References
  1. Wen, X.; Wei, Y.; Huang, D. Measuring contagion between energy market and stock market during financial crisis: A copula approach, Energy Econ. 2012, 34, 1435-1446. https://doi.org/10.1016/j.eneco.2012.06.021.
  2. Lang, K.; Auer, B.R. The economic and financial properties of crude oil: A review, The North Am. J. Econ. Finance 2020, 52, 100914. https://doi.org/10.1016/j.najef.2019.01.011.
  3. Negin, C.; Ali, S.; Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 2017,3, 197-211. https://doi.org/10.1016/j.petlm.2016.11.007.
  4. Satter, A.; Iqbal, G.M. Enhanced oil recovery processes: thermal, chemical, and miscible floods, in: Satter, A., Iqbal, G.M. (Eds.), Reservoir Engineering. Gulf Professional Publishing, 2016, pp 313-337. https://doi.org/10.1016/B978-0-12-800219-3.00017-6.
  5. Cayias J.L., Schechter R.S.; Wade W.H. Modeling crude oils for low interfacial tension. Soc. Pet. Eng. J. 1976, 16, 351–357. https://doi.org/10.2118/5813-PA.
  6. Kamal, M.S. A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. J. Surfactants Deterg. 2016, 19(2), 223-236. DOI: 10.1007/s11743-015-1776-5.
  7. Zhang, S.; Jiang, G.-C.; Wang, L.; Guo, H.-T.; Tang, X.-G.; Bai, D.-G. Foam Flooding with Ultra-Low Interfacial Tension to Enhance Heavy Oil Recovery. J. Dispersion Sci. Technol. 2014, 35(3), 403-410. doi:10.1080/01932691.2013.792272.
  8. Qi, P.; Ehrenfried, D.H.; Koh, H.; Balhoff, M.T. Reduction of Residual Oil Saturation in Sandstone Cores by Use of Viscoelastic Polymers. Soc. Pet. Eng. J. 2017, SPE-179689-MS, 1-15. doi:10.2118/179689-PA
  9. Farajzadeh, R.; Wassing, B.L.; Lake, L.W. Insights into design of mobility control for chemical enhanced oil recovery. Energy Rep. 2019, 5, 570-578. https://doi.org/10.1016/j.egyr.2019.05.001.
  10. Zhang, H.; Ramakrishnan, T.S.; Nikolov, A.; Wasan, D. Methods and systems for enhanced oil recovery employing nanofluids. Pat. US20190024487A1, United States, 2017.
  11. Rognmo, A.U.; Al-Khayyat, N.; Heldal, S.; Vikingstad, I.; Eide, Ø.; Fredriksen, S.B.; Alcorn, Z.P.; Fraue, A.; Bryant, S.L.; Kovscek, A.R.; Fernø, M. A. Performance of Silica Nanoparticles in CO2 Foam for EOR and CCUS at Tough Reservoir Conditions. Soc. Pet. Eng. 2020, SPE-191318-MS, 1-12. doi:10.2118/191318-PA.
  12. Kamari, A.; Nikookar, M.; Sahranavard, L.; Mohammadi, A.H. Efficient screening of enhanced oil recovery methods and predictive economic analysis. Neural Comput. Appl. 2014, 25, 815–824. https://doi.org/10.1007/s00521-014-1553-9.
  13. Zuloaga-Molero, P.; Yu, W.; Xu, Y.; Sepehrnoori, K.; Li, B. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries. Sci. Rep. 2016, 6, 33445. https://doi.org/10.1038/srep33445.
  14. Su, S.; Giddins, M.A.; Kuznetsov, D.; Naccache, P.; Clarke, A.; Fordham, E.J.; Hawkes, L.; Howe, A.; Mitchell, J.; Staniland, J. Enhanced Oil Recovery (EOR) Chemical Coreflood Simulation Study Workflow. Pat. US20180032356A1, United States, 2016.
