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Abstract

The spatiotemporal dynamics for general reaction-diffusion systems of Brusse-

lator type under the homogeneous Neumann boundary condition is considered. It

is shown that the reaction-diffusion system has a unique steady state solution. For

some suitable ranges of the parameters, we prove that the steady state solution can

be a codimension-2 Turing-Hopf point. To understand the spatiotemporal dynamics

in the vicinity of the Turing-Hopf bifurcation point, we calculate and analyze the

normal form on the center manifold by analytical methods. A wealth of complex

spatiotemporal dynamics near the degenerate point are obtained. It is proved that

the system undergoes a codimension-2 Turing-Hopf bifurcation. Moreover, several

numerical simulations are carried out to illustrate the validity of our theoretical

results.
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1 Introduction

The changes of dynamical structures for some system not only relate to time but

also may depend on various independent variables such as location or age. Therefore, a

diffusion process in the system can be improved by adding a spatial variable to the sys-

tem. In fact, various diffusion phenomenon widely exist in physical, chemical, biological,

environmental and sociological processes [12, 16, 42].

Since Turing published the seminal paper [46] in 1952, the spatiotemporal dynamics in

reaction-diffusion system driven by linear diffusion has been widely studied [17, 24, 28, 48].

Turing suggested that diffusion could lead to instability and nonuniform spatial patterns.

In other words, if a solution of the reaction system is stable, then the solution of the

full reaction-diffusion system may be unstable. This is so-called Turing instability or

diffusion-driven instability. Recently, many Turing-type models described by coupled

systems of reaction-diffusion equations have been extensively studied in chemical and

biological contexts [22, 27, 37, 40, 41].

In this paper, we shall consider the following general Brusselator model

∂u
∂t

− d1△u = a− (1 + b)u+ f(u)v, x ∈ Ω, t > 0,

∂v
∂t

− d2△v = bu− f(u)v, x ∈ Ω, t > 0,

∂u
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω = (0, ℓπ), △ is the Laplace operator, ∂n is the outer flux, the unknown functions

u, v represent the concentration of the two intermediary reactants having the diffusion

rates d1, d2 > 0, positive constants a, b > 0 are the fixed concentrations, the initial values

u0(x), v0(x) are nonnegative continuous functions in Ω̄, and f ∈ C1(0,∞)
∩
C[0,∞) is

nonnegative and nondecreasing function. Many have extensively investigated various

of Brusselator type in the last decades from both analytical and numerical viewpoint

[2, 3, 15, 23, 35].

When f(u) = u2, system (1.1) is a basic Brusselator model. The model was introduced

by Prigogine and Lefever [34] in 1968, as a model for an autocatalytic oscillating chemical

reaction [1, 43]. It consists of the following four intermediate reaction steps:

A → X, B +X → Y +D, 2X + Y → 3X, X → E.

2



The over-all reaction is A + B → D + E and it represent to the transformation of input

products A and B into output products D and E. After some scalings and changes of

variables, the four chemical reaction steps can be modeled by the mathematical model

of system (1.1) with f(u) = u2. Many mathematical properties of (1.1) with f(u) = u2

have been exploited. Li et al. [26] carried out the Hopf bifurcation analysis, and the

stability of the Hopf bifurcation periodic solution was discussed by applying the normal

form theory and the center manifold theorem. The global bifurcation was discussed in

[3]. The authors proved the existence of global continua for nontrivial solutions. Wit et

al. [7] and Tzou et al. [8] studied the Turing stability of the positive steady state and

derived the amplitude equations near the Turing-Hopf codimension-2 point. More results

about the Brusselator system, one can see [9, 33, 35, 39, 49] and the references therein.

When f(u) = up with p > 0, system (1.1) is a general Brusselator model. Without

any restriction on the dimension of the domain, the upper and lower bounds for positive

solutions, the existence and non-existence of positive steady states were obtained in [19].

Peng and Wang derived some results about the existence and non-existence of positive

steady states by apply the implicit function theorem and topological degree argument in

[36]. The existence of the Hopf bifurcation have been obtained by Guo et al. in [13].

And, the authors also got the positive steady state solutions and spatially inhomogeneous

periodic solutions by numerical simulations.

When f(u) is a nonnegative and nondecreasing functions, system (1.1) is a more

general Brusselator model. Ghergu and Radulescu [18] revealed that the existence of

Turing patterns strongly depends on the nonlinearity of f . More precisely, the authors

pointed out that if f has a sublinear growth, then the system has no Turing patterns,

while if f has a superlinear growth, then the existence of such patterns is related to the

interdependence between the parameters a, b and d1, d2. The existence of Hopf bifurcation

for the ordinary differential equation and partial differential equation models was obtained

in [30], and by the center manifold theory and the normal form method, the bifurcation

direction and stability of bifurcating periodic solutions were also established.

