References
1. Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors.Semin Immunopathol. 2020;42(1):5-15.
2. Del Giacco SR, Bakirtas A, Bel E, et al. Allergy in severe asthma.Allergy. 2017;72(2):207-220.
3. Burney PG, Potts J, Kummeling I, et al. The prevalence and
distribution of food sensitization in European adults. Allergy.2014;69(3):365-371.
4. Ojeda P, Sastre J, Olaguibel JM, Chivato T, investigators
participating in the National Survey of the Spanish Society of A,
Clinical Immunology A. Alergologica 2015: A National Survey on Allergic
Diseases in the Adult Spanish Population. J Investig Allergol Clin
Immunol. 2018;28(3):151-164.
5. Wong A, Seger DL, Lai KH, Goss FR, Blumenthal KG, Zhou L. Drug
Hypersensitivity Reactions Documented in Electronic Health Records
within a Large Health System. J Allergy Clin Immunol Pract.2019;7(4):1253-1260 e1253.
6. Rondon C, Campo P, Eguiluz-Gracia I, et al. Local allergic rhinitis
is an independent rhinitis phenotype: The results of a 10-year follow-up
study. Allergy. 2018;73(2):470-478.
7. Pouessel G, Beaudouin E, Tanno LK, et al. Food-related anaphylaxis
fatalities: Analysis of the Allergy Vigilance Network((R)) database.Allergy. 2019;74(6):1193-1196.
8. Yii ACA, Tay TR, Choo XN, Koh MSY, Tee AKH, Wang DY. Precision
medicine in united airways disease: A ”treatable traits” approach.Allergy. 2018;73(10):1964-1978.
9. Flores Kim J, McCleary N, Nwaru BI, Stoddart A, Sheikh A. Diagnostic
accuracy, risk assessment, and cost-effectiveness of component-resolved
diagnostics for food allergy: A systematic review. Allergy.2018;73(8):1609-1621.
10. Eguiluz-Gracia I, Tay TR, Hew M, et al. Recent developments and
highlights in biomarkers in allergic diseases and asthma.Allergy. 2018;73(12):2290-2305.
11. Brockow K, Ardern-Jones MR, Mockenhaupt M, et al. EAACI position
paper on how to classify cutaneous manifestations of drug
hypersensitivity. Allergy. 2019;74(1):14-27.
12. Demoly P, Adkinson NF, Brockow K, et al. International Consensus on
drug allergy. Allergy. 2014;69(4):420-437.
13. Romano A, Atanaskovic-Markovic M, Barbaud A, et al. Towards a more
precise diagnosis of hypersensitivity to beta-lactams - an EAACI
position paper. Allergy. 2019;[ahead of print].
14. Auge J, Vent J, Agache I, et al. EAACI Position paper on the
standardization of nasal allergen challenges. Allergy.2018;73(8):1597-1608.
15. Chung KF, Adcock IM. Precision medicine for the discovery of
treatable mechanisms in severe asthma. Allergy.2019;74(9):1649-1659.
16. Breiteneder H, Diamant Z, Eiwegger T, et al. Future research trends
in understanding the mechanisms underlying allergic diseases for
improved patient care. Allergy. 2019;74(12):2293-2311.
17. Aberer W. A position paper on drug allergy - pinpointing problems
rather than suggesting solutions. Allergy. 2016;71(8):1079-1080.
18. Atanaskovic-Markovic M, Gomes E, Cernadas JR, et al. Diagnosis and
management of drug-induced anaphylaxis in children: An EAACI position
paper. Pediatric allergy and immunology : official publication of
the European Society of Pediatric Allergy and Immunology.2019;30(3):269-276.
19. Garvey LH, Ebo DG, Mertes PM, et al. An EAACI position paper on the
investigation of perioperative immediate hypersensitivity reactions.Allergy. 2019;74(10):1872-1884.
20. Kowalski ML, Agache I, Bavbek S, et al. Diagnosis and management of
NSAID-Exacerbated Respiratory Disease (N-ERD)-a EAACI position paper.Allergy. 2019;74(1):28-39.
