REFERENCES
Xiaoheng, C., Yizhou, M., Bei, H., Huilong, L., Xin, W., Rui, H., . . . Zhiguo, D. (2017). General and Specific Genetic Polymorphism of Cytokines-Related Gene in AITD. Mediators Inflamm, 2017 , 3916395. doi:10.1155/2017/3916395.
Veneti, S., Anagnostis, P., Adamidou, F., Artzouchaltzi, A. M., Boboridis, K., & Kita, M. (2019). Association between vitamin D receptor gene polymorphisms and Graves’ disease: a systematic review and meta-analysis. Endocrine, 65 (2), 244-251. doi:10.1007/s12020-019-01902-3.
Li, J., Teng, W., Yu, Y., Hou, X., & Shan, Z. (2019). Linkage Analysis of the Chromosome 5q31-33 Region Identifies JAKMIP2 as a Risk Factor for Graves’ Disease in the Chinese Han Population. Med Sci Monit, 25 , 1439-1451. doi:10.12659/msm.911489.
Liang, C., Du, W., Dong, Q., Liu, X., Li, W., Wang, Y., & Gao, G. (2015). Expression levels and genetic polymorphisms of interleukin-2 and interleukin-10 as biomarkers of Graves’ disease. Exp Ther Med, 9 (3), 925-930. doi:10.3892/etm.2015.2180.
Longo, C. M., & Higgins, P. J. (2019). Molecular biomarkers of Graves’ ophthalmopathy. Exp Mol Pathol, 106 , 1-6. doi:10.1016/j.yexmp.2018.11.004.
Fang, W., Zhang, Z., Zhang, J., Cai, Z., Zeng, H., Chen, M., & Huang, J. (2015). Association of the CTLA4 gene CT60/rs3087243 single-nucleotide polymorphisms with Graves’ disease. Biomed Rep, 3 (5), 691-696. doi:10.3892/br.2015.493.
Chen, X., Hu, Z., Liu, M., Li, H., Liang, C., Li, W., . . . Wu, G. (2018). Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in graves’ disease in a Chinese Han population. BMC Med Genet, 19 (1), 171. doi:10.1186/s12881-018-0665-y.
Hwangbo, Y., & Park, Y. J. (2018). Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and Thyroid Cancer.Endocrinol Metab (Seoul), 33 (2), 175-184. doi:10.3803/EnM.2018.33.2.175.
Lane, L. C., Allinson, K. R., Campbell, K., Bhatnagar, I., Ingoe, L., Razvi, S., . . . Mitchell, A. L. (2019). Analysis of BAFF gene polymorphisms in UK Graves’ disease patients. Clin Endocrinol (Oxf), 90 (1), 170-174. doi:10.1111/cen.13872.
Mehraji, Z., Farazmand, A., Esteghamati, A., Noshad, S., Sadr, M., Amirzargar, S., . . . Amirzargar, A. (2017). Association of Human Leukocyte Antigens Class I and II with Graves’ Disease in Iranian Population. Iran J Immunol, 14 (3), 223-230. doi:IJIv14i3A5.
Chu, X., Yang, M., Song, Z. J., Dong, Y., Li, C., Shen, M., . . . Huang, W. (2018). Fine mapping MHC associations in Graves’ disease and its clinical subtypes in Han Chinese. J Med Genet, 55 (10), 685-692. doi:10.1136/jmedgenet-2017-105146.
Ting, W. H., Chien, M. N., Lo, F. S., Wang, C. H., Huang, C. Y., Lin, C. L., . . . Lee, Y. J. (2016). Association of Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA4) Gene Polymorphisms with Autoimmune Thyroid Disease in Children and Adults: Case-Control Study.PLoS ONE, 11 (4), e0154394. doi:10.1371/journal.pone.0154394.
Li, M., Beauchemin, H., Popovic, N., Peterson, A., d’Hennezel, E., Piccirillo, C. A., . . . Polychronakos, C. (2017). The common, autoimmunity-predisposing 620Arg > Trp variant of PTPN22 modulates macrophage function and morphology. J Autoimmun, 79 , 74-83. doi:10.1016/j.jaut.2017.01.009.
Khong, J. J., Burdon, K. P., Lu, Y., Laurie, K., Leonardos, L., Baird, P. N., . . . Craig, J. E. (2016). Pooled genome wide association detects association upstream of FCRL3 with Graves’ disease. BMC Genomics, 17 (1), 939. doi:10.1186/s12864-016-3276-z.
Fujii, A., Inoue, N., Watanabe, M., Kawakami, C., Hidaka, Y., Hayashizaki, Y., & Iwatani, Y. (2017). TSHR Gene Polymorphisms in the Enhancer Regions Are Most Strongly Associated with the Development of Graves’ Disease, Especially Intractable Disease, and of Hashimoto’s Disease. Thyroid, 27 (1), 111-119. doi:10.1089/thy.2016.0345.
