References
Baldry, D., Boreham, P., Challier, A., Van Etten, J., Everts, J., Gravel, J., et al. (1992). Training manual for tsetse control personnel Volume 1 . Food and Agriculture Organization of the United Nations.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. , 67, 1–48.
Baudisch, A. & Vaupel, J.W. (2012). Getting to the root of aging.Science (80-. ). , 338, 618–619.
Bellan, S.E. (2010). The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control. PLoS One , 5.
Boggs, C.L. (2009). Understanding insect life histories and senescence thorugh a resource allocation lens. Funct. Ecol. , 23, 27–37.
Burnham, K. & Anderson, D. (2002). Model selection and multimodel inference: a practical information-theoretic approach . 2nd Editio. Springer-Verlag New York, Inc.
Buxton, P.A. & Lewis, D.J. (1934). Climate and tsetse flies: laboratory studies upon Glossina submorsitans and tachinoides. Philos. Trans. R. Soc. B Biol. Sci. , 224, 175–240.
Cayuela, H., Lemaître, J.F., Bonnaire, E., Pichenot, J. & Schmidt, B.R. (2020). Population position along the fast–slow life-history continuum predicts intraspecific variation in actuarial senescence. J. Anim. Ecol. , 0–2.
Chippindale, A.K., Leroi, A.M., Kim, S.B. & Rose, M.R. (1993). Phenotypic plasticity and selection in Drosophila life‐history evolution. I. Nutrition and the cost of reproduction. J. Evol. Biol. , 6, 171–193.
Clark, J., Garbutt, J.S., McNally, L. & Little, T.J. (2017). Disease spread in age structured populations with maternal age effects.Ecol. Lett. , 20, 445–451.
Cmelik, S.H.W., Bursell, E. & Slack, E. (1969). Composition of the gut contents of third-instar tsetse larvae (Glossina morsitans westwood).Comp. Biochem. Physiol. , 29, 447–453.
Curtis Creighton, J., Heflin, N.D. & Belk, M.C. (2009). Cost of reproduction, resource quality, and terminal investment in a burying beetle. Am. Nat. , 174, 673–684.
Davison, R., Boggs, C.L. & Baudisch, A. (2014). Resource allocation as a driver of senescence: Life history tradeoffs produce age patterns of mortality. J. Theor. Biol. , 360, 251–262.
Ejezie, G.C. & Davey, K.G. (1977). Some effects of mating in female tsetse, Glossina austeni newst. J. Exp. Zool. , 200, 303–310.
English, S., Barreaux, M., Bonsall, M., Hargrove, J., Keeling, M., Rock, K., et al. (2020). Incorporating vector ecology and life history into disease transmission models: insights from tsetse (Glossina spp.). In: Population Biology of Vector-Borne Diseases . Oxford University Press.
Ernsting, G. & Isaaks, J.A. (1991). Accelerated Ageing: A Cost of Reproduction in the Carabid Beetle Notiophilus biguttatus F.Funct. Ecol. , 5, 299.
Gaillard, J.M. & Lemaître, J.F. (2019). An integrative view of senescence in nature. Funct. Ecol. , 34, 4–16.
Hargrove, J. (1999). Nutritional levels of female tsetse Glossina pallidipes from artificial refuges. Med. Vet. Entomol. , 13, 150–164.
Hargrove, J. (2004). Tsetse population dynamics. In: The Trypanosomiases (eds. Maudlin, I., Holmes, P. & Miles, M.). CABI Publishing, pp. 113–135.
Hargrove, J. & Muzari, M. (2015). Nutritional levels of pregnant and postpartum tsetse Glossina pallidipes Austen captured in artificial warthog burrows in the Zambezi Valley of Zimbabwe. Physiol. Entomol. , 40, 138–148.
Hargrove, J., Muzari, M. & English, S. (2018). How maternal investment varies with environmental factors and the age and physiological state of wild tsetse Glossina pallidipes and Glossina morsitans morsitans.R. Soc. Open Sci. , 5.
Hargrove, J., Ouifki, R. & Ameh, J. (2011). A general model for mortality in adult tsetse (Glossina spp.). Med. Vet. Entomol. , 25, 385–94.
Hess, K. & Gentleman, R. (n.d.). Muhaz: hazard function estimation in survival analysis.
Hoekstra, L.A., Schwartz, T.S., Sparkman, A.M., Miller, D.A.W. & Bronikowski, A.M. (2019). The untapped potential of reptile biodiversity for understanding how and why animals age. Funct. Ecol. , 38–54.
Holand, H., Kvalnes, T., Gamelon, M., Tufto, J., Jensen, H., Pärn, H.,et al. (2016). Spatial variation in senescence rates in a bird metapopulation. Oecologia , 181, 865–871.
Jiménez-Pérez, A. & Wang, Q. (2009). Effect of Mating Delay on the Reproductive Performance of Cnephasia jactatana (Lepidoptera: Tortricidae)_. J. Econ. Entomol. , 96, 592–598.
Jordan, A.M., Nash, T.A.M. & Boyle, J.A. (1969). Pupal weight in relation to female age in Glossina austeni Newst. Bull. Entomol. Res. , 58, 549–552.