21. Jappe U, Breiteneder H. Peanut allergy-Individual molecules as a key
to precision medicine. Allergy. 2019;74(2):216-219.
22. Diamant Z, Vijverberg S, Alving K, et al. Toward clinically
applicable biomarkers for asthma: An EAACI position paper.Allergy. 2019;74(10):1835-1851.
23. Breiteneder H. Mapping of conformational IgE epitopes of food
allergens. Allergy. 2018;73(11):2107-2109.
24. Roberts G, Pfaar O, Akdis CA, et al. EAACI Guidelines on Allergen
Immunotherapy: Allergic rhinoconjunctivitis. Allergy.2018;73(4):765-798.
25. Pajno GB, Fernandez-Rivas M, Arasi S, et al. EAACI Guidelines on
allergen immunotherapy: IgE-mediated food allergy. Allergy.2018;73(4):799-815.
26. Zielen S, Devillier P, Heinrich J, Richter H, Wahn U. Sublingual
immunotherapy provides long-term relief in allergic rhinitis and reduces
the risk of asthma: A retrospective, real-world database analysis.Allergy. 2018;73(1):165-177.
27. Rondon C, Blanca-Lopez N, Campo P, et al. Specific immunotherapy in
local allergic rhinitis: A randomized, double-blind placebo-controlled
trial with Phleum pratense subcutaneous allergen immunotherapy.Allergy. 2018;73(4):905-915.
28. Chen M, Land M. The current state of food allergy therapeutics.Hum Vaccin Immunother. 2017;13(10):2434-2442.
29. Ryan D, Gerth van Wijk R, Angier E, et al. Challenges in the
implementation of the EAACI AIT guidelines: A situational analysis of
current provision of allergen immunotherapy. Allergy.2018;73(4):827-836.
30. Pfaar O, Lou H, Zhang Y, Klimek L, Zhang L. Recent developments and
highlights in allergen immunotherapy. Allergy.2018;73(12):2274-2289.
31. Pohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the
use of nanoparticles for allergen-specific immunotherapy.Allergy. 2017;72(10):1461-1474.
32. Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for Drug
Hypersensitivity Reactions. An ENDA/EAACI Drug Allergy Interest Group
Position Paper. Allergy. 2016;71(8):1103-1134.
33. Mayorga C, Fernandez TD, Montañez MI, Moreno E, Torres MJ. Recent
developments and highlights in drug hypersensitivity. Allergy.2019;74(12):2368-2381.
34. Pichler WJ. Immune pathomechanism and classification of drug
hypersensitivity. Allergy. 2019;74(8):1457-1471.
35. Pichler WJ, Tilch J. The lymphocyte transformation test in the
diagnosis of drug hypersensitivity. Allergy. 2004;59(8):809-820.
36. Datema MR, van Ree R, Asero R, et al. Component-resolved diagnosis
and beyond: Multivariable regression models to predict severity of
hazelnut allergy. Allergy. 2018;73(3):549-559.
37. Ansotegui IJ, Melioli G, Canonica GW, et al. IgE allergy diagnostics
and other relevant tests in allergy, a World Allergy Organization
position paper. World Allergy Organ J. 2020;13(2):100080.
38. Ariza A, Mayorga C, Salas M, et al. The influence of the carrier
molecule on amoxicillin recognition by specific IgE in patients with
immediate hypersensitivity reactions to betalactams. Sci Rep.2016;6:35113.
39. Barbero N, Fernandez-Santamaria R, Mayorga C, et al. Identification
of an antigenic determinant of clavulanic acid responsible for
IgE-mediated reactions. Allergy. 2019;74(8):1490-1501.
40. Vultaggio A, Matucci A, Virgili G, et al. Influence of total serum
IgE levels on the in vitro detection of beta-lactams-specific IgE
antibodies. Clin Exp Allergy. 2009;39(6):838-844.