For system (1.1) with a nonnegative and nondecreasing function f(u), the Turing

instability or bifurcation analysis of codimension-1 such as Hopf bifurcation or steady

state bifurcation were studied in [18, 30]. Note that the codimension-2 Turing-Hopf

bifurcation can be viewed as the interactions of the codimension-1 Hopf and steady state

bifurcations. Thence, the Turing-Hopf bifurcation may bring about mixed spatiotemporal
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periodic patterns, domain structures displaying bi-stability between spatial and temporal

modes, and spacetime chaos [20, 21, 29, 32, 50]. And, there is a lot of previous work on

Turing-Hopf bifurcations of reaction-diffusion predator-prey systems by numerical method

[4, 31, 38] or by analytical method [44, 45, 47].

In this paper, we will focus on the spatiotemporal dynamics near a codimension-

2 Turing-Hopf bifurcation point of system (1.1). It is shown that system (1.1) has a

steady state solution E∗. At E∗, system (1.1) has two conjugant imaginary eigenvalues

with zero real part, and one zero eigenvalue. Others eigenvalues have nonzero real part.

While from the eigenvalue theory, the so-called Turing-Hopf bifurcation occurs only if the

theoretical eigenvalues of the spatially homogeneous system consist of one pair of purely

imaginary eigenvalues together with a simple zero eigenvalue and the transverse condition

holds. Through some computations, we will give out the transverse condition at which

the codimension-2 Turing-Hopf bifurcation can occur. By calculating and analyzing the

normal form on the center manifold, we will discuss the classification of the spatiotemporal

dynamics in a neighborhood of the Turing-Hopf bifurcation point in detail.

The paper is organised as follows. In Section 2, we investigate the existence of Turing-

Hopf bifurcation. The explicit computation of the normal form for Turing-Hopf bifurca-

tion is presented in Section 3. The complex spatiotemporal dynamics near the Turing-Hopf

bifurcation point of the system (1.1) are carried out by numerical simulations in Section

4. This paper ends with a brief conclusion in Section 5.

2 Existence of Turing-Hopf bifurcation

For the diffusion system (1.1), we will consider the existence of Turing-Hopf bifurca-

tion. The uniform steady state solution plays a key role. In [18], the authors found

that system (1.1) has a unique uniform steady state solution E∗ = (u∗, v∗), where

u∗ = a, v∗ = ab
f(a)

. For the homogeneous Neumann boundary conditions, we define the

following real-valued Sobolev space

X = {(u, v)T ∈ H2[(0, ℓπ)]×H2[(0, ℓπ)] :
∂u

∂x
=

∂v

∂x
= 0 at x = 0, ℓπ}

where H2[(0, ℓπ)] is the standard Sobolev space. For U1 = (u1, v1)
T , U2 = (u2, v2)

T ∈ X,
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we define the inner product

[U1, U2] =

∫ ℓπ

0

(u1u2 + v1v2)dx,

then X is a Hilbert space.

The linearized system of system (1.1) at E∗ has the form

Ut = LU := D△U + J(u∗, v∗)U (2.1)

where U = (u, v)T ,

D =

 d1 0

0 d2

 and J(u∗, v∗) =

 −1− b+ abf ′(a)
f(a)

f(a)

b− abf ′(a)
f(a)

−f(a)

 . (2.2)

The operator L is linear on X. By the standard spectrum analysis as in [6, Theorem 1],

we know that if all the spectra of the linear operator L have negative real parts, then E∗

is local asymptotically stable, and if some spectrum have nonnegative real parts, then E∗

is unstable.

The spectra of −△ on H2[(0, π)] with homogeneous Neumann boundary condition

are {k2}k∈N0and the corresponding normalized eigenfunctions are { 1√
π
,
√

2
π
cos(kx)}k∈N,

see [11] . Hence the eigenvalues of operator (u, v)T → (−d1△u,−d2△v)T on X are

{d1k2

ℓ
, d2k

2

ℓ
}k∈N0 , and the corresponding normalized eigenfunctions are

ϕ
(1)
k =

 γk(x)

0

 and ϕ
(2)
k =

 0

γk(x)

 , k ∈ N0 (2.3)

where γ0(x) =
1√
ℓπ
, γk(x) =

√
2
ℓπ
cos(k

ℓ
x), k ∈ N.

Since {ϕ(1)
k , ϕ

(2)
k }k∈N0 is a basis of X, then for any (ϕ, φ) ∈ X, there is a unique

decomposition (ϕ, φ)T =
∞∑
k=0

(akϕ
(1)
k (x) + bkϕ

(2)
k (x)), where ak, bk ∈ R are coefficients. For

the spectra of L in X, we consider the characteristic equation L(ϕ, φ)T = λ(ϕ, φ)T on X.

