REFERENCES
Adams, L. F., Mathewes, S., O’Hara, P., Petersen, A., & Hanne Gürtler
(1994). Elucidation of the mechanism of cryIIIa overproduction in a
mutagenized strain of Bacillus thuringiensis var.tenebrionis . Mol Microbiol , 4(2), 381-9. doi:
10.1111/j.1365-2958.1994.tb01298.x
Bertani, G. (2004). Lysogeny at mid-twentieth century: P1, P2, and other
experimental systems. J Bacteriol , 186(3), 595-600. doi:
10.1128/JB.186.3.595-600.2004
Canosi, U., Morelli, G., & Trautner, T. A. (1978). The relationship
between molecular structure and transformation efficiency of someS. aureus plasmids isolated from B. subtilis . Mol
Gen Genet , 166(3), 259-67. doi: 10.1007/BF00267617
Caspers, M., Brockmeier, U., Degering, C., Eggert, T., & Freudl, R.
(2010). Improvement of Sec‐dependent secretion of a heterologous model
protein in Bacillus subtilis by saturation mutagenesis of the
N‐domain of the AmyE signal peptide. Appl Microbiol Biotechnol ,
86(6), 1877-85. doi: 10.1007/s00253-009-2405-x
Commichau, F. M., Alzinger, A., Sande, R., Bretzel, W., Meyer, F. M.,
Chevreux, B., Wyss, M., Hohmann, H. P., & Pragai, Z. (2014).
Overexpression of a non-native deoxyxylulose-dependent vitamin B6
pathway in Bacillus subtilis for the production of pyridoxine.Metab Eng , 25, 38-49. doi: 10.1016/j.ymben.2014.06.007
Crameri, A., Whitehorn, E. A., Tate, E., & Stemmer, W. P. C. (1996).
Improved green fluorescent protein by molecular evolution using DNA
shuffling. Nat Biotechnol , 14, 315–319. doi:
10.1038/nbt0396-315
Goldsmith, M., & Tawfik, D. S. (2017). Enzyme engineering: Reaching the
maximal catalytic efficiency peak. Curr. Opin. Struct Biol , 47,
140–150. doi: 10.1016/j.sbi.2017.09.002
Hartl, B., Wehrl, W., Wiegert, T., Homuth, G., & Schumann, W. (2001).
Development of a new integration site within the Bacillus
subtilis chromosome and construction of compatible expression
cassettes. J Bacteriol , 183, 4393-4393. doi:
10.1128/JB.183.8.2696-2699.2001.
Jiang, Z., Niu, T. F., Lv, X. Q., Liu, Y. F., Li, G. H., Lu, W., Du, G.
C., Chen, J., & Liu, L. (2019). Secretory Expression Fine-Tuning and
Directed Evolution of Diacetylchitobiose Deacetylase by Bacillus
Subtilis . Appl Environ Microbiol , 85(17), e01076-19. doi:
10.1128/AEM.01076-19.
Li, X. Z., Lu, Z. H., Zhou, Y. L., Li, S. Y., & Zhang, G. M. (2017).
Preparation and transformation optimization for supercompetent B.
subtilis SCK6 cells. Chin J Biotech , 33(4), 692–698. doi:
10.13345/j.cjb.160362.
Li, Y. X., Yi, P., Yan, Q. J., Qin, Z., Liu, X. W., & Jiang, Z. Q.
(2017). Directed evolution of a β-mannanase fromrhizomucor mieheito
improve catalytic activity in acidic and thermophilic conditions.Biotechnol Biofuels , 10, 143. doi: 10.1186/s13068-017-0833-x.
Liu, X., Liang, M., Liu, Y., & Fan, X. (2017). Directed evolution and
secretory expression of a pyrethroid-hydrolyzing esterase with enhanced
catalytic activity and thermostability. Microb Cell Fact , 16(1),
81. doi: 10.1186/s12934-017-0698-5.
Lu, P., Li, Q., Liu, H., Feng, Z., Yan, X., Hong, Q., & Li, S. P.
(2013). Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol
by cupriavidus sp. dt-1. Bioresour Technol , 127, 337-42.
doi: 10.1016/j.biortech.2012.09.116.
Marcus, S., Ajay, S., & Ward, O. P. (2004). Developments in the use ofBacillus species for industrial production. Can JMicrobiol , 50, 1. doi: 10.1139/w03-076.
Melnikov, A., & Youngman, P. J. (1999). Random mutagenesis by
recombinatorial capture of PCR products in Bacillus subtilis andAcinetobacter calcoaceticus . Nucleic Acids Res , 27,
1056–1062. doi: 10.1093/nar/27.4.1056.
Nijland, R., Heerlien, R., Hamoen, L. W., & Kuipers, O. P. (2007).
Changing a single amino acid in Clostridium perfringens beta-toxin
affects the efficiency of heterologous secretion by Bacillus
subtilis . Appl Environ Microbiol , 73, 1586-1593. doi:
10.1128/AEM.02356-06.
Packer, M., & Liu. D. (2015). Methods for the directed evolution of
proteins. Nat Rev Genet , 16, 379–394. doi: 10.1038/nrg3927.
Reetz, M. T., Carballeira, & José Daniel (2007). Iterative saturation
mutagenesis (ISM) for rapid directed evolution of functional enzymes.Nat Protoc , 2(4), 891-903. doi: 10.1038/nprot.2007.72.
Romero, P. A., Arnold, & F. H. (2009). Exploring protein fitness
landscapes by directed evolution. Nat Rev Mol Cell Biol , 10,
866–876. doi: 10.1038/nrm2805.