41. Hoffmann HJ, Santos AF, Mayorga C, et al. The clinical utility of
basophil activation testing in diagnosis and monitoring of allergic
disease. Allergy. 2015;70(11):1393-1405.
42. Ebo DG, Leysen J, Mayorga C, Rozieres A, Knol EF, Terreehorst I. The
in vitro diagnosis of drug allergy: status and perspectives.Allergy. 2011;66(10):1275-1286.
43. Mayorga C, Gomez F, Aranda A, et al. Basophil response to peanut
allergens in Mediterranean peanut-allergic patients. Allergy.2014;69(7):964-968.
44. Larsen LF, Juel-Berg N, Hansen KS, et al. A comparative study on
basophil activation test, histamine release assay, and passive
sensitization histamine release assay in the diagnosis of peanut
allergy. Allergy. 2018;73(1):137-144.
45. Hamilton RG, Franklin Adkinson N, Jr. In vitro assays for the
diagnosis of IgE-mediated disorders. J Allergy Clin Immunol.2004;114(2):213-225.
46. Märki I, Rebeaud F. Nanotechnologies for In Vitro IgE Testing.Curr Allergy Asthma Rep. 2017;17(7):50.
47. Gadisseur R, Chapelle JP, Cavalier E. A new tool in the field of
in-vitro diagnosis of allergy: preliminary results in the comparison of
ImmunoCAP© 250 with the ImmunoCAP© ISAC. Clin Chem Lab Med.2011;49(2):277-280.
48. Sackesen C, Suarez-Farinas M, Silva R, et al. A new Luminex-based
peptide assay to identify reactivity to baked, fermented, and whole
milk. Allergy. 2019;74(2):327-336.
49. Blanca M, Mayorga C, Torres MJ, et al. Clinical evaluation of
Pharmacia CAP System™ RAST FEIA amoxicilloyl and benzylpenicilloyl in
patients with penicillin allergy. Allergy. 2001;56(9):862-870.
50. Torres J, Romano A, Mayorga C, et al. Diagnostic evaluation of a
large group of patients with immediate allergy to penicillins: the role
of skin testing. Allergy. 2001;56(9):850-856.
51. Fontaine C, Mayorga C, Bousquet PJ, et al. Relevance of the
determination of serum-specific IgE antibodies in the diagnosis of
immediate beta-lactam allergy. Allergy. 2007;62(1):47-52.
52. Blanca M, Mayorga C, Perez E, et al. Determination of IgE antibodies
to the benzyl penicilloyl determinant. A comparison between poly-lysine
and human serum albumin as carriers. J Immunol Methods.1992;153(1-2):99-105.
53. Montañez MI, Najera F, Mayorga C, et al. Recognition of multiepitope
dendrimeric antigens by human immunoglobulin E.Nanomed-Nanotechnol Biol Med. 2015;11(3):579-588.
54. Mayorga C, Perez-Inestrosa E, Molina N, Montañez MI. Development of
nanostructures in the diagnosis of drug hypersensitivity reactions.Curr Opin Allergy Clin Immunol. 2016;16(4):300-307.
55. Faber M, Sabato V, De Witte L, et al. State of the art and
perspectives in food allergy (part I): diagnosis. Curr Pharm Des.2014;20(6):954-963.
56. Laguna JJ, Bogas G, Salas M, et al. The Basophil Activation Test Can
Be of Value for Diagnosing Immediate Allergic Reactions to Omeprazole.J Allergy Clin Immunol Pract. 2018;6(5):1628-1636 e1622.
57. Salas M, Fernandez-Santamaria R, Mayorga C, et al. Use of the
Basophil Activation Test May Reduce the Need for Drug Provocation in
Amoxicillin-Clavulanic Allergy. J Allergy Clin Immunol Pract.2018;6(3):1010-1018 e1012.
58. Mayorga C, Ebo DG, Lang DM, et al. Controversies in drug allergy: In
vitro testing. J Allergy Clin Immunol. 2019;143(1):56-65.