By the formula of L, we have

(J(u∗, v∗)− k2

ℓ2
D)

∞∑
k=0

(akϕ
(1)
k (x) + bkϕ

(2)
k (x)) = λ

∞∑
k=0

(akϕ
(1)
k (x) + bkϕ

(2)
k (x)).

Hence, (J(u∗, v∗)− k2

ℓ2
D)(ak, bk)

T = λ(ak, bk)
T , k ∈ N0, where

J(u∗, v∗)− k2

ℓ2
D =

 −1− b+ abf ′(a)
f(a)

− k2d1
ℓ2

f(a)

b− abf ′(a)
f(a)

−f(a)− k2d2
ℓ2

 .
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This means the spectra of the operator L are given by the eigenvalues of matrix (J(u∗, v∗)−
k2

ℓ2
D) for k ∈ N0, i.e.

Fk(λ) =

∣∣∣∣λE − (J(u∗, v∗)− k2

ℓ2
D)

∣∣∣∣
= λ2 − Tkλ+Dk = 0, k ∈ N0, (2.4)

where

Tk = −1− f(a)− b[1− af ′(a)

f(a)
]− (d1 + d2)

k2

ℓ2
,

Dk = f(a) + d1d2
k4

ℓ4
+ [d1f(a)− d2(

abf ′(a)

f(a)
− b− 1)]

k2

ℓ2
.

Recall that the bifurcation is called Turing-Hopf bifurcation if there exist a nonnegative

integer k1 and a positive integer k2 ̸= k1 such that Fk1(λ) = 0 has a pair of purely imagi-

nary roots and Fk2(λ) = 0 has a simple zero root, and no other roots of the characteristic

equation (2.4) have zero real parts, and the transversality condition holds.

First, we consider a special case. When d1 = d2 = 0, there is no diffusion. From (2.4),

we see that

T0 = −1− f(a)− b(1− af ′(a)

f(a)
) = (bh(a)− b)

f(a)− af ′(a)

f(a)
, D0 = f(a) > 0

where bh(a) = −f(a)(1+f(a))
f(a)−af ′(a)

.

For the sake of completeness, we give the following lemma on the stability of the

positive equilibrium E∗ with d1 = d2 = 0.

Lemma 2.1. Assume that the system (1.1) with d1 = d2 = 0, then we have that

(1) if f(a) ≥ af ′(a) or f(a) < af ′(a) and b < bh(a), then E∗ is local asymptotically stable;

(2) if f(a) < af ′(a) and b = bh(a), then the Hopf bifurcation occurred near the E∗;

(3) if f(a) < af ′(a) and b > bh(a), then E∗ is unstable.

Then we study the dynamics of the full reaction-diffusion system (d1, d2 > 0). We

introduce some notations as d2 > d1. Let l(x) = d1d2x2

(d2−d1)x−1
, k∗

1 = ⌈ ℓ√
d2−d1

⌉ and k∗
2 =

max{k∗
1 + 1, ⌈

√
2ℓ√

d2−d1
⌉}, where ⌈·⌉ denotes the integral function defined in N0. Define

k∗ =

 k∗
2, if l(

k∗2
2

ℓ2
) ≤ l(

(k∗2+1)2

ℓ2
)

k∗
2 + 1, if l(

k∗2
2

ℓ2
) > l(

(k∗2+1)2

ℓ2
)

. (2.5)

Set ωc =
√

l(k
∗2

ℓ2
) and b(k, a) =

d1d2
k4

ℓ4
+[d1f(a)+d2]

k2

ℓ2
+f(a)

d2(
af ′(a)
f(a)

−1) k
2

ℓ2

.
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Theorem 2.1. (1) Assume that d1 ≥ d2 > 0, then we have following results:

(i) if f(a) ≥ af ′(a) or f(a) < af ′(a) and b < bh(a), then E∗ is local asymptotically

stable;

(ii) if f(a) < af ′(a) and b > bh(a), then E∗ is unstable.

(2) Assume that d2 > d1 > 0, then we have following results:

(i) if f(a) ≥ af ′(a) or f(a) < af ′(a), f(a) ≤ l(k
∗2

ℓ2
) and b < bh(a), then E∗ is local

asymptotically stable;

(ii) if f(a) < af ′(a) and b > bh(a), then E∗ is unstable;

(iii) if l(k
∗2

ℓ2
) < f(a) < af ′(a) and b(k∗, a) < b < bh(a), then E∗ is unstable and the

Turing instability occurs;

(iv) if f(a) = l(k
∗2

ℓ2
) < af ′(a) and b = bh(a), then system (1.1) undergoes Turing-Hopf

bifurcation in the vicinity of the E∗.

