable for small V because
they result in ∞/∞ expressions resulting in numerical instability. However,
it is easy enough to find the Taylor series for the moments, and we use the
following expressions for small V (the constant term in each has been given
immediately above):

m1(V )−m1(0) = −π
4V 2

90
+
π8V 4

945
+ · · · (14)

m2(V )−m2(0) = −11π4V 2

1890
+
π8V 4

1260
+ · · · (15)

m3(V )−m3(0) = −113π4V 2

37800
+

677π8V 4

1247400
+ · · · (16)

m4(V )−m4(0) = −1073π4V 2

623700
+

671003π8V 4

1702701000
+ · · · (17)

The Taylor expansion above is used for the first three moments for V ≤ 0.01
while that for the fourth moment is used for V ≤ 0.02. We also introduce
calligraphic fonts

M(V ), V(V ), S(V ), K(V ) (18)

to denote the mean, the variance, the skewness, and the kurtosis, respectively,
of the density function pV . For convenience, we reproduce the relationship of
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these quantities to the moments (henceforth we drop the argument V for the
moments and the related quantities, the argument V being understood):

M = m1

V = m2 −m2
1

S = [m3 − 3m1m2 + 2m3
1]/V3/2

K = [m4 +m1(−4m3 +m1(6m2 − 3m2
1))]/V2

(19)

For example, the variance of the distribution is thus seen to be

V =
π4V 2 cosech2(π2V ) + π2V coth(π2V )− 2

4π8V 4
(20)

The density functions themselves for V = 0 are as follows:

p0(τ) =

∞∑
n=−∞

(−1)n+1n2π2 exp(−π2τn2) =

∞∑
n=−∞

d

dτ
[exp(iπn) exp(−π2τn2)]

(21)

PS
p 0(τ) =

∞∑
k=−∞

d

dτ

[
1√
πτ

exp[−(2k − 1)2/4τ ]

]
(22)

and, for non-zero speeds, the density is given by

pV (τ) = N exp[−π4V 2τ ]p0(τ) (23)

where the normalization

N = 2
sinh(π2V )

π2V
(24)

Thus, using the Fourier transform and integrating by parts, the Poisson re-
summed density is immediate:

PS
p V (τ) = N exp[−π4V 2τ ]

∞∑
k=−∞

d

dτ

[
1√
πτ

exp[−(2k − 1)2/4τ ]

]
(25)

2.3.1 Summary

The distributions have been computed above: the direct ones converge for large
arguments, while the Poisson resummed ones are needed for smaller arguments,
which in fact comprise most of the useful range. We use

←−
t V (u) to denote

the inverse function to the distribution. Then if u is generated with uniform
distribution in its range on the unit interval, the mapping by the inverse function
will generate samples with the desired distribution in time. The objective of this
paper is to generate such random samples. (The transition time above which
one should use the direct series and below which one should use the Poisson
resummed one, for stable and fast evaluation of the respective series, depends
on the speed V , see [3].) It is obvious, as mentioned in the last paragraph of
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the introduction, that one cannot find a readily expressible inverse function to
the distribution. In our previous work [3], we used an ad-hoc approach which
divided the range of V in logarithmic increments of 0.1 in the exponent from
−5 to 5, that is, from V = exp (−5) to exp (+5) in addition to V = 0. A table
of parameters and interpolation functions based upon them was then used to
describe the inverse as detailed previously. We now explore approximating it
with a F-distribution which is well-studied in statistics with robust numerical
schemes for inversion.

3 F-distributions

We here explore an alternative approach to generating samples, namely by ap-
proximating the desired distribution by standard and well-studied statistical
distributions. We refer to Chapter 6 of [8] for justifying our taking this ap-
proach. Briefly, we seek to find a family of distributions that can ‘satisfactorily’
represent the given hitting-time distribution computed above, and then seek the
best fit to a distribution within the family. We will demand that the distribution
fits the first four moments exactly, so as to capture enough of the non-Gaussian
nature of the distribution. Using more moments of course adds accuracy for the
fit, but drastically introduced complexity.