59. Aranda A, Mayorga C, Ariza A, et al. In vitro evaluation of
IgE-mediated hypersensitivity reactions to quinolones. Allergy.2011;66(2):247-254.
60. Aranda A, Mayorga C, Ariza A, et al. IgE-mediated hypersensitivity
reactions to methylprednisolone. Allergy. 2010;65(11):1376-1380.
61. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History
of Nanoscience and Nanotechnology: From Chemical-Physical Applications
to Nanomedicine. Molecules. 2019;25(1).
62. Khalid K, Tan X, Mohd Zaid HF, et al. Advanced in developmental
organic and inorganic nanomaterial: a review. Bioengineered.2020;11(1):328-355.
63. Wong XY, Sena-Torralba A, Alvarez-Diduk R, Muthoosamy K, Merkoci A.
Nanomaterials for Nanotheranostics: Tuning Their Properties According to
Disease Needs. ACS Nano. 2020;14(3):2585-2627.
64. Abd Elkodous M, El-Sayyad GS, Abdelrahman IY, et al. Therapeutic and
diagnostic potential of nanomaterials for enhanced biomedical
applications. Colloids Surf B Biointerfaces. 2019;180:411-428.
65. Maurya A, Singh AK, Mishra G, et al. Strategic use of nanotechnology
in drug targeting and its consequences on human health: A focused
review. Interv Med Appl Sci. 2019;11(1):38-54.
66. Ma Q, Wang J, Li Z, Lv X, Liang L, Yuan Q. Recent Progress in
Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped
Nanoparticles. Small. 2019;15(32):e1804969.
67. Yeo IL. Modifications of Dental Implant Surfaces at the Micro- and
Nano-Level for Enhanced Osseointegration. Materials (Basel).2019;13(1).
68. Hao Y, Zhou X, Li R, Song Z, Min Y. Advances of functional
nanomaterials for cancer immunotherapeutic applications. Wiley
Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(2):e1574.
69. Gomez-Aguado I, Rodriguez-Castejon J, Vicente-Pascual M,
Rodriguez-Gascon A, Solinis MA, Del Pozo-Rodriguez A. Nanomedicines to
Deliver mRNA: State of the Art and Future Perspectives.Nanomaterials (Basel). 2020;10(2).
70. Ventola CL. Progress in Nanomedicine: Approved and Investigational
Nanodrugs. P T. 2017;42(12):742-755.
71. Paradise J. Regulating Nanomedicine at the Food and Drug
Administration. AMA J Ethics. 2019;21(4):E347-355.
72. Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune
effects and implications of physicochemical properties on sensitization,
elicitation, and exacerbation of allergic disease. J
Immunotoxicol. 2019;16(1):87-124.
73. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an
emerging discipline evolving from studies of ultrafine particles.Environ Health Perspect. 2005;113(7):823-839.
74. Gatto F, Moglianetti M, Pompa PP, Bardi G. Platinum Nanoparticles
Decrease Reactive Oxygen Species and Modulate Gene Expression without
Alteration of Immune Responses in THP-1 Monocytes. Nanomaterials
(Basel). 2018;8(6).
75. Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles
interacting with cells: size matters. J Nanobiotechnology.2014;12:5.
76. Geetha CS, Remya NS, Leji KB, et al. Cells-nano interactions and
molecular toxicity after delayed hypersensitivity, in guinea pigs on
exposure to hydroxyapatite nanoparticles. Colloids Surf B
Biointerfaces. 2013;112:204-212.
77. Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials
for medicine: carrier platforms and targeting strategies in the context
of clinical application. Nanomedicine. 2013;9(6):742-757.
78. Pallardy MJ, Turbica I, Biola-Vidamment A. Why the Immune System
Should Be Concerned by Nanomaterials? Front Immunol. 2017;8:544.
79. Shannahan JH, Brown JM. Engineered nanomaterial exposure and the
risk of allergic disease. Curr Opin Allergy Clin Immunol.2014;14(2):95-99.
80. Fernandez TD, Pearson JR, Leal MP, et al. Intracellular accumulation
and immunological properties of fluorescent gold nanoclusters in human
dendritic cells. Biomaterials. 2015;43:1-12.
81. Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic
transport and complement activation in nanoparticle vaccines. Nat
Biotechnol. 2007;25(10):1159-1164.
82. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF.
Nanoparticles target distinct dendritic cell populations according to
their size. Eur J Immunol. 2008;38(5):1404-1413.
83. Liu S, Xu L, Zhang T, Ren G, Yang Z. Oxidative stress and apoptosis
induced by nanosized titanium dioxide in PC12 cells. Toxicology.2010;267(1-3):172-177.
84. Schanen BC, Das S, Reilly CM, et al. Immunomodulation and T helper
TH(1)/TH(2) response polarization by CeO(2) and TiO(2) nanoparticles.PLoS One. 2013;8(5):e62816.
85. Kubackova J, Zbytovska J, Holas O. Nanomaterials for direct and
indirect immunomodulation: A review of applications. Eur J Pharm
Sci. 2020;142:105139.
86. Vijayan V, Mohapatra A, Uthaman S, Park IK. Recent Advances in
Nanovaccines Using Biomimetic Immunomodulatory Materials.Pharmaceutics. 2019;11(10).
87. Gamazo C, D’Amelio C, Gastaminza G, Ferrer M, Irache JM. Adjuvants
for allergy immunotherapeutics. Hum Vaccin Immunother.2017;13(10):2416-2427.
88. Sanchez-Navarro M, Rojo J. Targeting DC-SIGN with carbohydrate
multivalent systems. Drug News Perspect. 2010;23(9):557-572.
89. Mascaraque A KW, Fernández T, Palomares F, Mayorga C, Andreu D, Rojo
J. Glycodendropeptides stimulate dendritic cell maturation and T cell
proliferation: a potential influenza A virus immunotherapy.Medicinal Chemistry Communication. 2015;6,: 1755-1760.
90. Gamazo C, Garcia-Azpiroz M, Souza Reboucas J, Gastaminza G, Ferrer
M, Irache JM. Oral immunotherapy using polymeric nanoparticles loaded
with peanut proteins in a murine model of fatal anaphylaxis.Immunotherapy. 2017;9(15):1205-1217.
91. Brotons-Canto A, Gamazo C, Martin-Arbella N, et al. Evaluation of
nanoparticles as oral vehicles for immunotherapy against experimental
peanut allergy. Int J Biol Macromol. 2018;110:328-335.
92. Pereira MA, Reboucas JS, Ferraz-Carvalho RS, et al. Poly(anhydride)
nanoparticles containing cashew nut proteins can induce a strong Th1 and
Treg immune response after oral administration. Eur J Pharm
Biopharm. 2018;127:51-60.
93. Le Guevel X, Perez Perrino M, Fernandez TD, et al. Multivalent
Glycosylation of Fluorescent Gold Nanoclusters Promotes Increased Human
Dendritic Cell Targeting via Multiple Endocytic Pathways. ACS Appl
Mater Interfaces. 2015;7(37):20945-20956.
94. Shahbazi MA, Fernandez TD, Makila EM, et al. Surface chemistry
dependent immunostimulative potential of porous silicon nanoplatforms.Biomaterials. 2014;35(33):9224-9235.
95. Larsen ST, Roursgaard M, Jensen KA, Nielsen GD. Nano titanium
dioxide particles promote allergic sensitization and lung inflammation
in mice. Basic Clin Pharmacol Toxicol. 2010;106(2):114-117.
96. Yoshioka Y, Kuroda E, Hirai T, Tsutsumi Y, Ishii KJ. Allergic
Responses Induced by the Immunomodulatory Effects of Nanomaterials upon
Skin Exposure. Front Immunol. 2017;8:169.
97. Alsaleh NB, Brown JM. Engineered Nanomaterials and Type I Allergic
Hypersensitivity Reactions. Front Immunol. 2020;11:222.
