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Abstract

In this article, we use a fuzzy number in its parametric form and transform a non-linear
fuzzy integral equations to its parametric form of the second kind as in the crisp case. The
main focus is to solve the fuzzy non-linear integral equations for semi analytical solutions. The
suggested treatment are presented for the solution of respective fuzzy non-linear integral equa-
tions including fuzzy non-linear Fredholm integral equation, fuzzy non-linear Volterra integral
equations and fuzzy non-linear singular integral equation of Able’s type kernel via an hybrid
method of integral transform and decomposition technique. The proposed method is illustrated
in details by solving few examples.
keyword: Semi Analytical solution, Fuzzy non-linear Fredholm integral equation, Fuzzy non-
linear Volterra integral equation, fuzzy Singular integral equation.

1 Introduction

In many scientific and mathematical disciplines the topics of integral equations find special applica-
bility. Indeed utilizing integral equation with the exact parameter in modeling of physical problems
is not easy always but in the real problem also impossible. For this reason, a technique utilizing
the uncertainty measure for the grip of such deficiency of information. For this purpose, one of the
current point of view is fuzzy notion presented by Zadeh in 1965 [1]. In very recent years, now fuzzy
systems are used to study various problems from fuzzy topological spaces [2], fuzzy metric spaces [3],
fuzzy differential equations [4, 5], to control chaotic systems [6,7] and practical physics [8,9]. The
interest of fuzzy integral equations are growing fastly in such problems especially in fuzzy control,
has been developed. So using deterministic models of integral equations instead, we applying the
fuzzy integral equation. Hence, there need to occurs and to develop a numerical procedure and
mathematical models that would treat appropriately for general fuzzy integral equations and solve
them. There are a lot of research papers dealing with fuzzy integral equation exist in literature
which are reviewed some of them here cited for more interpretation of the existing analysis. For
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solving the fuzzy integral equation we need suitable definitions of fuzzy functions and fuzzy inte-
gral of a fuzzy functions. The basic arithmetic operations for fuzzy number and elementary fuzzy
calculus by Dobois and Prade can be traced in [10,11]. Later different proposal were recommended
by Voxman,Goetschel [12], Kaleva [13], Seikkala [14]. Various applications and methods for solving
linear and non-linear integral equations are given in [15]. The fuzzy integral equations is one of the
most dominant field of fuzzy set theory [16,17]. In last few decade, the concept of fuzzy integral
equation and fuzzy integro-differential equation have stimulated researchers. In this regard, large
amount of research work have been done, we refer [18,30]. This is due to various applications
of integral equations in scientific field. Therefore, by finding efficient and accurate algorithm for
investigating fuzzy integral equation is one the hot area of research in recent time. To achieve these
goals, various methods and procedure were used to handle integral equations, for detail see [31-33].
Motivated from the aforesaid work, in this article, we use an hybrid method form from coupling
Laplace transform with decomposition method of Adomian to solve different types of the fuzzy
non-linear integral equations below

B1(h)

w(h, ) =f(h,'v)+u/ " G(h, u)w(u, v)du, (1)

where f(h,~) and G(h,u) are known fuzzy functions and the unrevealed function w(h,~y) which ap-
pear under the integral is a non-linear term i.e which is in the form of In(w(u, 7)), exp(w(u,v)), w?(u, )
etc and vy € (0,1) called fuzzy parameter and p is a constant parameter. The two variable function
G(h,u) is called kernel of fuzzy integral equations, ay(h) and [1(h) are limits of integration. If
both the limits of integration are real numbers then Eq. (1) is called fuzzy non-linear Fredholm
integral equations. If the one of its limit say a(h) is constant and other limit say (;(h) is variable
then Eq. (1) is called fuzzy non-linear Volterra integral equations and if the kernel has a singularity
in the domain of its integration then Eq. (1) is called fuzzy non-linear singular integral equation
of Able’s type kernel.
The parametric case of Eq. (1) is

and
_ JG(hu)w(h,) G(h,u) >0,
Gl uwlu, 7) = {G(h, @(w,y)  Glhu) < 0.
G(h,u)w(h,v) G(h,u) >0,

G, whw (v, ) {G(h,u)g(u,’y) G(h,u) < 0.
By the suggested method we compute fuzzy solutions to the above integral equations. We solve
various examples to demonstrate the procedure.