Planck, T., Shahida, B., Malm, J., & Manjer, J. (2018). Vitamin D in Graves Disease: Levels, Correlation with Laboratory and Clinical Parameters, and Genetics. Eur Thyroid J, 7 (1), 27-33. doi:10.1159/000484521.
Li, J., Sun, X., Yao, D., & Xia, J. (2018). Elevated Serum IL-17 Expression at Cessation Associated with Graves’ Disease Relapse.Int J Endocrinol, 2018 , 5689030. doi:10.1155/2018/5689030.
Qin, J., Zhou, J., Fan, C., Zhao, N., Liu, Y., Wang, S., . . . Teng, W. (2017). Increased Circulating Th17 but Decreased CD4(+)Foxp3(+) Treg and CD19(+)CD1d(hi)CD5(+) Breg Subsets in New-Onset Graves’ Disease.Biomed Res Int, 2017 , 8431838. doi:10.1155/2017/8431838.
Wang, X. X., & Chen, T. (2018). Meta-analysis of the association of IL2RA polymorphisms rs2104286 and rs12722489 with multiple sclerosis risk. Immunol Invest, 47 (5), 431-442. doi:10.1080/08820139.2018.1425699.
Harada, Y., Harada, Y., Elly, C., Ying, G., Paik, J. H., DePinho, R. A., & Liu, Y. C. (2010). Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med, 207 (7), 1381-1391. doi:10.1084/jem.20100004.
Laine, A., Martin, B., Luka, M., Mir, L., Auffray, C., Lucas, B., . . . Charvet, C. (2015). Foxo1 Is a T Cell-Intrinsic Inhibitor of the RORgammat-Th17 Program. J Immunol, 195 (4), 1791-1803. doi:10.4049/jimmunol.1500849.
Guttilla, I. K., & White, B. A. (2009). Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem, 284 (35), 23204-23216. doi:10.1074/jbc.M109.031427.
Wang S., Ai H., Liu L., Zhang X., Gao F., Zheng L., . . . Li Y. (2019). Micro-RNA-27a/b negatively regulates hepatic gluconeogenesis by targetingFOXO1.Am J Physiol Endocrinol Metab, 317(5): E911-e924.
Miao, Y., Kang, Z., Xu, F., Qi, S., Sheng, Y., Han, Y., . . . Yang, Q. (2013). Association analysis of the IL2RA gene with alopecia areata in a Chinese population. Dermatology, 227 (4), 299-304. doi:10.1159/000351555.
Xia, Z. L., Qin, Q. M., & Zhao, Q. Y. (2018). A genetic link between CXCR5 and IL2RA gene polymorphisms and susceptibility to multiple sclerosis. Neurol Res, 40 (12), 1040-1047. doi:10.1080/01616412.2018.1517110.
Yun, X., Bai, Y., Li, Z., Wang, D., Zhu, Y., & Jing, C. (2019). rs895819 in microRNA-27a increase stomach neoplasms risk in China: A meta-analysis. Gene, 707 , 103-108. doi:10.1016/j.gene.2019.04.061.
Yu, H., Liu, Y., Bai, L., Kijlstra, A., & Yang, P. (2014). Predisposition to Behcet’s disease and VKH syndrome by genetic variants of miR-182. J Mol Med (Berl), 92 (9), 961-967. doi:10.1007/s00109-014-1159-9.
Yu, H., Liu, Y., Zhang, L., Wu, L., Zheng, M., Cheng, L., . . . Yang, P. (2014). FoxO1 gene confers genetic predisposition to acute anterior uveitis with ankylosing spondylitis. Invest Ophthalmol Vis Sci, 55 (12), 7970-7974. doi:10.1167/iovs.14-15460.
Ma, J., Pei, Y., Xue, P., Wang, Y., Bao, X., & Li, Y. (2019). Association of the polymorphisms in FOXO1 gene and diabetic nephropathy risk. Artif Cells Nanomed Biotechnol, 47 (1), 1471-1475. doi:10.1080/21691401.2019.1601103.
Ross, D. S., Burch, H. B., Cooper, D. S., Greenlee, M. C., Laurberg, P., Maia, A. L., . . . Walter, M. A. (2016). 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid, 26 (10), 1343-1421. doi:10.1089/thy.2016.0229.
Sun, W., Zhang, X., Wu, J., Zhao, W., Zhao, S., & Li, M. (2019). Correlation of TSHR and CTLA-4 Single Nucleotide Polymorphisms with Graves Disease. Int J Genomics, 2019 , 6982623. doi:10.1155/2019/6982623.
Kahaly, G. J., Diana, T., Kanitz, M., Frommer, L., & Olivo, P. D. (2020). Prospective Trial of Functional Thyrotropin Receptor Antibodies in Graves Disease. J Clin Endocrinol Metab, 105 (4). doi:10.1210/clinem/dgz292.