Proof. From the formulas of Tk and Dk of (2.4), one can see that when f(a) ≥ af ′(a) or

f(a) < af ′(a) and b < bh(a), then Tk < 0. Also, if f(a) ≥ af ′(a), then Dk > 0 for k ∈ N0.

In addition, when d1 ≥ d2 > 0, we have

Dk ≥ f(a) + d1d2
k4

ℓ4
+ d2[1 + f(a)− b(

af ′(a)

f(a)
− 1)]

k2

ℓ2

= f(a) + d1d2
k4

ℓ4
+ d2(

af ′(a)

f(a)
− 1)(bh(a)− b)

k2

ℓ2
,

which implies that Dk > 0 for k ∈ N0 if f(a) < af ′(a) and b < bh(a). Hence (1)(i) holds.

We consider the matrix (J(u∗, v∗)− k2

ℓ2
D) for k = 0. When f(a) < af ′(a) and b > bh(a),

we get that T0 > 0 and D0 = f(a) > 0. Hence the real parts of the eigenvalues of matrix

(J(u∗, v∗)− 0
ℓ2
D) are positive. Thus, the results of (1)(ii), (2)(ii) hold.

For d2 > d1 > 0, Dk > 0 is equivalent to b < b(k, a) for k ∈ N. Note that

b(k, a)− bh(a) =
d1d2

k4

ℓ4
+ f(a)[1− (d2 − d1)

k2

ℓ2
]

d2(
af ′(a)
f(a)

− 1)k
2

ℓ2

.

Then b(k, a) > bh(a) when f(a) < af ′(a) and k ≤ ℓ√
d2−d1

. This means that when

b < bh(a) we have Dk > 0 for k = 0, · · ·, k∗
1. For f(a) < af ′(a) and k ≥ k∗

1 + 1,

then b(k, a) > bh(a) if and only if f(a) < l(k
2

ℓ2
). Note l′(x) = d1d2[(d2−d1)x−2]

[(d2−d1)x−1]2
. Then l(x)

increases on (0, 2
d2−d1

) and decreases on ( 2
d2−d1

,∞). Thus, l(x) reaches its minimal value

at x = 2
d2−d1

. The equation (2.5) means that l(k
2

ℓ2
) reaches its minimal value at k = k∗.

Hence, when f(a) < af ′(a), k ≥ k∗
1 + 1 and f(a) ≤ l(k

∗2

ℓ2
), then b(k, a) ≥ bh(a). Thence,
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if f(a) < af ′(a), f(a) ≤ l(k
∗2

ℓ2
) and b < bh(a), then Dk > 0 for k ≥ k∗

1 + 1. Hence, (2)(i)

is hold.

If l(k
∗2

ℓ2
) < f(a) < af ′(a), then b(k∗, a) < bh(a). When d2 > d1 > 0 and b > b(k∗, a),

we have Dk∗ < 0. Thence, (2)(iii) holds.

If d2 > d1 > 0, f(a) = l(k
∗2

ℓ2
) < af ′(a) and b = bh(a), then T0 = 0, Tk < 0 for k ∈ N

and Dk∗ = 0, Dk > 0 for k ∈ N0 \ {k∗}. Also,
dT0

db
|b=bh(a) =

af ′(a)

f(a)
− 1 > 0 and

dDk∗

db
|b=bh(a) = −d2

k2

ℓ2
(
af ′(a)

f(a)
− 1) < 0.

Therefore, F0(λ) = 0 has a pair of purely imaginary roots λ1,2 = ±iωc, Fk∗(λ) = 0 has a

simple zero root λ1 = 0 and a negative real root λ2 = −(d1 + d2)
k∗2

ℓ2
, and Fk(λ) = 0 has

two negative real part roots for k ∈ N0 \ {0, k∗}. Then (2)(iv) follows.

3 Normal forms for Turing-Hopf bifurcation

From Theorem 2.1(2)(iv), we know that, for fixed parameters ℓ, d1, d2, a
∗, b∗ such that

d2 > d1 > 0, f(a∗) =
d1d2

k∗4
ℓ4

(d2−d1)
k∗2
ℓ2

−1
< a∗f ′(a∗) and b∗ = bh(a

∗), where k∗ is defined

as in (2.5), then the equilibrium E∗ is a Turing-Hopf bifurcation point of system (1.1).