Figure 1(a) illustrates the reason for our choice. In this figure we show a
parametric plot of the skewness and kurtosis for a variety of distributions [8] as
indicated in the legend. Different functions have different relationships between
skewness and kurtosis. For some functions the skewness and the kurtosis are
dependent as is the case for a lognormal density function whose representation
in the Pearson system (skewness squares-vs-kurtosis) is a line, the normal prob-
ability density function (pdf) is a point (zero skewness, and kurtosis of 3), and
for some other functions the skewness is independent of the kurtosis, and the
function spans a range of values in the Pearson chart. In addition, a scatter plot
of data points obtained from the true hitting-time distributions for a number
of values for V ≤ 100 are shown. We find that the skewness and kurtosis fall
within the family distribution given by Pearson type VI. Thus, all arbitrary
functions that produce a given pair (skewness, kurtosis) can be described by
Pearson type VI. The Pearson type VI can be represented by the F-distribution
(given in Mathematica by FRatioDistribution) or by a Beta distribution of the
second kind. We choose (for convenience) the F-distribution. We do not need
to display the line that obtains for this distribution, since as discussed imme-
diately above, it has been constructed to fit all the first four moments exactly
and hence will go through the data points shown. It would appear that we
will need a four-parameter family but we choose the two parameter (central)
F-distribution, which we first describe. We shall later return to discussing why
we did not choose a distribution with more paramaters. We denote the F-ratio
distribution and density respectively, for some non-negative random variable X,
the relation of which to the hitting-time we shall specify below, as

FV (x | a, b), fV (x | a, b) (26)
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We shall not give the explicit expression of the distribution or its density (these
are readily available online) in terms of known special functions. However,
again for convenience, we give the expression of the first four moments of the
F-distribution in terms of the parameters:

F

M =
b

b− 2
, b > 2

F

V =
2b2(a+ b− 2)

a(b− 2)2(b− 4)
, b > 4

F

S =
2a+ b− 2

b− 6

√
8(b− 4)√

a(a+ b− 2)
, b > 6

F

K = 3 +
12[(b− 2)2(b− 4) + a(a+ b− 2)(5b− 22)]

a(a+ b− 2)(b− 6)(b− 8)
, b > 8

(27)

We proceed as follows. We first fit the parameters of the distribution to skewness
and the kurtosis of the actual density pV , and obtained from its moment gener-
ating function, both given above. It may be shown that the desired relationships
are

a = −2 +
2(K + 3)

6− 2K + 3S2

+ 6

√
(K + 3)2S2(S2 −K + 1)2

(3S2 − 2K + 6)2(S2(K(K + 78)− 63)− 32K(K − 3)− 36S4)
(28)

b = 6 +
4(K + 3)

2K − 3(S2 + 2)
(29)

We now define the new random variable

T := cX + d (30)

where we adjust the constants c, d to equate the mean and variance of the

hitting-time distribution PV and its Poisson-resummed form
PS

P V of T from
Section 2 to that of X. In effect, we are endowing the F-distribution with four
parameters. This results in

c =

√
V/

F

V (31)

d = m1 − c×
F
m1 (32)

We denote the transformed distribution and density as P̂V (τ) and p̂V (τ), re-
spectively, the parameters a, b, c, d being understood as arguments of the ap-
proximating functions. It is understood that these parameters all depend on V ,
the dependence being obtained by matching these parameters to the moments
obtained earlier. Thus, we now see that the first four moments of the distribu-
tion P̂V agree with the corresponding four moments of the desired distribution
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previousy denoted PV . We therefore will now work with P̂V (τ) and p̂V (τ) as
defined above to serve as our approximations to the true distributions. From
the transformation (30), we easily see that

p̂V (τ) =


1

c
fV

(
τ − d
c

∣∣∣∣ |a, b), τ ≥ d

0, τ < d
(33)

Thus, this density unlike the original density of a F-distribution is cut off at d:
we shall evaluate this cutoff below and see that it is positive. Thus, a hitting-
time s shorter than d does not occur in this approximation. By integration we
see that

P̂V (τ) =

FV
(
τ − d
c

∣∣∣∣ |a, b), τ ≥ d

0, τ < d
(34)

These then are the approximations to the true distributions we shall use. The
F-distributions depend on the parameters a, b which are given by equations (28)
and (29), while the independent variable in the distribution is now (τ−d)/c with
c, d given as in equations (31) and (32). Thus for simulation, we use the inverse
of the F-distributions and compare that to those of the true distributions. Our
time sample generated is thus

t̂(u) = cτ̂(u) + d (35)

where τ̂ denotes the inverse function to P̂V and is understood to depend on the
parameters a and b as well. We now comment on our choice of distribution and
on the cutoff d which prevents our approximation from generating sample times
below the cutoff.