The paper is organize as: In Section 1 we prove a detail introduction of the problem. Also in
Section 2, we recall some basic definitions. In same line the methodology is given in Section 3.
Further to support our results we given examples and comparison with other method in Section
int4. Last section 5 is devoted to conclusion of the paper.



2 Preliminaries

Some basic definitions are given which used throughout the paper.
Definition 1. [4] A pair of functions
(¥(n),7(m)) 0<ar <1,
is a parametric form of fuzzy number, which has the given properties:
(i) v(an) is a non-decreasing bounded left continuous in (0, 1] and at 0 right continuous.
(ii) 7(aq) is a non-increasing bounded left continuous in (0, 1] and at 0 right continuous.
(ili) v(a1) <7(a1), 0 <a; <1

Let E7 denote the set of all upper semi-continuous, convex and normal fuzzy numbers with
bounded o1 —level interval. It means that if v € F; then aq—level set

T ={t:v(t) > a1}, 0<a; <1,

are closed bounded interval, written as
[v]* = [z(en), 7(an)].

For any different fuzzy numbers

V= (Z(Oél),v(al)), w = (ﬂ(a1)7w(a1))7

and for arbitrary scaler x1, the various operations are defined as follow,
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(i) Addition: (v(a1) +w(aq),v(aq) +w(ag)) = (v(aq) + w(ar), v(ay
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(ii) Subtraction: (v(a1) —w(a1),v(an) —w(a)) = (v(a

(k1v(on), miP(a1)) K1 >0,

(iii) Scaler multiplication: k1 - v(aq) = -
(k17(on), kiv(ar)) kK1 <O0.

Definition 2. [4] Let Dy : Ey x By — Ry U {0} be a mapping, v = (v(a1),7(a1)) and w =
(w(a1),w(q)) are any two fuzzy numbers in parametric form. Then the Hausdorff distance between
(v,w) are defined as:

Di(v,w) = sup max{|z(a1) — w(ar)], [P(en) = @(a)l}-

In Ey, a metric D; as defined above have following properties (see [20])
(i) Di(v +v,w+v) = Di(v,w) forall v,v,w € Ey;
(ii) Di(k1-v, k1 -w) = |k1|D1(v,w) forall kK1 € R,v,w € EY;
(iii) Di(v+ p,w +v) < Dy(v,w) + Di(p,v) for all v,w, p,v € Ey;
)

(iv) (E1,D;) is a complete metric space.



Definition 3. [21] Suppose that y1,y2 € E;. If there exist y3 € Ey such that

Y1 =Y2t+ys3
then y3 is said to be H-difference of 3 and ys and denoted as y; & ys.

Definition 4. [7] Consider the fuzzy function h: R — E;. Then h is said to be continuous if for
any rooted yo € [1, B2], if for every € > 0, there exist 6 > 0 such that if |y — yo| < 0 which implies
that

Dy (h(y), h(yo)) < e.

Definition 5. [22] A levelwise continuous mapping h : [$1, f2] C R — Ej is defined at a € [f1, (2],
if the set-valued mapping hq, (y) = [h(y)]*" is continuous at y = a with respect to the Hausdorff
metric Dy for all oy € [0, 1].

Theorem 1. [22] Consider
(i) h(y) is a levelwise continuous function on [a,a + yo|, yo >0,

(ii) k(y,s) is a levelwise continuous function on A :a < s <y <a-+yy and D1(v(y),h(yo)) < y1,
where y; > 0

(iii) For any (y,s,v(s)), (y,s,w(s)) € A, we have

Dy ([k(y, s,v(s))]™, [k(y, 5,w(s))]*") < MDy([p(s)]™, [w(s)]*),

where the constant M > 0 is given and for any oy € [0, 1].
Then, the levelwise continuous solution v(y) exist and unique for Eq.(1) and defined for
y € (a,a+6), where = min{yo, K}, and N = D1(k(y, s,v(s)), (y,s,w(s))) € A.

Theorem 2 (Fuzzy Convolution Theorem). [24] Let ¢1,¢2 are fuzzy valued function of exponential
order p, which are piecewise continuous on [0,00), then

L(¢1 * ¢2)(s)] = L¢1(s)] - L]ga(s)]; (3)

where L represent the Laplace transform.