Roodveldt, C., Aharoni, A., & Tawfik, D. S. (2005). Directed evolution
of proteins for heterologous expression and stability. Curr Opin
Struct Bioi , 15, 50-56. doi: 10.1016/j.sbi.2005.01.001.
Schumann, W. (2007). Production of recombinant proteins inBacillus subtilis . Adv Appl Microbiol , 62, 137-189. doi:
10.1016/S0065-2164(07)62006-1.
Shafikhani, S., Siegel, R. A., Ferrari, E., & Schellenberger, V.
(1997). Generation of large libraries of random mutants inBacillus subtilis by PCR‐based plasmid multimerization.Biotechniques , 23, 304–310. doi: 10.2144/97232rr01.
Shevchuk, N. A., Bryksin, A. V., Nusinovich, Y. A., Cabello, F. C.,
Sutherland, M., & Ladisch, S. (2004). Construction of long DNA
molecules using long PCR-based fusion of several fragments
simultaneously. Nucleic Acids Res , 32, e19. doi:
10.1093/nar/gnh014.
Song, Y., Fu, G., Dong, H., Li, J., Du, Y., & Zhang, D. (2017).
High-Efficiency Secretion of beta-Mannanase in Bacillus subtilisthrough Protein Synthesis and Secretion Optimization. J Agric Food
Chem , 65, 2540-2548. doi: 10.1021/acs.jafc.6b05528.
Terpe, K. (2006). Overview of bacterial expression systems for
heterologous protein production: from molecular and biochemical
fundamentals to commercial systems. Appl Microbiol Biot , 72,
211-222. doi: 10.1007/s00253-006-0465-8.
Wang, X. J., Peng, Y. J., Zhang, L. Q., Li, A. N., & Li, C. (2012).
Directed evolution and structural prediction of cellobiohydrolase II
from the thermophilic fungus chaetomium thermophilum. Appl
Microbiol Biotechnol , 95(6), 1469-1478. doi: 10.1007/s00253-011-3799-9.
Wong, T. S., Roccatano, D., & Schwaneberg, U. (2007). Steering directed
protein evolution: strategies to manage combinatorial complexity of
mutant libraries. Environ Microbiol , 9(11), 2645-2659. doi:
10.1111/j.1462-2920.2007.01411.x.
Wong, T. S., Tee, K. L., Hauer, B., & Schwaneberg, U. (2004) Sequence
saturation mutagenesis (SeSaM): a novel method for directed evolution.Nucleic. Acids. Res. 32, e26. doi: 10.1093/nar/gnh028.
Wong, T. S., Roccatano, D., Zacharias, M., & Schwaneberg, U. (2006). A
statistical analysis of random mutagenesis methods used for directed
protein evolution. J. Mol. Biol . 355(4), 0-871. doi:
10.1016/j.jmb.2005.10.082.
Xie, J., Zhao, Y., Zhang, H., Liu, Z., & Lu, Z. (2014). Improving
methyl parathion hydrolase to enhance its chlorpyrifos-hydrolysing
efficiency. Lett. Appl. Microbiol . 58(1), 53-59. doi:
10.1111/lam.12155.
Yang, H., Liu, L., Li, J., Du, G., & Chen, J. (2011). Heterologous
expression, biochemical characterization, and overproduction of alkaline
alpha-amylase from Bacillus alcalophilus in Bacillus
subtilis . Microb. Cell. Fact. 10, 77. doi:
10.1186/1475-2859-10-77.
You, C., Zhang, X. Z., & Zhang, Y. H. P. (2012). Simple cloning via
direct transformation of pcr product (DNA multimer) to Escherichia
coli and Bacillus subtilis . Appl Environ Microbiol ,
78(5), 1593-1595. doi: 10.1128/AEM.07105-11.
You, L., & Arnold, F. H. (1996). Directed evolution of subtilisin E inBacillus subtilis to enhance total activity in aqueous
dimethylformamide. Protein Eng , 9, 77–83. doi:
10.1093/protein/9.1.77.
Zeymer, C., & Hilvert, D. (2018). Directed evolution of protein
catalysts. Annu Rev Biochem , 87, 131-157. doi:
10.1146/annurev-biochem-062917-012034.
Zhang, X. Z., Cui, Z. L., Hong, Q., & Li, S. P. (2005). High-level
expression and secretion of methyl parathion hydrolase in Bacillus
subtilis WB800. Appl Environ Microbiol , 71, 4101-4103. doi:
10.1128/AEM.71.7.4101-4103.2005.
Zhang, X. Z., Sathitsuksanoh, N., Zhu, Z., Percival, & Zhang, Y. H.
(2011). One-step production of lactate from cellulose as the sole carbon
source without any other organic nutrient by recombinant cellulolyticBacillus subtilis . Metab Eng , 13, 364-372. doi:
10.1016/j.ymben.2011.04.003.
Zhang, X. Z., & Zhang, Y. H. P. (2011). Simple, fast and
high-efficiency transformation system for directed evolution of
cellulase in Bacillus subtilis . Microb Biotechnol , 4(1),
98-105. doi: 10.1111/j.1751-7915.2010.00230.x.
Zhao, H., & Arnold, F. H. (1999). Directed evolution converts
subtilisin E into a functional equivalent of thermitase. Protein
Eng , 12, 47–53. doi: 10.1093/protein/12.1.47.
Zhao, L. Z., Ye, B., Zhang, Q., Cheng, D., Zhou, C. Y., Cheng, S., &
Yan, X. (2019). Construction of second generation protease-deficient
hosts of Bacillus subtilis for secretion of foreign proteins.Biotechnol Bioeng , 116(8), 2052-2060. doi: 10.1002/bit.26992.