References
Awad, H. A., Wickham, M. Q., Leddy, H. A., Gimble, J. M., & Guilak, F.
(2004). Chondrogenic differentiation of adipose-derived adult stem cells
in agarose, alginate, and gelatin scaffolds. Biomaterials,
25 (16), 3211-3222. doi:10.1016/j.biomaterials.2003.10.045
Bader, G. D., & Hogue, C. W. (2003). An automated method for finding
molecular complexes in large protein interaction networks. BMC
Bioinformatics, 4 , 2. doi:10.1186/1471-2105-4-2
Bagheri-Hosseinabadi, Z., Mesbah-Namin, S. A., Salehinejad, P., &
Seyedi, F. (2018). Fibrin scaffold could promote survival of the human
adipose-derived stem cells during differentiation into
cardiomyocyte-like cells. Cell Tissue Res, 372 (3), 571-589.
doi:10.1007/s00441-018-2799-9
Barter, R. L., & Yu, B. (2018). Superheat: An R package for creating
beautiful and extendable heatmaps for visualizing complex data. J
Comput Graph Stat, 27 (4), 910-922. doi:10.1080/10618600.2018.1473780
Bindea, G., Galon, J., & Mlecnik, B. (2013). CluePedia Cytoscape
plugin: pathway insights using integrated experimental and in silico
data. Bioinformatics, 29 (5), 661-663.
doi:10.1093/bioinformatics/btt019
Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M.,
Kirilovsky, A., . . . Galon, J. (2009). ClueGO: a Cytoscape plug-in to
decipher functionally grouped gene ontology and pathway annotation
networks. Bioinformatics, 25 (8), 1091-1093.
doi:10.1093/bioinformatics/btp101
Cahan, P., Li, H., Morris, S. A., Lummertz da Rocha, E., Daley, G. Q.,
& Collins, J. J. (2014). CellNet: network biology applied to stem cell
engineering. Cell, 158 (4), 903-915.
doi:10.1016/j.cell.2014.07.020
Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V.,
. . . Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5
gene list enrichment analysis tool. BMC Bioinformatics, 14 , 128.
doi:10.1186/1471-2105-14-128
Dawson, E., Mapili, G., Erickson, K., Taqvi, S., & Roy, K. (2008).
Biomaterials for stem cell differentiation. Adv Drug Deliv Rev,
60 (2), 215-228. doi:10.1016/j.addr.2007.08.037
de Peppo, G. M., Marcos-Campos, I., Kahler, D. J., Alsalman, D., Shang,
L., Vunjak-Novakovic, G., & Marolt, D. (2013). Engineering bone tissue
substitutes from human induced pluripotent stem cells. Proc Natl
Acad Sci U S A, 110 (21), 8680-8685. doi:10.1073/pnas.1301190110
Gjorevski, N., Sachs, N., Manfrin, A., Giger, S., Bragina, M. E.,
Ordonez-Moran, P., . . . Lutolf, M. P. (2016). Designer matrices for
intestinal stem cell and organoid culture. Nature, 539 (7630),
560-564. doi:10.1038/nature20168
Goodman, W. A., Omenetti, S., Date, D., Di Martino, L., De Salvo, C.,
Kim, G. D., . . . Mahabeleshwar, G. H. (2016). KLF6 contributes to
myeloid cell plasticity in the pathogenesis of intestinal inflammation.Mucosal Immunol, 9 (5), 1250-1262. doi:10.1038/mi.2016.1
Hanna, H., Mir, L. M., & Andre, F. M. (2018). In vitro osteoblastic
differentiation of mesenchymal stem cells generates cell layers with
distinct properties. Stem Cell Res Ther, 9 (1), 203.
doi:10.1186/s13287-018-0942-x
Izu, Y., Sun, M., Zwolanek, D., Veit, G., Williams, V., Cha, B., . . .
Birk, D. E. (2011). Type XII collagen regulates osteoblast polarity and
communication during bone formation. J Cell Biol, 193 (6),
1115-1130. doi:10.1083/jcb.201010010
Jaager, K., Islam, S., Zajac, P., Linnarsson, S., & Neuman, T. (2012).
RNA-seq analysis reveals different dynamics of differentiation of human
dermis- and adipose-derived stromal stem cells. PLoS One, 7 (6),
e38833. doi:10.1371/journal.pone.0038833
Jakobsen, R. B., Ostrup, E., Zhang, X., Mikkelsen, T. S., & Brinchmann,
J. E. (2014). Analysis of the effects of five factors relevant to in
vitro chondrogenesis of human mesenchymal stem cells using factorial
design and high throughput mRNA-profiling. PLoS One, 9 (5),
e96615. doi:10.1371/journal.pone.0096615
Jeon, O. H., Panicker, L. M., Lu, Q., Chae, J. J., Feldman, R. A., &
Elisseeff, J. H. (2016). Human iPSC-derived osteoblasts and osteoclasts
together promote bone regeneration in 3D biomaterials. Sci Rep,
6 , 26761. doi:10.1038/srep26761
Kim, S. H., Das, A., Chai, J. C., Binas, B., Choi, M. R., Park, K. S., .