3 General Procedure to Handle Fuzzy Non-linear Integral Equa-
tion

To solve the fuzzy non-linear integral Eq. (1) in fuzzy sense, the parametric form of Eq. (1) can
be written into two integral equation as follow

G(h,u)w y )
G(h,u)w y

{Lw, )] = LI ()] + Ll [0 Glhy )™ (u, ) dul, -
Ll@(h,7)] = LIF(h, 7)) + Ll [ G(h, w)@" (u, 7)du),



operating inverse Laplace transform on Eq. (5), obtain

{_< 7) = £(7) + L7 Ll Gy GOy w) (u, ), ©
w(h, ) = 7<h L [0 G u)@ (u, 5)du]],

consider the lower and upper fuzzy limit solutions of Eq. (6) can be expend by the Laplace
Decomposition algorithm into infinite series as

g(hﬂ /7) = ZZO:() gn(hﬂ /7)7 (7)
w(h7 /7) = ZZO:O wn(h7 /7)7

and non-linear lower and upper limit terms (w"(h,v),w"™(h,7)) can be written as
Qn (u, 7) = Z?LO:O Bn(u7 ’Y)? (8)
w (’LL, ’7) = Z;O:O Bn(u7 /7)7

where (B (u,), B, (u,v)) are the Adomian polynomials [34]. By putting Eq. (7) and Eq. (8) in
Eq. (6);

{E?om 7) = f(hy) + LML [ G w)[7 Buu, y))dul) o
i

35 0 @al(hov) = F(h, > L[ [5G () B, )]

the Adomian polynomials in Eq. (8) can be generated by several means and we used the following
recursive formulation as

{Bn< ) = s IV (2520 Mep)lao, 10)
Bn( ’ ) %dd; [N(zk—o A wk)]AzO;
for n =0,1,2,3,.... Thus in general, comparing the recursive relation of Eq. (9) term wise, we get
forn =0
wo(h,v) = f(h,7),
{wo(h,v) = f(h,7),
atn=1
{%(h, y) = LY Ll [ 5 G R, w) Bo(u, v)dull,
@1 (h,y) = LY L[ [0 G(hyw) Bo(u, v)dul],
at n =2
{gz(h, y) = LYL[ [0 G(hyw) B (u, y)dul],
@a(h,y) = L Ll [0 G(hyw) By (u, 7)du]],
continue for n + 1,s0 obtain
{Qm—l(h ,y) = L7 L[p fﬁll((;?) u) By (u,y)dul], (11)
Wna1(h, ) 1L ffll((h) w) By (u,~)du]], n >0,

where (f(h,7), f(h,7)) represent the source term.



4 Demonstration of our results, discussion and comparison

We divide this portion in to two subsection. In first subsection we give some test examples, while
in other subsection we give discussion and comparison with other method.

4.1 TIllustrative test problems

We solve few examples by consider proposed method to obtain an analytical approximate solutions
of the fuzzy non-linear integral equations of different types. Applications of the proposed method
are more simple and upgrade its order.

Example 1. [35] Consider the second kind fuzzy non-linear Volterra integral equation in paramet-
ric form is

_ = h
W(h,’y) = f(h7'7) + f() w2(u7f}/)du7
where p=1,0<h <1,0<u<h,Gh,u)=1,0<+v <1 and non-homogenous term are

(£(hs), F(hyy) = (%% + 1), (T = )h).
To solve Eq. (12) using proposed method, first take Laplace transform on Eq. (12), we have

{gm, 7) = Fh,) + Jy ¥ (u,7)du, (12)

{Lw, ) = LIf ()] + LU fy w? (),
L@ (h, 7)) = LT (h )] + LU & (u,7)du],

operating inverse Laplace transform on Eq. (13), we get

{g(h,v) = f(h,y) + L7VLLf) w2 (u, ) du]),
@(h,y) = F(h,y) + L7VLLf) w?(u,~)du]],

{M, 7 = (2 +7)h+ L-l[L[foh 2(u, ) u]],
@(h,y) = (7 —7)h+ L7VLf) w?(u, ~)du]),

assume the lower and upper limit fuzzy solutions of Eq. (15) be an infinite series as

{g(h,v) =Yl g w,(h, ),
D(h,7) = 3o g @alhy7),

putting Eq. (16) in Eq. (15) we get

{z;:‘;ogn(hv) (v +9)h + L fo 52 o Bu(u, )],

Sz @a(h7) = (7= o+ LHLU [0 Balos 1)) "

where (Bn,Bn) are Adomian polynomials which represent the non-linear term; can be decompose

{Bn(uﬁ) = s (o Mewp) B3,
_1

L MR, 1)



now first solving for lower limit fuzzy solution of Eq. (12). So comparing lower limit terms of Eq.