There may occur Hopf and saddle-node bifurcations near E∗. Then there is a local center

manifold of codimension 3 in the phase space. We use the normal form on the center

manifold to consider the spatiotemporal dynamics in a small neighbourhood of Turing-

Hopf bifurcation point E∗ of system (1.1). Choose a and b as the bifurcation parameters

and set a = a∗ + ε1, b = b∗ + ε2. Then (1.1) becomes
∂u
∂t

= d1△u+ a∗ + ε1 − (1 + b∗ + ε2)u+ f(u)v

∂v
∂t

= d2△v + (b∗ + ε2)u− f(u)v
. (3.1)

System (3.1) has a unique uniform steady state solution E∗ = (u∗(ε), v∗(ε)), where u∗(ε) =

a∗ + ε1, v
∗(ε) = (a∗+ε1)(b∗+ε2)

f(a∗+ε1)
. Transfer (u∗(ε), v∗(ε)) to the origin by u1 = u − u∗(ε) and

v1 = v − v∗(ε), then system (3.1) becomes

∂U1

∂t
= D△U1 + J(u∗(0), v∗(0))U1 + g(U1, ε), (3.2)

where U1 = (u1, v1)
T , D and J(u∗(0), v∗(0)) be as in (2.2) and

g(U1, ε) =
∞∑

i+j+l1+l2≥2

1

i!j!l1!l2!
g
(l1l2)
ij ui1v

j
1ε

l1
1 ε

l2
2

 1

−1

 :=
∞∑
n≥2

1

n!
gn(U1, ε), (3.3)
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with g
(l1l2)
ij = ∂i+j+l1+l2F (0,0,0,0)

∂ui
1v

j
1ε

l1
1 ε

l2
2

and F (u1, v1, ε1, ε2) = −u1ε2 + f(u1 + u∗(ε))(v1 + v∗(ε)).

We list some coefficients which will be used in the sequel:

g
(10)
10 =

b∗f ′(a∗)

f(a∗)
+

a∗b∗f ′′(a∗)

f(a∗)
− a∗b∗f ′2(a∗)

f 2(a∗)
, g

(01)
10 =

a∗f ′(a∗)

f(a∗)
− 1,

g
(01)
01 = g

(00)
02 = 0, g

(10)
01 = g

(00)
11 = f ′(a∗), g

(00)
(20) =

a∗b∗f ′′(a∗)

f(a∗)
,

g
(10)
20 =

f ′′(a∗)b∗

f(a∗)
+

a∗b∗f ′′′(a∗)

f(a∗)
− a∗b∗f ′(a∗)f ′′(a∗)

f 2(a∗)
, g

(00)
12 = g

(00)
03 = 0

g
(01)
20 =

a∗f ′′(a∗)

f(a∗)
, g

(10)
11 = g

(00)
21 = f ′′(a∗), g

(00)
30 =

a∗b∗f ′′′(a∗)

f(a∗)
.

Consider the linear part of system (3.2) at the origin

∂U1

∂t
= L(U1) := D△U1 + J(u∗(0), v∗(0))U1. (3.4)

In fact, the set of all eigenvalues of system (3.4) with zero real part is Λ = {±ωc, 0}.
Our strategy is to decompose X into the eigenvector spaces and consider (3.4) in each

eigenvector space. From (2.3), we set ζk = span{[φ, ϕ(i)
k ]ϕ

(i)
k |φ ∈ X, i = 1, 2}. Then

J(u∗(0), v∗(0))ζk ⊂ span{ϕ(1)
k , ϕ

(2)
k }, k ∈ N0. Set y(t) = (y1(t), y2(t)) ∈ R2 such that

y1ϕ
(1)
k + y2ϕ

(2)
k ∈ ζk. When (3.4) is restricted on ζk, it is becomes the following ordinary

differential equation on R2

ẏ(t) =

 a∗b∗f ′(a∗)
f(a∗)

− b∗ − 1− d1
k2

ℓ2
f(a∗)

b∗ − a∗b∗f ′(a∗)
f(a∗)

−f(a∗)− d2
k2

ℓ2

 y(t) := Jk(u
∗(0), v∗(0))y(t). (3.5)

Restricted on ζk, we know that (3.4) and (3.5) have the same eigenvalues. Hence, Λ is the

only eigenvalues of Jk(u
∗(0), v∗(0)), which has eigenvalues with zero real part for some

k ∈ N0.

Since (3.5) is invariant on ζk, we project X into the generalized eigenspaces of eigen-

values Λ. Generally, we decompose C2 by the generalized eigenspace of Jk(u
∗(0), v∗(0)).

By the standard adjoint theory for ordinary differential equations, we can decompose C2

as C2 = Pk

⊕
Qk, where Pk is the generalized eigenspace associated with the eigenvalues

in Λ and Qk = {ϕ ∈ C2 : ⟨ϕ, φ⟩ = 0 for all φ ∈ P ∗
k }, where P ∗

k is the dual space of Pk

and ⟨, ⟩ is the scalar product of two complex vectors. For dual bases Φk and Ψk of Pk

and P ∗
k , we have ⟨Φk,Ψk⟩ = Iςk , where ςk = dimPk and Iςk is an ςk × ςk identity matrix.