  15. Guo, Z.; Dong, M.; Chen, Z.; Yao, J. Dominant Scaling Groups of Polymer Flooding for Enhanced Heavy Oil Recovery. Ind. Eng. Chem. Res. 2013, 52 (2), 911-921. DOI: 10.1021/ie300328y
  16. Waggoner, J.R.; Castillo, J.L.; Lake, L.W. Simulation of EOR Processes in Stochastically Generated Permeable Media. Soc. Pet. Eng. 1992, 7, 1-8. doi:10.2118/21237-PA.
  17. Goudarzi, A.; Delshad, M.; Sepehrnoori, K. A chemical EOR benchmark study of different reservoir simulators. Comput. Geosci. 2016, 94, 96-109. DOI: 10.1016/j.cageo.2016.06.013.
  18. Kazempour, M.; Alvarado, V.; Manrique, E.J.; Izadi, M. Impact of Alkaline-Surfactant-Polymer Flooding Model on Upscaled Recovery Predictions: Medium and Heavy Oils. Soc. Pet. Eng. 2014, SPE-171055-MS, 1-20. doi:10.2118/171055-MS.
  19. Goudarzi, A.; Delshad, M.; Sepehrnoori, K. A Critical Assessment of Several Reservoir Simulators for Modeling Chemical Enhanced Oil Recovery Processes. Soc. Pet. Eng. 2013, SPE-163578-MS, 1-16. doi:10.2118/163578-MS.
  20. Satoh, T. Treatment of Phase Behavior and Associated Properties Used in Micellar-Polymer Flood Simulator. The University of Texas at Austin, Austin, Texas, 1984.
  21. Korrani, A.K.N.; Sepehrnoori, K.; Delshad, M. Coupling IPhreeqc with UTCHEM to model reactive flow and transport. Comput. Geosci. 2015, 82, 152–169. https://doi.org/10.1016/j.cageo.2015.06.004.
  22. Morel, D.; Vert, M.; Jouenne, S.; Nahas, E. Polymer injection in deep offshore field: the Dalia Angola case. In: Proceedings of Paper SPE 116672, Presented at the Annual Technical Conference and Exhibition. 21–24 September, 2008, Denver, Colorado.
  23. Lashgari, H.R.; Sepehrnoori, K.; Delshad, M.; 2016. A four-phase chemical/gas model in an implicit-pressure/explicit-concentration reservoir simulator. Soc. Pet. Eng. J., 2016, 21, 1-20. https://doi.org/10.2118/173250-PA.
  24. CMG-STARS Technical Manual, 2014.
  25. Lashgari, H.R.; Sepehrnoori, K.; Delshad, M. Modeling of low-tension surfactant-gas flooding process in a four-phase flow simulator. In: Proceedings of Paper SPE 175134, Presented at the SPE Annual Technical Conference and Exhibition. 28–30 September, 2015, Houston, Texas.
  26. Pandey, A.; Beliveau, D.; Corbishley, D.W.; Kumar, M.S. Design of an ASP pilot for the Mangala field: laboratory evaluations and simulation studies. In: Proceedings of Paper SPE 113131, Presented at the Indian Oil and Gas Technical Conference and Exhibition. 4–6 March, 2008, Mumbai, India.
  27. Tunnish, A.; Shirif, E.; Henni, A. History matching of experimental and CMG-STARS results. J. Petrol. Explor. Prod. Technol. 2019, 9, 341–351. https://doi.org/10.1007/s13202-018-0455-2.
  28. Dahbag, M.S.B.; Hossain, M.E.; AlQuraishi, A.A. Efficiency of Ionic Liquids as an Enhanced Oil Recovery Chemical: Simulation Approach. Energy Fuels 2016, 30, 9260-9265. DOI: 10.1021/acs.energyfuels.6b01712.
  29. Pal, N.; Saxena, N.; Mandal, A. Synthesis, characterization, and physicochemical properties of a series of quaternary gemini surfactants with different spacer lengths. Colloid Polym. Sci. 2017, 295, 2261-277. https://doi.org/10.1007/s00396-017-4199-1.
