REFERENCES
Abu-Bonsrah, K. D., Zhang, D., & Newgreen, D. F. (2016). CRISPR/Cas9
Targets Chicken Embryonic Somatic Cells In Vitro and In Vivo and
generates Phenotypic Abnormalities. Scientific Reports , 6 ,
34524. https://doi.org/10.1038/srep34524
Andersson, R., & Sandelin, A. (2019). Determinants of enhancer and
promoter activities of regulatory elements. Nature Reviews
Genetics . https://doi.org/10.1038/s41576-019-0173-8
Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene
expression by alternative promoters. FASEB Journal : Official
Publication of the Federation of American Societies for Experimental
Biology , 10 (4), 453–460.
Bellard, M., Dretzen, G., Bellard, F., Oudet, P., & Chambon, P. (1982).
Disruption of the typical chromatin structure in a 2500 base-pair region
at the 5’ end of the actively transcribed ovalbumin gene. The EMBO
Journal , 1 (2), 223–230.
Byun, S. J., Kim, S. W., Kim, K.-W., Kim, J. S., Hwang, I.-S., Chung, H.
K., … Yoo, J. G. (2011). Oviduct-specific enhanced green
fluorescent protein expression in transgenic chickens. Bioscience,
Biotechnology, and Biochemistry , 75 (4), 646–649.
https://doi.org/10.1271/bbb.100721
Cao, D., Wu, H., Li, Q., Sun, Y., Liu, T., Fei, J., … Li, N.
(2015). Expression of recombinant human lysozyme in egg whites of
transgenic hens. PloS One , 10 (2), e0118626.
https://doi.org/10.1371/journal.pone.0118626
Dean, D. M., Jones, P. S., & Sanders, M. M. (1996). Regulation of the
chicken ovalbumin gene by estrogen and corticosterone requires a novel
DNA element that binds a labile protein, Chirp-1. Molecular and
Cellular Biology , 16 (5), 2015–2024.
https://doi.org/10.1128/mcb.16.5.2015
Demain, A. L., & Vaishnav, P. (2009). Production of recombinant
proteins by microbes and higher organisms. Biotechnology
Advances , 27 (3), 297–306.
https://doi.org/10.1016/j.biotechadv.2009.01.008
Dougherty, D. C., Park, H.-M., & Sanders, M. M. (2009). Interferon
regulatory factors (IRFs) repress transcription of the chicken ovalbumin
gene. Gene , 439 (1–2), 63–70.
https://doi.org/10.1016/j.gene.2009.03.016
Dougherty, D. C., & Sanders, M. M. (2005). Estrogen action:
revitalization of the chick oviduct model. Trends in Endocrinology
and Metabolism: TEM , 16 (9), 414–419.
https://doi.org/10.1016/j.tem.2005.09.001
Elliott, S., Egrie, J., Browne, J., Lorenzini, T., Busse, L., Rogers,
N., & Ponting, I. (2004). Control of rHuEPO biological activity: the
role of carbohydrate. Experimental Hematology , 32 (12),
1146–1155. https://doi.org/10.1016/j.exphem.2004.08.004
Gaub, M. P., Dierich, A., Astinotti, D., Touitou, I., & Chambon, P.
(1987). The chicken ovalbumin promoter is under negative control which
is relieved by steroid hormones. The EMBO Journal , 6 (8),
2313–2320.
Gibcus, J. H., & Dekker, J. (2012). The context of gene expression
regulation. F1000 Biology Reports , 4 (1).
https://doi.org/10.3410/B4-8
Haecker, S. A., Muramatsu, T., Sensenbaugh, K. R., & Sanders, M. M.
(1995). Repression of the ovalbumin gene involves multiple negative
elements including a ubiquitous transcriptional silencer.Molecular Endocrinology (Baltimore, Md.) , 9 (9),
1113–1126. https://doi.org/10.1210/mend.9.9.7491104
Herron, L. R., Pridans, C., Turnbull, M. L., Smith, N., Lillico, S.,
Sherman, A., … Sang, H. M. (2018). A chicken bioreactor for
efficient production of functional cytokines. BMC Biotechnology ,18 (1), 82. https://doi.org/10.1186/s12896-018-0495-1
Houdebine, L.-M. (2018). Production of pharmaceutical proteins by
transgenic animals. Revue Scientifique et Technique (International
Office of Epizootics) , 37 (1), 131–139.
https://doi.org/10.20506/rst.37.1.2746
Ivarie, R. (2003). Avian transgenesis: progress towards the promise.Trends in Biotechnology , 21 (1), 14–19.