Notice that dimP0 = 2 and dimPk∗ = 1. That is the center subspaces has dimension 3.
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Through straightforward calculations, we obtain Φ0 = (p0, p0),Ψ0 = col(qT0 , q
T
0 ),Φk∗ = pk∗

and Ψk∗ = qTk∗ , where

p0 =

 1

−1 + 1
ωc
i

 , q0 =

 1
2 − ωc

2 i

−ωc
2 i

 , pk∗ =

 1

d1k∗2

ω2
c ℓ

2 − 1

 , qk∗ =

 d2
d1+d2

− ω2
c

Tk∗

− ω2
c

Tk∗

 ,

with Tk∗ = −k∗2

ℓ2
(d1 + d2).

Then, by the procedure developed in [44, 45, 47], the normal form for Turing-Hopf bifurcation

point E∗ can be obtained as follows ṙ = ζ1(ε)r + κ11r
3 + κ12rρ

2

ρ̇ = ζ2(ε)ρ+ κ21r
2ρ+ κ22ρ

3
(3.6)

with ζ1(ε) =
Re(B11)

2 ε1+
B12
2 ε2, ζ2(ε) =

d2
d1+d2

(B31ε1+B32ε2), κ11 = Re(B210), κ12 = Re(B102), κ21 =

B111, κ22 = B003, where B11 = g
(10)
10 − g

(10)
01 + i

g
(10)
01√
f(a∗)

, B12 = g
(01)
10 , B31 = g

(10)
10 − g

(10)
01 +

d1k∗2

f(a∗)ℓ2 g
(10)
01 , B32 = g

(01)
10 , the calculation of B210, B102, B111 and B003, we leave them in Appendix.

By the center manifold theorem in [5] and the bifurcation theorem in [10, 25], we know that

the dynamics of system (3.1) is topologically equivalent to system (3.6) in a sufficiently small

neighborhood of ε = 0. System (3.1) undergoes a Turing-Hopf bifurcation. Hence the system

can coexist two spatially inhomogeneous steady states, a spatially inhomogeneous steady state

coexist with a homogeneous periodic solution, coexist two spatially inhomogeneous periodic so-

lution or spatially inhomogeneous periodic solution coexist with a homogeneous periodic solution

and so on. The rich dynamics of the normal form (3.6), see [14, 25].

4 Numerical simulations

In this section, simulations were performed with MATLAB to illustrate our results. We

take f(u) = u2 and fix (ℓ, d1, d2, a, b) = (3, 0.2, 0.8, 1.3522, 2.8286). Then (ℓ, d1, d2, a, b) sat-

isfies the conditions of Theorem 2.1(2)(iv). System (1.1) has a positive constant equilibrium

E∗ = (1.3522, 2.0918) with k∗ = 6 which is a Turing-Hopf point. We consider the Turing-Hopf

bifurcation near E∗ of system (1.1). In section 3, we have investigated the normal form of system

(3.6) near E∗. For (ℓ, d1, d2, a, b) = (3, 0.2, 0.8, 1.3522, 2.8286), the normal form of equation (3.6)

10
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Figure 1: Bifurcation curve in ε1 − ε2 plane.

becomes  ṙ = −(1.3522ε1 − 0.5ε2)r − 0.079r3 − 0.0931rρ2

ρ̇ = −(1.2169ε1 − 0.8ε2)ρ− 0.2793r2ρ− 0.1214ρ3
. (4.1)

Notice that r > 0 and ρ ∈ R. The equilibria of system (4.1) is as following: (4.1) has a

zero equilibrium E0(0, 0) for all ε1, ε2; three axis-equilibria E1(
√
6.3291ε2 − 17.1165ε1, 0) for

ε2 > 2.7044ε1 and E±
2 (0,±

√
6.5898ε2 − 10.0239ε1) for ε2 > 1.5211ε1; and two interior equilibria

E±
3 (

√
3.1014ε1 + 0.8402ε2,±

√
4.6616ε2 − 17.1667ε1) for ε2 > −3.6913ε1 and ε2 > 3.6826ε1.

In fact, the zero equilibrium E0 of system (4.1) corresponds to the positive constant equi-

librium E∗ of the original system (1.1); the axis-equilibrium E1 of system (4.1) corresponds

to the spatially homogeneous periodic solution of the original system (1.1); the axis-equilibria

E±
2 of system (4.1) correspond to the nonconstant steady state solutions of the original system

(1.1); and the interior equilibria E±
3 of system (4.1) correspond to the spatially inhomogeneous

periodic solutions of the original system (1.1), which has the spatial structure like cos 2x shape

and periodic temporal structure since k∗

ℓ = 2.