98. Inoue K, Takano H, Yanagisawa R, Ichinose T, Sakurai M, Yoshikawa T.
Effects of nano particles on cytokine expression in murine lung in the
absence or presence of allergen. Arch Toxicol.2006;80(9):614-619.
99. Bezemer GF, Bauer SM, Oberdorster G, et al. Activation of pulmonary
dendritic cells and Th2-type inflammatory responses on instillation of
engineered, environmental diesel emission source or ambient air
pollutant particles in vivo. J Innate Immun. 2011;3(2):150-166.
100. Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Lovik M.
Single-walled and multi-walled carbon nanotubes promote allergic immune
responses in mice. Toxicol Sci. 2009;109(1):113-123.
101. Rossi EM, Pylkkanen L, Koivisto AJ, et al. Inhalation exposure to
nanosized and fine TiO2 particles inhibits features of allergic asthma
in a murine model. Part Fibre Toxicol. 2010;7:35.
102. Inoue K, Koike E, Yanagisawa R, Hirano S, Nishikawa M, Takano H.
Effects of multi-walled carbon nanotubes on a murine allergic airway
inflammation model. Toxicol Appl Pharmacol. 2009;237(3):306-316.
103. Yanagisawa R, Takano H, Inoue K, et al. Titanium dioxide
nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga
mice. Exp Biol Med (Maywood). 2009;234(3):314-322.
104. Szebeni J, Alving CR, Rosivall L, et al. Animal models of
complement-mediated hypersensitivity reactions to liposomes and other
lipid-based nanoparticles. J Liposome Res. 2007;17(2):107-117.
105. Hamad I, Moghimi SM. Critical issues in site-specific targeting of
solid tumours: the carrier, the tumour barriers and the bioavailable
drug. Expert Opin Drug Deliv. 2008;5(2):205-219.
106. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp
J. Innate immune activation through Nalp3 inflammasome sensing of
asbestos and silica. Science. 2008;320(5876):674-677.
107. Morimoto Y, Izumi H, Kuroda E. Significance of persistent
inflammation in respiratory disorders induced by nanoparticles. J
Immunol Res. 2014;2014:962871.
108. Schleimer RP, Berdnikovs S. Etiology of epithelial barrier
dysfunction in patients with type 2 inflammatory diseases. J
Allergy Clin Immunol. 2017;139(6):1752-1761.
109. St Clair EW. The calm after the cytokine storm: lessons from the
TGN1412 trial. J Clin Invest. 2008;118(4):1344-1347.
110. Dobrovolskaia MA. Pre-clinical immunotoxicity studies of
nanotechnology-formulated drugs: Challenges, considerations and
strategy. J Control Release. 2015;220(Pt B):571-583.
111. Montañez MI, Ruiz-Sanchez AJ, Perez-Inestrosa E. A perspective of
nanotechnology in hypersensitivity reactions including drug allergy.Curr Opin Allergy Clin Immunol. 2010;10(4):297-302
112. Martín-Serrano Ortiz Á, Stenström P, Mesa Antunez P, et al. Design
of multivalent fluorescent dendritic probes for site-specific labeling
of biomolecules. Journal of Polymer Science Part A: Polymer
Chemistry. 2018;56(15):1609-1616.
113. Castaño N, Cordts SC, Nadeau KC, Tsai M, Galli SJ, Tang SKY.
Microfluidic methods for precision diagnostics in food allergy.Biomicrofluidics. 2020;14(2):021503.
114. Sánchez-Sancho F, Pérez-Inestrosa E, Suau R, Mayorga C, Torres MJ,
Blanca M. Dendrimers as Carrier Protein Mimetics for IgE Antibody
Recognition. Synthesis and Characterization of Densely Penicilloylated
Dendrimers. Bioconjug Chem. 2002;13(3):647-653.
115. Montañez MI, Perez-Inestrosa E, Suau R, Mayorga C, Torres MJ,
Blanca M. Dendrimerized Cellulose as a Scaffold for Artificial Antigens
with Applications in Drug Allergy Diagnosis. Biomacromolecules.2008;9(5):1461-1466.