(17) and solve, obtain

7

wo(h,y) = (4 +7)h,

wy (h,y) = L7YLL [y [0 g Bo(u, v)]dul] = 1(72 + )21,

wo(h,7) = LTLL 1202 Bu(u, 7)ldul] = 2 (72 + )R,
ws(h,y) = L7 L0 Bau, 7)]du]] = gL (4% +7)*h7,

(19)

and for upper limit fuzzy solution of Eq. (12). comparing upper limit terms of Eq. (17) and solve,

obtain
wo(h,y) = (T=7)h
wi(h,7) = L7YL[J,
wa(h,v) = L7YL[J
w3 (h,y) = L7'L[J,

) [0 Bo(u, 7)ldul] = 5(7 = )°h?,
) [0 Bu,ldu]] = (7 - 7)°h,
[0 Balu, y)ldul] = 55 (7~ 7)1,

(20)

putting Eq. (19) and Eq. (20) in Eq. (16) the approximate lower and upper limit fuzzy solutions

get as

{gm) = (V+Nh+ (2 )23+ 2 (V2 +9)2h0 + 2L (v + )R +

W(h,y) = (T=7h+ 5(7T =)0 + FH(T = 9)°h° + 557 — )T+

(21)

Example 2. [35] Consider the 2nd kind fuzzy nonlinear Fredholm integral equation in parametric

form

{ w(h,y) =
(h,7)

h7 + f(] U,V du7

—f hyy) + [ @ (u,7)du,

where 0 < h,u < 1,0 <y < 1,G(h,u) =1 and (f(h.7), f(h,7)) = (7,2 — 7).

To solve Eq. (22) by proposed method.

{ w(h,~)] =
L@(h,7)] =

Taking Laplace transform we have

LLf(hy )] + L fy w?(u,7)du],

L[F(h,7)] + LLf &2 (u, v)du),

now applying inverse Laplace transform on Eq. (23), we get

{g(h,'v) =7+ L7 L[f; w?

(u,y)dul],

@(h,7) = (2 =) + L7 L[, @*(u, v)du]],

assume lower and upper limit fuzzy solutions of Eq. (24) be an infinite series as

(hv 7) = ZZO:O wn(hv 7))

{g(fw) = o wWn (P ),

putting Eq. (25) in Eq. (24) we get

{z;zo wo(hyy) =7+ L~ [L[fo"[z;” o Bn(u,7)]dul],

Zfzown(h 7)) =(2-") fo

S0 Bu(u,)]dul],

(22)

(23)

(25)



where (Bp, Bn) are Adomian polynomials which represent non-linear term and can be solve as

{Bin(uvf}/) = nidT[(Zk o N'wi)3=o:
Bn(u,7) = s | (Cro N@) 3o

Now first solving lower limit fuzzy solution of Eq. (22). So comparing lower limit case of Eq. (26)
terms wise and solve, obtain

(27)

o(hﬁ) =7,

wy (h,y) = L7V Ly 002 g Bo(u, )]du]] = ~2,

wy(h,y) = L7YLLfy [0 Ba(u,y)]dul] = 29, (28)
5(hy) = L—I[L[foh[z:;io Bs(u,7)]du]] = 57",

and for upper limit fuzzy solutions of Eq. (22). Comparing upper limit case of Eq. (26) terms
wise and solve, obtain

Wo(h,y) =2—7,

w1 (h,y) = LHL[f [0 Bo(u, 7)]dul] = (2 —9)%,

wa(h, ) = L L[Sy 02 Bi(u, 7)ldu]] = 2(2 —7)?, (29)
wa(h,7) = L7YLLfy [0 Bau, y)]dul] = 5(2 — )1,

putting Eq. (28) and Eq. (29) in Eq. (26) to get the approzimate lower and upper limit fuzzy
solutions as
w(h,7) =7+ +29° +5y" + -, (30)
wWhyy) = 2=+ 2=7)?+22-7)>+52 -7+
Example 3. [35] Consider the 2nd kind fuzzy non-linear singular integral equation of Able’s type
kernel of parametric