  30. Pal, N.; Saxena, N.; Mandal, A. Equilibrium and dynamic adsorption of gemini surfactants with different spacer lengths at oil/aqueous interfaces. Colloids Surf., A 2017, 533, 20-32. https://doi.org/10.1016/j.colsurfa.2017.08.020.
  31. Keshtkar, S.; Sabeti, M.; Mohammadi, A.H. Numerical approach for enhanced oil recovery with surfactant flooding. Petroleum 2016, 2, 98-107. https://doi.org/10.1016/j.petlm.2015.11.002.
  32. Stanislaus, B.R.; Mahmud, H.K.B. Numerical Approach for Enhanced Oil Recovery with Surfactant Flooding using STARS (CMG). Int. J. Petrol. Petrochem. Eng. 2017, 3, 1-18. DOI: http://dx.doi.org/10.20431/2454-7980.0304001.
  33. Bidner, M.S.; Savioli, G.B. On the numerical modeling for surfactant flooding of oil reservoirs. Mecanica Computacional, 2002, XXI, 566-585.
  34. Dai-yin, Y.; Hui, P.U. Numerical simulation study on surfactant flooding for low permeability oilfield in the condition of threshold pressure. J. Hydrodyn., Ser. B 2008, 20, 492-498. https://doi.org/10.1016/S1001-6058(08)60085-2.
  35. Druetta, P.; Yue, J.; Tesi, P.; De Persis, C.; Picchioni, F. Numerical modeling of a compositional flow for chemical EOR and its stability analysis. Appl. Math. Modell. 2017, 47, 141-159. https://doi.org/10.1016/j.apm.2017.03.017.
  36. Janssen, M.T.G.; Mendez, F.A.T.; Zitha, P.L.J. Mechanistic Modeling of Water-Alternating-Gas Injection and Foam-Assisted Chemical Flooding for Enhanced Oil Recovery. Ind. Eng. Chem. Res. 2020, 59 (8), 3606-3616. DOI: 10.1021/acs.iecr.9b06356.
  37. Hashmet, M.R.; AlSumaiti, A.M.; Qaiser, Y.; AlAmeri, W.S. Laboratory Investigation and Simulation Modeling of Polymer Flooding in High-Temperature, High-Salinity Carbonate Reservoirs. Energy Fuels 2017, 31, 13454-13465. DOI: 10.1021/acs.energyfuels.7b02704.
  38. Qiao, C.; Khorsandi, S.; Johns, R.T. A general purpose reservoir simulation framework for multiphase multicomponent reactive fluids. Soc. Pet. Eng. 2017, SPE-182715-MS, 1-18. https://doi.org/10.2118/182715-MS.
  39. Liu, H.; Chen, Z. 2018. A Scalable Thermal Reservoir Simulator for Giant Models on Parallel Computers. Comput. Eng. Finance Sci. 2018, 1–104.
  40. Bakyani, A.E.; Taghizadeh, A.; Sarvestani, A.N.; Esmaeilzadeh, F.; Mowla, D. Three-dimensional and two-phase numerical simulation of fractured dry gas reservoirs. J. Petrol. Explor. Prod. Technol. 2018, 8, 1425–1441. https://doi.org/10.1007/s13202-017-0423-2.
  41. Abbas, L.A.H.; Sulaiman, W.R.W.; Jaafar, M.Z.; Gbadamosi, A.O.; Ebrahimi, S.S.; Elrufai, A. Numerical study for continuous surfactant flooding considering adsorption in heterogeneous reservoir. J. King Saud Univ. Eng. Sci. 2020, 32, 91-99. https://doi.org/10.1016/j.jksues.2018.06.001.
  42. Hosseini-Nasab, S.M.; Padalkar, C.; Battistutta, E.; Zitha, P.L.J. Mechanistic Modeling of the Alkaline/Surfactant/Polymer Flooding Process under Sub-optimum Salinity Conditions for Enhanced Oil Recovery. Ind. Eng. Chem. Res. 2016, 55 (24), 6875-6888. DOI: 10.1021/acs.iecr.6b01094.