Kabayo, J.P. & Langley, P.A. (1985). The nutritional importance of dietary blood components for reproduction in the tsetse fly, Glossina morsitans. J. Insect Physiol. , 31, 619–624.
Kaitala, A. (1991). Phenotypic Plasticity in Reproductive Behaviour of Waterstriders: Trade-Offs Between Reproduction and Longevity During Food Stress. Funct. Ecol. , 5, 12.
Kassambara, A. & Kosinski, M. (2018). Survminer: drawing survival curves using “ggplot2.”
Kirkwood, T. (1977). Evolution of ageing. Nature , 270, 301–303.
Kubi, C., Van Den Abbeele, J., De Deken, R., Marcotty, T., Dorny, P. & Van Den Bossche, P. (2006). The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection. Med. Vet. Entomol. , 20, 388–392.
Langley, P. & Clutton-Brock, T. (1998). Does reproductive investment change with age in tsetse flies, Glossina morsitans morsitans (Diptera: Glossinidae)? Funct. Ecol. , 12, 866–870.
Lansing, A. (1947). A transmissible, cumulative and reversible factor in aging. Gerontology , 2, 228–239.
McIntyre, G.S. & Gooding, R.H. (1998). Effect of Maternal Age on Offspring Quality in Tsetse (Diptera: Glossinidae). J. Med. Entomol. , 35, 210–215.
McNamara, J.M., Houston, A.I., Barta, Z., Scheuerlein, A. & Fromhage, L. (2009). Deterioration, death and the evolution of reproductive restraint in late life. Proc. R. Soc. B Biol. Sci. , 276, 4061–4066.
Moore, D. (2016). Applied Survival Analysis Using R . Spring International Publishing.
Nussey, D., Froy, H., Lemaitre, J., Gaillard, J. & Austad, S. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. , 23, 1–7.
Partridge, L. (1987). Is Accelerated Senescence a Cost of Reproduction?Funct. Ecol. , 1, 317.
Phelps, R. (1973). The effect of temperature on fat consumption during the puparial stages of Glossina morsitans morsitans Westw. (Dipt., Glossinidae) under laboratory conditions, and its implication in the field. Bull. Entomol. Res. , 62, 423.
Pinheiro, J., Bates, D., DebRoy, S. & D, S. (2018). nlme: linear and nonlinear mixed effects models.
R Core Team. (2014). R: A language and environment for statistical computing.
Rodríguez-Muñoz, R., Boonekamp, J.J., Fisher, D., Hopwood, P. & Tregenza, T. (2019). Slower senescence in a wild insect population in years with a more female-biased sex ratio. Proc. R. Soc. B Biol. Sci. , 286.
Ryan, S.J., Ben-Horin, T. & Johnson, L.R. (2015). Malaria control and senescence: The importance of accounting for the pace and shape of aging in wild mosquitoes. Ecosphere , 6, 1–13.
Sharp, S.P. & Clutton-Brock, T.H. (2010). Reproductive senescence in a cooperatively breeding mammal. J. Anim. Ecol. , 79, 176–183.
De Sousza Santos, P. & Begon, M. (1987). Survival costs of reproduction in grasshoppers. Funct. Ecol. , 1, 215–221.
Tatar, M. & Carey, J.R. (1995). Nutrition mediates reproductive trade-offs with age-specific mortality in the beetle Callosobruchus maculatus. Ecology , 76, 2066–2073.
Therneau, T. & Grambsch, P. (2000). Modeling survival data: extending the Cox model. Springer, New York.
Unnithan, G.C. & Paye, S.O. (1991). Mating, longevity, fecundity, and egg fertility of Chilo partellus (Lepidoptera: Pyralidae): Effects of delayed or successive matings and their relevance to pheromonal control methods. Environ. Entomol. , 20, 150–155.
Velando, A., Drummond, H. & Torres, R. (2006). Senescent birds redouble reproductive effort when ill: Confirmation of the terminal investment hypothesis. Proc. R. Soc. B Biol. Sci. , 273, 1443–1448.
Zajitschek, F., Zajitschek, S. & Bonduriansky, R. (2019). Senescence in wild insects: Key questions and challenges. Funct. Ecol. , 26–37.
Zuur, A., Leno, E., Walker, N., Saveliev, A. & Smith, G. (2009).Mixed effects models and extensions in ecology with R . Springer-Verlag New York, Inc.
Figure 1 Overview of experiments. M – mating.
Figure 2 Kaplan-Meier survival curves (a) and smoothed hazard function (b) for adult females by treatment. For survival curves in (a), shading indicates 95% confidence intervals.
Figure 3 Predicted probability of larval abortion as a function of mother age, by treatment. Predicted probabilities from generalised linear mixed effects model fits to the data and 95% confidence intervals. Plots of raw data are provided in S5 File.
Figure 4 Offspring wet weight as a function of mother age and treatment. Showing model fits to the data: thick line – population level, thinner lines – individual level. Points – average wet weights for 10-day intervals and 95% confidence intervals. Plots of raw data are provided in S5 File.
Figure 5 Effect of sex, wet weight and mother age on the number of days a newly emerged fly can survive starvation. a) Wet weight as a function of offspring sex by treatment; b) Predicted survival time based on linear mixed effects model. Days adults survived starvation is plotted against mother age. Prediction for each wet weight quartile shown. Plots of raw data are provided in S5 File.