From the discussion above of existence conditions of equilibria, we have the following bifur-

cation lines

H : ε2 = 2.7044ε1; SH1 : ε2 = −3.6913ε1, ε1 < 0;

T : ε2 = 1.5211ε1; SH2 : ε2 = 3.6826ε1, ε1 > 0.

In the ε1 − ε2 parameter plane, these four lines divide a small neighborhood of the origin into

six regions and the bifurcation diagram in the ε1 − ε2 parameter plane can be seen in Fig. 1.

We discuss the dynamics in all the regions.
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Figure 2: The positive constant equilibrium E∗(1.3742, 2.0474) is asymptotically stable.
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Figure 3: Two stable spatially inhomogeneous steady states like cos(2x).
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In region 1⃝, system (4.1) has only one equilibrium E0 and it is asymptotically stable. This

implies that system (1.1) has a unique asymptotically stable positive constant equilibrium E∗.

For (ε1, ε2) = (0.021,−0.015) in region 1⃝, which is shown in Fig. 2 for the initial condition

u(x, 0) = 1.3742 + 0.01 cos(2x), v(x, 0) = 2.0474− 0.01 cos(2x).

In region 2⃝, system (4.1) has three equilibria E0, E
+
2 and E−

2 . Furthermore, E0 is an unstable

equilibrium and E+
2 , E

−
2 are asymptotically stable equilibria. This implies that system (1.1) has

an unstable positive constant equilibrium E∗, two stable spatially inhomogeneous steady states

with inhomogeneous spatial structure like cos(2x) shape. For (ε1, ε2) = (0.015, 0.025) in region

2⃝, system (1.1) converge to one of these two nonconstant steady states with inhomogeneous

spatial structure like cos(2x) shape, which are shown in Fig. 3 A,B for the initial condition

u(x, 0) = 1.3672 + 0.02 cos(2x), v(x, 0) = 2.0871 − 0.02 cos(2x) and Fig. 3 C,D for the initial

condition u(x, 0) = 1.3672− 0.02 cos(2x), v(x, 0) = 2.0871 + 0.02 cos(2x).

In region 3⃝, system (4.1) has four equilibria E0, E1, E
+
2 and E−

2 . And, E0, E1 are unstable

equilibria and E+
2 , E

−
2 are asymptotically stable equilibria. This means that system (1.1) has an

unstable positive constant equilibrium E∗, an unstable spatially homogeneous periodic solution

and two stable spatially inhomogeneous steady states with inhomogeneous spatial structure like

cos(2x) shape. Take (ε1, ε2) = (−0.012,−0.032) in region 3⃝, the dynamics of system (1.1)

evolves from an unstable homogeneous periodic solution to a stable spatially inhomogeneous

steady state with inhomogeneous spatial structure like cos(2x) shape and there exists an orbit

connecting the unstable spatially homogeneous periodic solution to the stable steady state,

which is shown in Fig. 4 for the initial condition u(x, 0) = 1.3762 − 0.001 cos(2x), v(x, 0) =

2.1104− 0.001 cos(2x).

In region 4⃝, system (4.1) has five equilibria E0, E1, E
+
2 , E

−
2 , E

+
3 and E−

3 . Moreover, E0, E
+
3 , E

−
3

are unstable equilibria and E1, E
+
2 , E

−
2 are asymptotically stable equilibrium. This means that

system (1.1) has an unstable positive constant equilibrium E∗, two unstable spatially inhomo-

geneous periodic solutions with inhomogeneous spatial structure like cos(2x) shape and peri-

odic temporal structure, a stable spatially homogeneous periodic solution and two stable spa-

tially inhomogeneous steady states with inhomogeneous spatial structure like cos(2x) shape.

Take (ε1, ε2) = (−0.012, 0.063) in region 4⃝, the dynamics of system (1.1) evolves from an

unstable spatially inhomogeneous periodic solution with inhomogeneous spatial structure like

cos(2x) shape and periodic temporal structure to stable spatially homogeneous periodic solu-
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tion, which is shown in Fig. 5 for the initial condition u(x, 0) = 1.3342− 0.15 cos(2x), v(x, 0) =

2.1575− 0.15 cos(2x).