  43. Dahbag, M.S.B.; Al-Gawfi, A.; Hassanzadeh, H. Suitability of hot urea solutions for wettability alteration of bitumen reservoirs – Simulation of laboratory flooding experiments. Fuel 2020, 272, 117713. https://doi.org/10.1016/j.fuel.2020.117713.
  44. Lashgari, H.R.; Pope, G.A.; Tagavifar, M.; Luo, H.; Sepehrnoori, K.; Li, Z.; Delshad, M. A new relative permeability model for chemical flooding simulators. J. Pet. Sci. Eng. 2018, 171, 1466-1474. https://doi.org/10.1016/j.petrol.2018.08.007.
  45. Cheng, X.; Kleppe, J.; Torsæter, O. Simulation study of surfactant injection in a fractured core. J. Pet. Explor. Prod. Technol. 2019, 9, 3079-3090. https://doi.org/10.1007/s13202-019-0705-y.
  46. Hakiki, F., Maharsi, D.A., Marhaendrajana, T. Surfactant-polymer coreflood simulation and uncertainty analysis derived from laboratory study. J. Eng. Technol. Sci. 2015, 47, 706–725. https://doi.org/10.5614/j.eng.technol.sci.2015.47.6.9
  47. Pal, N.; Saxena, N.; Mandal, A. Studies on the physicochemical properties of synthesized tailor-made gemini surfactants for application in enhanced oil recovery. J. Mol. Liq. 2018, 258, 211-224. https://doi.org/10.1016/j.molliq.2018.03.037.
  48. Stern, H.O. Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 1924, 30 (21‐22), 508–516. DOI: 10.1002/bbpc.192400182
  49. Li, N.; Zhang, G.; Ge, J.; Luchao, J.; Jianqiang, Z.; Baodong, D.; Pei, H. Adsorption Behavior of Betaine-Type Surfactant on Quartz Sand. Energy Fuels 2011, 25, 4430-4437. DOI: 10.1021/ef200616b.
  50. Nandwani, S.K.; Chakraborty, M.; Gupta, S. Adsorption of Surface Active Ionic Liquids on Different Rock Types under High Salinity Conditions. Sci. Rep. 2019, 9, 14760. DOI: 10.1038/s41598-019-51318-2.
  51. Bai, L.; Li, C.; Korte, C.; Huibers, B.M.J.; Pales, A.R.; Liang, W.; Ladner, D.; Daigle, H.; Darnault, C.J.G. Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces. Appl. Nanosci. 2017, 7, 947–972. DOI: 10.1007/s13204-017-0630-7
  52. Gao, B.; Sharma, M.M. A family of alkyl sulfate gemini surfactants. 2. Water–oil interfacial tension reduction. J. Colloid Interface Sci. 2013, 407, 375-381. https://doi.org/10.1016/j.jcis.2013.06.066.
  53. Betancur, S.; Giraldo, L.J.; Carrasco-Marín, F.; Riazi, M.; Manrique, E.J.; Quintero, H.; García, H.A.; Franco-Ariza, C.A.; Cortés, F.B. Importance of the Nanofluid Preparation for Ultra-Low Interfacial Tension in Enhanced Oil Recovery Based on Surfactant–Nanoparticle–Brine System Interaction. ACS Omega 2019, 4 (14), 16171-16180. DOI: 10.1021/acsomega.9b02372.
  54. Zhu, P.; Zhu, Y.; Xu, Z.C.; Zhang, L.; Zhang, L.; Zhao, S. Effect of Polymer on Dynamic Interfacial Tensions of Anionic–nonionic Surfactant Solutions, J. Dispersion Sci. Technol. 2016, 37, 820-829. DOI: 10.1080/01932691.2015.1065502.