Ivarie, R. (2006). Competitive bioreactor hens on the horizon.Trends in Biotechnology , 24 (3), 99–101.
https://doi.org/10.1016/j.tibtech.2006.01.004
Kato, S., Tora, L., Yamauchi, J., Masushige, S., Bellard, M., &
Chambon, P. (1992). A far upstream estrogen response element of the
ovalbumin gene contains several half-palindromic 5’-TGACC-3’ motifs
acting synergistically. Cell , 68 (4), 731–742.
https://doi.org/10.1016/0092-8674(92)90148-6
Kaye, J. S., Bellard, M., Dretzen, G., Bellard, F., & Chambon, P.
(1984). A close association between sites of DNase I hypersensitivity
and sites of enhanced cleavage by micrococcal nuclease in the
5’-flanking region of the actively transcribed ovalbumin gene. The
EMBO Journal , 3 (5), 1137–1144.
Kaye, J. S., Pratt-Kaye, S., Bellard, M., Dretzen, G., Bellard, F., &
Chambon, P. (1986). Steroid hormone dependence of four DNase
I-hypersensitive regions located within the 7000-bp 5’-flanking segment
of the ovalbumin gene. The EMBO Journal , 5 (2), 277–285.
Kodama, D., Nishimiya, D., Iwata, K.-I., Yamaguchi, K., Yoshida, K.,
Kawabe, Y., … Iijima, S. (2008). Production of human
erythropoietin by chimeric chickens. Biochemical and Biophysical
Research Communications , 367 (4), 834–839.
https://doi.org/10.1016/j.bbrc.2008.01.020
Kodama, D., Nishimiya, D., Nishijima, K.-I., Okino, Y., Inayoshi, Y.,
Kojima, Y., … Iijima, S. (2012). Chicken oviduct-specific
expression of transgene by a hybrid ovalbumin enhancer and the Tet
expression system. Journal of Bioscience and Bioengineering ,113 (2), 146–153. https://doi.org/10.1016/j.jbiosc.2011.10.006
Kwon, M. S., Koo, B. C., Kim, D., Nam, Y. H., Cui, X.-S., Kim, N.-H., &
Kim, T. (2018). Generation of transgenic chickens expressing the human
erythropoietin (hEPO) gene in an oviduct-specific manner: Production of
transgenic chicken eggs containing human erythropoietin in egg whites.PloS One , 13 (5), e0194721.
https://doi.org/10.1371/journal.pone.0194721
Kwon, S. C., Choi, J. W., Jang, H.-J., Shin, S. S., Lee, S. K., Park, T.
S., … Han, J. Y. (2010). Production of biofunctional recombinant
human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail
egg white. Biology of Reproduction , 82 (6), 1057–1064.
https://doi.org/10.1095/biolreprod.109.081687
Lillico, S G, Sherman, A., McGrew, M. J., Robertson, C. D., Smith, J.,
Haslam, C., … Sang, H. M. (2007). Oviduct-specific expression of
two therapeutic proteins in transgenic hens. Proceedings of the
National Academy of Sciences of the United States of America ,104 (6), 1771–1776. https://doi.org/10.1073/pnas.0610401104
Lillico, Simon G., McGrew, M. J., Sherman, A., & Sang, H. M. (2005).
Transgenic chickens as bioreactors for protein-based drugs. Drug
Discovery Today , Vol. 10, pp. 191–196.
https://doi.org/10.1016/S1359-6446(04)03317-3
Liu, T., Wu, H., Cao, D., Li, Q., Zhang, Y., Li, N., & Hu, X. (2015).
Oviduct-specific expression of human neutrophil defensin 4 in
lentivirally generated transgenic chickens. PloS One ,10 (5), e0127922. https://doi.org/10.1371/journal.pone.0127922
Liu, Z., Tyo, K. E. J., Martinez, J. L., Petranovic, D., & Nielsen, J.
(2012). Different expression systems for production of recombinant
proteins in Saccharomyces cerevisiae. Biotechnology and
Bioengineering , 109 (5), 1259–1268.
https://doi.org/10.1002/bit.24409
Maksimenko, O. G., Deykin, A. V, Khodarovich, Y. M., & Georgiev, P. G.
(2013). Use of transgenic animals in biotechnology: prospects and
problems. Acta Naturae , 5 (1), 33–46.
Monroe, D. G., & Sanders, M. M. (2000). The COUP-adjacent repressor
(CAR) element participates in the tissue-specific expression of the
ovalbumin gene. Biochimica et Biophysica Acta , 1517 (1),
27–32. https://doi.org/10.1016/s0167-4781(00)00241-4
Muramatsu, T., Imai, T., Park, H. M., Watanabe, H., Nakamura, A., &
Okumura, J. I. (1998). Gene gun-mediated in vivo analysis of
tissue-specific repression of gene transcription driven by the chicken
ovalbumin promoter in the liver and oviduct of laying hens.Molecular and Cellular Biochemistry , 185 (1–2), 27–32.
https://doi.org/10.1023/A:1016507900718
Nordstrom, L. A., Dean, D. M., & Sanders, M. M. (1993). A complex array
of double-stranded and single-stranded DNA-binding proteins mediates
induction of the ovalbumin gene by steroid hormones. The Journal
of Biological Chemistry , 268 (18), 13193–13202.