w(h, )+ ’7 du,
w(h,y) = é Jo e (31)
@(h,y) = F(h) + [y T2 ’V du,
wher60§h§1,0§u§h,0§7§1 and
(i(h7'7)7 f(h7’7)) = (hfy - %72h5/27 h(3 - fY) - i_g(?’ - 7)2}7’5/2)'
We solveing Eq. (31) by proposed method. Taking Laplace transform on Eq. (31) we have
Llw(h, Liyh — 1842p5/2) 4 I "““”)du
[:( )] =Ly ] [f2 5>/2— B o (32)
Lw(h, )] = L[(3 - V)h — 83— 9252 + L[y 7= dul,
applying Fuzzy Convolution theorem on Eq. (32), we obtain
Llw(h,7)] = Liyh — 14%h%/2] + L[(h) /%] - Llw?(u, )],
L{@(h,7)] = L[(3 = 1)h = 12(3 = 7)?h/2] + L{(h) V2] - L[@*(u, 7)),
Lw(h,7)] —L[(3 ’Y)h 15(3 ’Y) h5/2 + \/;LW(U”Y)],

8



applying inverse Laplace transform on Eq. (33), obtain

g(h ) ’}/h 16 2h5/2—|—L \/?L (34)
w(h,y) = (3 — fy)h 183 —7) h5/2+L \/_L
assume the lower and upper limit fuzzy solutions of Eq. (34) be an infinite series as
w(h,y) = Zn:O wn(h77)7
putting Eq. (35) in Eq. (34) we get
Yoo @n(hy) =vh — }—?7%5/2 + L7V /TLw (36)
>onco@n(h,y) = (3 =7)h — 123 —7)*h°% + L fL
S0in(h) = ey = W+ L LIS Baho)]) .
Yol o@a(hyy) = (B =k — 323 = )R + L7\ /L[S 02, Ba(h, V)],

where (B, Bn) are Adomian polynomials which represent the non-linear terms and can be find as

{&ww—%%«z?MwmAm (38
Bn(hy’Y) nidT[(Zk 0)‘k )]?\:07
now first solving the lower limit fuzzy solution of Eq. (31). So comparing lower limit terms of Eq.
(37) and solve, obtain

() = v — 92077,

wy (h,y) = L7 \/Z[L[Bo(u, 7)]]] = 1£~+2h°/2 + $84h? — LA37ht, (39)

and for upper limit solution of Eq. (31). Comparing upper limit terms of Eq. (37) and solve,
obtain

) (3—7)h— (3 7)2h5/2,
= L7 /TIL[ 0 Bo(u, )] = 12(3 = 7)2h%/% 4+ $2(3 — 9)*mwh® — (3 — y)°wh?,

€l
S

. §|

(40)
and so on. Computing the various term of the series fuzzy solutions like computed in Eq. (40) in
Eq. (35). After computation the term and putting in Eq. (39), canceling the noise terms, and get
the lower and upper limit solution as

w(h,y) = vh. (41)
w(h,7) = (3 =7)h.

4.2 Comparison with HAM [36] and Discussion

In HAM the convergence of solution in the form of series depends upon four factor i.e. the
initial guess, the auxiliary linear operator, the auxiliary function which we define for homotopy and



auxiliary parameter h. Further if we select h = —1 , and the auxiliary function also equal to 1, we
get HPM. Hence HPM is a spacial case of HAM whose convergence is only depends upon two factors:
the auxiliary linear operator and the initial guess. So, given the initial guess and the auxiliary linear
operator, HPM approach cannot provide other ways to ensure that the solution is convergent. On
the other hand proposed method solution for both linear and nonlinear problems are obtained
in series form showing higher convergence of the method. Among all other analytical methods,
proposed methods an efficient analytical method to solve non-linear problems of differential or
integral equations. This is an hybrid method form from the combination of two powerful methods
Laplace transform and Adomian decomposition method. The mentioned method does not need any
kind of discretization or linearization. It also does not need a predefined parameter as needed in
HAM methods which control these schemes. Therefore proposed method can be used is an efficient
analytical technique for treating those equations that represent nonlinear models. Here we remark
that proposed method without initial condition, converges towards a particular solution [37,38].

5 Conclusion

In the present paper, some different types of fuzzy non-linear integral equation are handled by
the proposed method. Further, it is shown that the solution of fuzzy non-linear integral equations
by the newly proposed algorithm is easily, affectively and accurately convergent. the proposed
algorithm are than illustrated by giving some numerical examples which shows the exactness of the
proposed method. Finally, in near future, some modification are required to extend the method for
the system of fuzzy non-linear integral equations in which the coefficient are mixed i.e. constant as
well as coefficients.
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