  55. SiTu, W.X.; Lu, H.M.; Ruan, C.Y.; Zhang, L.; Zhu, Y.; Zhang, L.Effect of polymer on dynamic interfacial tensions of sulfobetaine solutions. Colloids Surf., A 2017, 533, 231-240. https://doi.org/10.1016/j.colsurfa.2017.09.006.
  56. Ali, J.A.; Kolo, K.; Manshad, A.K.; Mohammadi, A.H. Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding. Egypt. J. Pet. 2008, 27, 1371-1383. https://doi.org/10.1016/j.ejpe.2018.09.006.
  57. Ahmed, A.; Saaid, I.M.; Ahmed, A.A.; Pilus, R.M.; Baig, M.K. Evaluating the potential of surface-modified silica nanoparticles using internal olefin sulfonate for enhanced oil recovery. Pet. Sci. 2019. https://doi.org/10.1007/s12182-019-00404-1.
  58. Zhou, Y.; Wu, X.; Zhong, X.; Sun, W.; Pu, H.; Xiaojun, J. Zhao Surfactant-Augmented Functional Silica Nanoparticle Based Nanofluid for Enhanced Oil Recovery at High Temperature and Salinity. ACS Appl. Mater. Interfaces 2019, 11 (49), 45763-45775. DOI: 10.1021/acsami.9b16960.
  59. Sharma, T.; Kumar, G.S.; Chon, B.H.; Sangwai, J.S. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system. Korea-Aust. Rheol. J. 2014, 26, 377–387. https://doi.org/10.1007/s13367-014-0043-z.
  60. Baldygin, A.; Nobes, D.S.; Mitra, S.K. New Laboratory Core Flooding Experimental System. Ind. Eng. Chem. Res. 2014, 53 (34), 13497-13505. DOI: 10.1021/ie501866e.
  61. Mahdavi, S.; James, L.A. High pressure and high-temperature study of CO2 saturated-water injection for improving oil displacement; mechanistic and application study. Fuel 2020, 262, 116442. https://doi.org/10.1016/j.fuel.2019.116442.
  62. Zampieri, M.F.; Ferreira, V.H.S.; Quispe, C.C.; Sanches, K.K.M.; Moreno, R.B.Z.L. History matching of experimental polymer flooding for enhanced viscous oil recovery. J Braz. Soc. Mech. Sci. Eng. 2020, 42, 205. https://doi.org/10.1007/s40430-020-02287-5.
  63. Ghahfarokhi, A.J.; Torsaeter, O. Modeling Wettability Alteration in Low Salinity Water Flooding. Presented at 81st EAGE Conference & Exhibition, 2019. DOI: 10.3997/2214-4609.201900720.
  64. Kok, M.V. Performance Estimation of Water Flooding in Oil Recovery. Energy Sources, Part A 2009, 31, 560-567. DOI: 10.1080/15567030802463943.
  65. Nandwani, S.K.; Chakraborty, M.; Gupta, S. Chemical flooding with ionic liquid and nonionic surfactant mixture in artificially prepared carbonate cores: A diffusion controlled CFD simulation. J. Pet. Sci. Eng. 2019, 173, 835-843. https://doi.org/10.1016/j.petrol.2018.10.083.
  66. Kamali, F.; Hussain, F. Field-scale simulation of CO2enhanced oil recovery and storage through SWAG injection using laboratory estimated relative permeabilities. J. Pet. Sci. Eng. 2017, 156, 396-407. https://doi.org/10.1016/j.petrol.2017.06.019.
  67. Dahbag, M.S.B.; Hossain, M.E. Simulation of Ionic Liquid Flooding for Chemical Enhance Oil Recovery Using CMG STARS Software. Soc. Pet. Eng. 2016, SPE-182836-MS; 1-14. DOI: 10.2118/182836-MS.
  68. Salmo, I.C.; Pettersen, Ø.; Skauge, A. Polymer Flooding at an Adverse Mobility Ratio: Acceleration of Oil Production by Crossflow into Water Channels. Energy Fuels 2017, 31 (6), 5948-5958. DOI: 10.1021/acs.energyfuels.7b00515.