116. Montañez MI, Perez-Inestrosa E, Suau R, et al. Nano-technological
Improvement in the Design of Radioimmunoassay to Detect IgE to
Betalactams by Using Oligo(ethylenglycol)-Spacer to anchor Dendrimeric
Conjugates to a Solid Phase. The Journal of allergy and clinical
immunology; 2011.
117. Ruiz-Sanchez AJ, Montañez MI, Mayorga C, et al. Dendrimer-Modified
Solid Supports: Nanostructured Materials with Potential Drug Allergy
Diagnostic Applications. Curr Med Chem. 2012;19(29):4942-4954
118. Vida Y, Montanez MI, Collado D, et al. Dendrimeric antigen-silica
particle composites: an innovative approach for IgE quantification.J Mat Chem B. 2013;1(24):3044-3050.
119. Soler M, Mesa-Antunez P, Estevez MC, et al. Highly sensitive
dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis.Biosensors Bioelectron. 2015;66(0):115-123.
120. Ashraf S, Qadri S, al-Ramadi B, Haik Y. Nanoparticles rapidly
assess specific IgE in plasma. Nanotechnology.2012;23(30):305101.
121. Wang J, Munir A, Li Z, Zhou HS. Aptamer-Au NPs conjugates-enhanced
SPR sensing for the ultrasensitive sandwich immunoassay.Biosensors & bioelectronics. 2009;25(1):124-129.
122. Wang Y, Cui M, Jiao M, Luo X. Antifouling and ultrasensitive
biosensing interface based on self-assembled peptide and aptamer on
macroporous gold for electrochemical detection of immunoglobulin E in
serum. Analytical and bioanalytical chemistry.2018;410(23):5871-5878.
123. Chapman MD, Wuenschmann S, King E, Pomés A. Technological
Innovations for High-Throughput Approaches to In Vitro Allergy
Diagnosis. Curr Allergy Asthma Rep. 2015;15(7):36.
124. Platt GW, Damin F, Swann MJ, et al. Allergen immobilisation and
signal amplification by quantum dots for use in a biosensor assay of IgE
in serum. Biosens Bioelectron. 2014;52:82-88.
125. Gómez-Arribas LN, Benito-Peña E, Hurtado-Sánchez MDC, Moreno-Bondi
MC. Biosensing Based on Nanoparticles for Food Allergens Detection.Sensors (Basel). 2018;18(4).
126. Anfossi L, Di Nardo F, Russo A, et al. Silver and gold
nanoparticles as multi-chromatic lateral flow assay probes for the
detection of food allergens. Analytical and bioanalytical
chemistry. 2019;411(9):1905-1913.
127. Ross GMS, Bremer M, Nielen MWF. Consumer-friendly food allergen
detection: moving towards smartphone-based immunoassays.Analytical and bioanalytical chemistry. 2018;410(22):5353-5371.
128. Badran AA, Morais S, Maquieira Á. Simultaneous determination of
four food allergens using compact disc immunoassaying technology.Analytical and bioanalytical chemistry. 2017;409(9):2261-2268.
129. Deak PE, Kim B, Adnan A, et al. Nanoallergen platform for detection
of platin drug allergies. J Allergy Clin Immunol.2019;143(5):1957-1960.e1912.
130. Molina N, Martin-Serrano A, Fernandez TD, et al. Dendrimeric
Antigens for Drug Allergy Diagnosis: A New Approach for Basophil
Activation Tests. Molecules. 2018;23(5):997.
131. Di Felice G, Colombo P. Nanoparticle-allergen complexes for
allergen immunotherapy. Int J Nanomedicine. 2017;12:4493-4504.
132. Souza J, Almeida LY, Luis MAV, et al. Mental health in the Family
Health Strategy as perceived by health professionals. Rev Bras
Enferm. 2017;70(5):935-941.
133. Souto EB, Dias-Ferreira J, Oliveira J, et al. Trends in Atopic
Dermatitis-From Standard Pharmacotherapy to Novel Drug Delivery Systems.Int J Mol Sci. 2019;20(22).