In region 5⃝, system (4.1) has four equilibria E0, E1, E
+
2 and E−

2 . And, E0, E
+
2 , E

−
2 are

unstable equilibria and E1 is an asymptotically stable equilibrium. This means that system (1.1)

has an unstable positive constant equilibrium E∗, two unstable steady states with inhomogeneous

spatial structure like cos(2x) shape and a stable spatially homogeneous periodic solution. Take

(ε1, ε2) = (−0.023,−0.025) in region 5⃝, the dynamics of system (1.1) evolves from an unstable

spatially inhomogeneous steady state with inhomogeneous spatial structure like cos(2x) shape to

stable spatially homogeneous periodic solution, which is shown in Fig. 6 for the initial condition

u(x, 0) = 1.3292 + 0.09 cos(2x), v(x, 0) = 2.1091− 0.09 cos(2x).

In region 6⃝, system (4.1) has two equilibria E0 and E1. And, E0 is an unstable equilibrium

and E1 is an asymptotically stable equilibrium. This means that system (1.1) has an unstable

positive constant equilibrium E∗ and a stable spatially homogeneous periodic solution. Take

(ε1, ε2) = (0.023, 0.0635) in region 6⃝, which is shown in Fig. 7 for the initial condition u(x, 0) =

1.2222− 0.65 cos(2x), v(x, 0) = 2.1342 + 0.65 cos(2x).

5 Conclusion

In this paper, we have studied the spatiotemporal dynamics of a reaction-diffusion system

with general Brusselator type near the Turing-Hopf bifurcation point. By using the qualitative

analysis, we prove the existence of the codimension-2 Turing-Hopf bifurcation and give out the

precise conditions for the suitable ranges of the parameters. Then, by choose a, b as the bi-

furcation parameters, we derive the normal form for the Turing-Hopf bifurcation on the center

manifold. And, according to the corresponding normal form, the complex spatiotemporal dy-

namics near the Turing-Hopf bifurcation point can be explicitly classified into six bifurcation

scenarios, which are shown in Fig. 1. For each case, we have made some numerical simulations

to illustrate our theoretical results.

In Ghergu et al. [18] and Li [30], the researchers mainly discussed the Turing instability

or bifurcation analysis of codimension-1 such as Hopf bifurcation or steady state bifurcation.

Combing the results in [18, 30] and our results in this paper, we see that the system has some

interesting dynamics as the values of parameters of the model vary, such as the existence of an

15



unstable spatially homogeneous periodic solution and two stable spatially inhomogeneous steady

states, the coexistence of two unstable spatially inhomogeneous periodic solutions.

6 Appendix: calculation of B210, B102, B111 and B003

B210 =
1

4ℓπ (C210 − 1
2ωc

D210), B102 =
1

4ℓπ (C102 − 1
2ωc

D102 +
d1

d1+d2
E102),

B111 =
d2

ℓπ(d1+d2)
(C111 − 1

ω2
c
D111 +

d1
2(d1+d2)

E111), B003 =
d2

4ℓπ(d1+d2)
(C003 − 2

ω2
c
D003 − E003),

where

C210 = g
(00)
30 + g

(00)
21 (−3 + 1

ωc
i), C102 = g

(00)
30 + g

(00)
21 (2d1k

∗2

ω2
c ℓ

2 − 3 + 1
ωc
i),

C111 = g
(00)
30 + g

(00)
21 (d1k

∗2

ω2
c ℓ

2 − 3), C003 = g
(00)
30 + 3g

(00)
21 (d1k

∗2

ω2
c ℓ

2 − 1),

D210 = (2q2110 +
1
3q

2
020 − q200q110)i,D102 = (q110 − q200 +

4d2
d1+d2

q101)q002i,

D111 = q110g
(00)
11 , D003 = q002g

(00)
11 , E102 =

q101
iωc−Tk∗

(g
(00)
20 − 2g

(00)
11 ),

E003 =
q002

4d1d2k
∗4

ℓ4
−ω2

c

[−4d2k∗2

ℓ2
g
(00)
20 + g

(00)
11 (4d1d2k

∗4

ω2
c ℓ

4 + 4Tk∗ − 1)],

E111 = [−g
(00)
20 + g

(00)
11 (2 + d2k∗2

ω2
c ℓ

2 − 1
ωc
i)] q011

iωc+Tk∗
+ [g

(00)
20 − g

(00)
11 (2 + d2k∗2

ω2
c ℓ

2 + 1
ωc
i)] q101

iωc−Tk∗
,

with

q200 = q020 = g
(00)
20 − 2g

(00)
11 + i

2g
(00)
11
ωc

, q002 = g
(00)
20 − 2g

(00)
11 + 2d1k∗2

ω2
c ℓ

2 g
(00)
11 ,

q110 = g
(00)
20 − 2g

(00)
11 , q101 = q011 = g

(00)
20 + g

(00)
11 (d1k

∗2

ω2
c ℓ

2 − 2 + i 1
ωc
).
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