Cerosaletti, K., Schneider, A., Schwedhelm, K., Frank, I., Tatum, M., Wei, S., . . . Long, S. A. (2013). Multiple autoimmune-associated variants confer decreased IL-2R signaling in CD4+ CD25(hi) T cells of type 1 diabetic and multiple sclerosis patients. PLoS ONE, 8 (12), e83811. doi:10.1371/journal.pone.0083811.
Ji, X., Wan, J., Chen, R., Wang, H., Huang, L., Wang, S., . . . Xu, H. (2020). Low frequency of IL-10-producing B cells and high density of ILC2s contribute to the pathological process in Graves’ disease, which may be related to elevated-TRAb levels. Autoimmunity, 53 (2), 78-85. doi:10.1080/08916934.2019.1698553.
Tang, W., Cui, D., Jiang, L., Zhao, L., Qian, W., Long, S. A., & Xu, K. (2015). Association of common polymorphisms in the IL2RA gene with type 1 diabetes: evidence of 32,646 individuals from 10 independent studies.J Cell Mol Med, 19 (10), 2481-2488. doi:10.1111/jcmm.12642.
Song, Z. Y., Liu, W., Xue, L. Q., Pan, C. M., Wang, H. N., Gu, Z. H., . . . Song, H. D. (2013). Dense mapping of IL2RA shows no association with Graves’ disease in Chinese Han population. Clin Endocrinol (Oxf), 79 (2), 267-274. doi:10.1111/cen.12115.
Buhelt, S., Sondergaard, H. B., Oturai, A., Ullum, H., von Essen, M. R., & Sellebjerg, F. (2019). Relationship between Multiple Sclerosis-Associated IL2RA Risk Allele Variants and Circulating T Cell Phenotypes in Healthy Genotype-Selected Controls. Cells, 8 (6). doi:10.3390/cells8060634.
Chistiakov, D. A., Chistiakova, E. I., Voronova, N. V., Turakulov, R. I., & Savost’anov, K. V. (2011). A variant of the Il2ra / Cd25 gene predisposing to graves’ disease is associated with increased levels of soluble interleukin-2 receptor. Scand J Immunol, 74 (5), 496-501. doi:10.1111/j.1365-3083.2011.02608.x.
Brand, O. J., Lowe, C. E., Heward, J. M., Franklyn, J. A., Cooper, J. D., Todd, J. A., & Gough, S. C. (2007). Association of the interleukin-2 receptor alpha (IL-2Ralpha)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs. Clin Endocrinol (Oxf), 66 (4), 508-512. doi:10.1111/j.1365-2265.2007.02762.x.
He, J., Zhang, X., Wei, Y., Sun, X., Chen, Y., Deng, J., . . . Li, Z. (2016). Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus. Nat Med, 22 (9), 991-993. doi:10.1038/nm.4148.
Viuff, M., Skakkebaek, A., Nielsen, M. M., Chang, S., & Gravholt, C. H. (2019). Epigenetics and genomics in Turner syndrome. Am J Med Genet C Semin Med Genet, 181 (1), 68-75. doi:10.1002/ajmg.c.31683.
Yang, J., Li, T., Gao, C., Lv, X., Liu, K., Song, H., . . . Xi, T. (2014). FOXO1 3’UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity. FEBS Lett, 588 (17), 3218-3224. doi:10.1016/j.febslet.2014.07.003.
Strafella, C., Errichiello, V., Caputo, V., Aloe, G., Ricci, F., Cusumano, A., . . . Cascella, R. (2019). The Interplay between miRNA-Related Variants and Age-Related Macular Degeneration: EVIDENCE of Association of MIR146A and MIR27A. Int J Mol Sci, 20 (7). doi:10.3390/ijms20071578.
Takuse, Y., Watanabe, M., Inoue, N., Ozaki, R., Ohtsu, H., Saeki, M., . . . Iwatani, Y. (2017). Association of IL-10-Regulating MicroRNAs in Peripheral Blood Mononuclear Cells with the Pathogenesis of Autoimmune Thyroid Disease. Immunol Invest, 46 (6), 590-602. doi:10.1080/08820139.2017.1322975.
Du, Y. N., Tang, X. F., Xu, L., Chen, W. D., Gao, P. J., & Han, W. Q. (2018). SGK1-FoxO1 Signaling Pathway Mediates Th17/Treg Imbalance and Target Organ Inflammation in Angiotensin II-Induced Hypertension.Front Physiol, 9 , 1581. doi:10.3389/fphys.2018.01581.
Gong, L., Li, R., Ren, W., Wang, Z., Wang, Z., Yang, M., & Zhang, S. (2017). The FOXO1 Gene-Obesity Interaction Increases the Risk of Type 2 Diabetes Mellitus in a Chinese Han Population. J Korean Med Sci, 32 (2), 264-271. doi:10.3346/jkms.2017.32.2.264