134. Wang L, Feng M, Li Q, Qiu C, Chen R. Advances in nanotechnology and
asthma. Ann Transl Med. 2019;7(8):180.
135. Gamazo C, Gastaminza G, Ferrer M, Sanz ML, Irache JM. Nanoparticle
based-immunotherapy against allergy. Immunotherapy.2014;6(7):885-897.
136. Onoue S, Matsui T, Aoki Y, et al. Self-assembled micellar
formulation of chafuroside A with improved anti-inflammatory effects in
experimental asthma/COPD-model rats. Eur J Pharm Sci.2012;45(1-2):184-189.
137. Jeon JO, Kim S, Choi E, et al. Designed nanocage displaying
ligand-specific Peptide bunches for high affinity and biological
activity. ACS Nano. 2013;7(9):7462-7471.
138. Scholl I, Weissenbock A, Forster-Waldl E, et al. Allergen-loaded
biodegradable poly(D,L-lactic-co-glycolic) acid nanoparticles
down-regulate an ongoing Th2 response in the BALB/c mouse model.Clinical and experimental allergy : journal of the British Society
for Allergy and Clinical Immunology. 2004;34(2):315-321.
139. De SRJ, Irache JM, Camacho AI, et al. Immunogenicity of peanut
proteins containing poly(anhydride) nanoparticles. Clin Vaccine
Immunol. 2014;21(8):1106-1112.
140. Licciardi M, Montana G, Bondi ML, et al. An allergen-polymeric
nanoaggregate as a new tool for allergy vaccination. Int J Pharm.2014;465(1-2):275-283.
141. Hajavi J, Hashemi M, Sankian M. Evaluation of size and dose effects
of rChe a 3 allergen loaded PLGA nanoparticles on modulation of Th2
immune responses by sublingual immunotherapy in mouse model of rhinitis
allergic. Int J Pharm. 2019;563:282-292.
142. Balenga NA, Zahedifard F, Weiss R, Sarbolouki MN, Thalhamer J,
Rafati S. Protective efficiency of dendrosomes as novel nano-sized
adjuvants for DNA vaccination against birch pollen allergy. J
Biotechnol. 2006;124(3):602-614.
143. Beilvert F, Tissot A, Langelot M, et al. DNA/amphiphilic block
copolymer nanospheres reduce asthmatic response in a mouse model of
allergic asthma. Hum Gene Ther. 2012;23(6):597-608.
144. Pali-Scholl I, Szollosi H, Starkl P, et al. Protamine nanoparticles
with CpG-oligodeoxynucleotide prevent an allergen-induced Th2-response
in BALB/c mice. Eur J Pharm Biopharm. 2013;85(3 Pt A):656-664.
145. Taylor WA, Sheldon D, Spicer JW. Adjuvant and suppressive effects
of Grass Conjuvac and other alginate conjugates on IgG and IgE antibody
responses in mice. Immunology. 1981;44(1):41-50.
146. Strong P, Clark H, Reid K. Intranasal application of chitin
microparticles down-regulates symptoms of allergic hypersensitivity to
Dermatophagoides pteronyssinus and Aspergillus fumigatus in murine
models of allergy. Clinical and experimental allergy : journal of
the British Society for Allergy and Clinical Immunology.2002;32(12):1794-1800.
147. Jatana S, Palmer BC, Phelan SJ, DeLouise LA. Immunomodulatory
Effects of Nanoparticles on Skin Allergy. Sci Rep.2017;7(1):3979.
148. Benede S, Ramos-Soriano J, Palomares F, et al. Peptide
Glycodendrimers as Potential Vaccines for Olive Pollen Allergy.Mol Pharm. 2020;17(3):827-836.
149. Rodriguez MJ, Ramos-Soriano J, Perkins JR, et al. Glycosylated
nanostructures in sublingual immunotherapy induce long-lasting tolerance
in LTP allergy mouse model. Sci Rep. 2019;9(1):4043.