Oishi, I., Yoshii, K., Miyahara, D., & Tagami, T. (2018). Efficient
production of human interferon beta in the white of eggs from ovalbumin
gene-targeted hens. Scientific Reports , 8 (1), 10203.
https://doi.org/10.1038/s41598-018-28438-2
Park, H. M., Haecker, S. E., Hagen, S. G., & Sanders, M. M. (2000).
COUP-TF plays a dual role in the regulation of the ovalbumin gene.Biochemistry , 39 (29), 8537–8545.
https://doi.org/10.1021/bi0005862
Park, T. S., Lee, H. G., Moon, J. K., Lee, H. J., Yoon, J. W., Yun, B.
N. R., … Han, B. K. (2015). Deposition of bioactive human
epidermal growth factor in the egg white of transgenic hens using an
oviduct-specific minisynthetic promoter. FASEB Journal : Official
Publication of the Federation of American Societies for Experimental
Biology , 29 (6), 2386–2396. https://doi.org/10.1096/fj.14-264739
Pfaffl, M. W. (2001). A new mathematical model for relative
quantification in real-time RT-PCR. Nucleic Acids Research ,29 (9), e45. https://doi.org/10.1093/nar/29.9.e45
Raju, T. S., Briggs, J. B., Borge, S. M., & Jones, A. J. (2000).
Species-specific variation in glycosylation of IgG: evidence for the
species-specific sialylation and branch-specific galactosylation and
importance for engineering recombinant glycoprotein therapeutics.Glycobiology , 10 (5), 477–486.
https://doi.org/10.1093/glycob/10.5.477
Rapp, J. C., Harvey, A. J., Speksnijder, G. L., Hu, W., & Ivarie, R.
(2003). Biologically active human interferon alpha-2b produced in the
egg white of transgenic hens. Transgenic Research , 12 (5),
569–575.
Sanders, M. M., & McKnight, G. S. (1988). Positive and negative
regulatory elements control the steroid-responsive ovalbumin promoter.Biochemistry , 27 (17), 6550–6557.
https://doi.org/10.1021/bi00417a053
Schimke, R. T., McKnight, G. S., Shapiro, D. J., Sullivan, D., &
Palacios, R. (1975). Hormonal regulation of ovalbumin synthesis in the
chick oviduct. Recent Progress in Hormone Research , 31 ,
175–211.
Schweers, L. A., Frank, D. E., Weigel, N. L., & Sanders, M. M. (1990).
The steroid-dependent regulatory element in the ovalbumin gene does not
function as a typical steroid response element. The Journal of
Biological Chemistry , 265 (13), 7590–7595.
Schweers, L. A., & Sanders, M. M. (1991). A protein with a binding
specificity similar to NF-kappa B binds to a steroid-dependent
regulatory element in the ovalbumin gene. The Journal of
Biological Chemistry , 266 (16), 10490–10497.
Sensenbaugh, K. R., & Sanders, M. M. (1999). Multiple promoter elements
including a novel repressor site modulate expression of the chick
ovalbumin gene. DNA and Cell Biology , 18 (2), 147–156.
https://doi.org/10.1089/104454999315538
T. Shantha Raju. (2003). No Title. Bioprocess International, 1,
. , 1 , 44–53.
Wang, L. H., Tsai, S. Y., Cook, R. G., Beattie, W. G., Tsai, M. J., &
O’Malley, B. W. (1989). COUP transcription factor is a member of the
steroid receptor superfamily. Nature , 340 (6229), 163–166.
https://doi.org/10.1038/340163a0
Woodfint, R. M., Hamlin, E., & Lee, K. (2018). Avian Bioreactor
Systems: A Review. Molecular Biotechnology , 60 (12),
975–983. https://doi.org/10.1007/s12033-018-0128-x
Yoshimura, M., & Oka, T. (1990). Transfection of beta-casein chimeric
gene and hormonal induction of its expression in primary murine mammary
epithelial cells. Proceedings of the National Academy of Sciences
of the United States of America , 87 (10), 3670–3674.
https://doi.org/10.1073/pnas.87.10.3670
Zhu, L., van de Lavoir, M.-C., Albanese, J., Beenhouwer, D. O.,
Cardarelli, P. M., Cuison, S., … Etches, R. J. (2005). Production
of human monoclonal antibody in eggs of chimeric chickens. Nature
Biotechnology , 23 (9), 1159–1169.
https://doi.org/10.1038/nbt1132
FIGURE LEGENDS