Figure 1(b) shows the cutoff times d, namely the (dimensionless) τ values
which will fail to be generated by our approximation, due to the affine shift
involved in the argument as discussed above. However, an examination of the
cutoff probabilities shows no cause for concern. At V = 0, we find that the
probability at the right-hand limit (that is, approaching the limiting τ value of
d = 0.04396 from above), is 4.58× 10−8, and this is the worst case probability.
That means that we encounter values below the cutoff at most one time in
100 million. This drops to the cumulative distribution value of 4 × 10−9 for
V = e−5, and down to 10−9 for V = e−2. Beyond this, for larger values
of V , the cumulative probability for encountering times below the cutoff are
vanishingly small (for V = 1/e it is < 10−13 and continues to decline steeply).
Thus, we may conclude that even for V = 0, the errors are small enough to
be negligible for most applications. We now evaluate the actual performance of
the approximation for generating time samples, and compare the approximating
distribution to the actual.

We conclude by discussing the alternatives to the particular method we have
discussed. It is difficult to improve the approximating distribution without sub-
stantial increase in complexity and numerical evaluations which will slow down
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(a)

(b) The speeds V are just integer powers of e (the base of
natural logs) from −5 to +5 in unit steps.

Figure 1: Characteristics of the F-distribution approximation
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simulations. If we choose three-parameter distributions (such as the non-central
F), then we cannot dispense with either the scale or the shift in equation (30),
which will produce a cutoff to time samples from the approximating distribution.
Thus, if we begin with equation (30), but eliminate the shift d, by matching the
third parameter to the mean or to the variance, then the linear scaling c will
alter these. If we eliminate the scale by matching to a third parameter, the shift,
which results in the cutoff, remains. We could use a four-parameter distribution
like the Beta Type II, but the numerical complexity of evaluating moments is
excessive. The same remark applies to matching four moments by using, say, a
maximum entropy distribution.

4 Evaluation of the F-distribution approxima-
tion

We first discuss how to evaluate the performance in terms of the application,
and then return to evaluating the distribution itself. When comparing the use
of the approximate random variable t̂V (u) in favor of the exact

←−
t V (u) , where u

is the uniform random variable in the unit interval, we note that the inverse has
to return times in accordance with the actual distributions for all times, though
of course at either end of the interval, larger relative errors can be tolerated.
We have therefore chosen to use the relative error using the L1 norm as our
criterion. In other words, we define and compute

L1err :=
∫10 |
←−
t V (u)− t̂V (u)|du
∫10
←−
t V (u)du

× 100 (36)

(the denominator on the right-hand side being the mean hitting-time) and dis-
play this as the percentage error. We have also computed the mean square error
compared with the second moment, with errors that are even smaller, so we do
not display these.

Figure 2(a) shows the result, and compares with our previous method which
was entirely empirical and based on constructing tables and interpolating func-
tions. The method we are illustrating in the paper uses standard software (in
this case, Mathematica) to compute the inverse of the F-distributions for the
purpose of generating samples. We admit that our previous ad-hoc approach
does indeed perform well, though in both cases the errors are relatively small.
The worst case for the performance of the present method, in this metric, is
in fact for V ∼ e but this is precisely the range in which the drift as well as
the diffusion behave comparably: the distribution is most sensitive to V around
this region: for V = 0, it is purely diffusive, and for large V , one may estimate
the hitting-time simply by 1/V . (However, due to historical circumstances as
discussed in [3], we introduced factors of π into the definitions of the dimension-
less quantities, so that the hitting-time turned out to be 1/π2V for unimpor-
tant reasons.) In Figure 2(b) we evaluate the goodness of fit by computing the
Cramer–von Mises (symmetric) distance [1] between the two distributions. This
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(a)

(b)

Figure 2: Performance of the F-distribution approximation
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distance is given by the expectation value of the difference squared between the
two distributions (the expectation value may be taken with respect to either):

E
[(
PV − P̂V

)2]
(37)

The figure shows this measure. If we want to compare this with some number,
we may pick the expectation of the square of either distribution which would
give us 1/3: we have not done so in the bar graph, but it is easy enough to
multiply by 3. The goodness of the approximation is excellent.

5 Conclusion and discussion

Being able to simulate distributions with complicated expressions, not express-
ible in analytic form, is an increasingly frequent requirement. We encountered
such needs in our own work in computational biomedicine. Faced with this
requirement, one approach explored here is to approximate the desired distribu-
tion with a distribution within a canonical family of distributions and test if the
desired accuracy is sufficient. The advantage of course is the body of knowledge
and of software available for such distributions. We have given a detailed look
at a distribution required for the solutions of partial differential equations en-
countered ubiquitously including in our prior work, and an approximation that
matched the first four moments with a two-parameter F-distribution together
with an affine transform of the random variable, effectively endowing the dis-
tribution with four parameters. Some error estimates were also computed and
plotted, and seem adequately small for application. We hope that such meth-
ods, namely the use of canonical distributions for sampling, gain further notice
in computational applications of random walk and Monte Carlo methods.
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