. . Chai, Y. G. (2016). Transcriptome sequencing wide functional
analysis of human mesenchymal stem cells in response to TLR4 ligand.Sci Rep, 6 , 30311. doi:10.1038/srep30311
Knight, V. B., & Serrano, E. E. (2017). Hydrogel scaffolds promote
neural gene expression and structural reorganization in human astrocyte
cultures. PeerJ, 5 , e2829. doi:10.7717/peerj.2829
Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan,
Q., Wang, Z., . . . Ma’ayan, A. (2016). Enrichr: a comprehensive gene
set enrichment analysis web server 2016 update. Nucleic Acids Res,
44 (W1), W90-97. doi:10.1093/nar/gkw377
Lai, Y., Asthana, A., Cheng, K., & Kisaalita, W. S. (2011). Neural cell
3D microtissue formation is marked by cytokines’ up-regulation.PLoS One, 6 (10), e26821. doi:10.1371/journal.pone.0026821
Leong, M. F., Lu, H. F., Lim, T. C., Du, C., Ma, N. K. L., & Wan, A. C.
A. (2016). Electrospun polystyrene scaffolds as a synthetic substrate
for xeno-free expansion and differentiation of human induced pluripotent
stem cells. Acta Biomater, 46 , 266-277.
doi:10.1016/j.actbio.2016.09.032
Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., . . . Cheng,
G. (2013). Three-dimensional graphene foam as a biocompatible and
conductive scaffold for neural stem cells. Sci Rep, 3 , 1604.
doi:10.1038/srep01604
Li, Q., Zhang, B., Kasoju, N., Ma, J., Yang, A., Cui, Z., . . . Ye, H.
(2018). Differential and Interactive Effects of Substrate Topography and
Chemistry on Human Mesenchymal Stem Cell Gene Expression. Int J
Mol Sci, 19 (8). doi:10.3390/ijms19082344
Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag,
S., Lehar, J., . . . Groop, L. C. (2003). PGC-1alpha-responsive genes
involved in oxidative phosphorylation are coordinately downregulated in
human diabetes. Nat Genet, 34 (3), 267-273. doi:10.1038/ng1180
Neuss, S., Denecke, B., Gan, L., Lin, Q., Bovi, M., Apel, C., . . .
Zenke, M. (2011). Transcriptome analysis of MSC and MSC-derived
osteoblasts on Resomer(R) LT706 and PCL: impact of biomaterial substrate
on osteogenic differentiation. PLoS One, 6 (9), e23195.
doi:10.1371/journal.pone.0023195
Persson, M., Lehenkari, P. P., Berglin, L., Turunen, S., Finnila, M. A.
J., Risteli, J., . . . Tuukkanen, J. (2018). Osteogenic Differentiation
of Human Mesenchymal Stem cells in a 3D Woven Scaffold. Sci Rep,
8 (1), 10457. doi:10.1038/s41598-018-28699-x
Rim, Y. A., Nam, Y., Park, N., Jung, H., Jang, Y., Lee, J., & Ju, J. H.
(2018). Different Chondrogenic Potential among Human Induced Pluripotent
Stem Cells from Diverse Origin Primary Cells. Stem Cells Int,
2018 , 9432616. doi:10.1155/2018/9432616
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a
Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics, 26 (1), 139-140.
doi:10.1093/bioinformatics/btp616
Roson-Burgo, B., Sanchez-Guijo, F., Del Canizo, C., & De Las Rivas, J.
(2014). Transcriptomic portrait of human Mesenchymal Stromal/Stem Cells
isolated from bone marrow and placenta. BMC Genomics, 15 , 910.
doi:10.1186/1471-2164-15-910
Rozario, T., & DeSimone, D. W. (2010). The extracellular matrix in
development and morphogenesis: a dynamic view. Dev Biol, 341 (1),
126-140. doi:10.1016/j.ydbio.2009.10.026
Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., Lotia,
S., . . . Ideker, T. (2012). A travel guide to Cytoscape plugins.Nature methods, 9 (11), 1069-1076. doi:10.1038/nmeth.2212
Scardoni, G., Petterlini, M., & Laudanna, C. (2009). Analyzing
biological network parameters with CentiScaPe. Bioinformatics,
25 (21), 2857-2859. doi:10.1093/bioinformatics/btp517
Smith, L. A., Liu, X., Hu, J., Wang, P., & Ma, P. X. (2009). Enhancing
osteogenic differentiation of mouse embryonic stem cells by nanofibers.Tissue Eng Part A, 15 (7), 1855-1864.
doi:10.1089/ten.tea.2008.0227
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L.,
Gillette, M. A., . . . Mesirov, J. P. (2005). Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci U S A, 102 (43),
15545-15550. doi:10.1073/pnas.0506580102
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S.,
Huerta-Cepas, J., . . . Mering, C. V. (2019). STRING v11:
protein-protein association networks with increased coverage, supporting
functional discovery in genome-wide experimental datasets. Nucleic
Acids Res, 47 (D1), D607-D613. doi:10.1093/nar/gky1131
Tabar, V., & Studer, L. (2014). Pluripotent stem cells in regenerative
medicine: challenges and recent progress. Nat Rev Genet, 15 (2),
82-92. doi:10.1038/nrg3563
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda,
K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from
adult human fibroblasts by defined factors. Cell, 131 (5),
861-872. doi:10.1016/j.cell.2007.11.019
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem
cells from mouse embryonic and adult fibroblast cultures by defined
factors. Cell, 126 (4), 663-676. doi:10.1016/j.cell.2006.07.024
Tarus, D., Hamard, L., Caraguel, F., Wion, D., Szarpak-Jankowska, A.,
van der Sanden, B., & Auzely-Velty, R. (2016). Design of Hyaluronic
Acid Hydrogels to Promote Neurite Outgrowth in Three Dimensions.ACS Appl Mater Interfaces, 8 (38), 25051-25059.
doi:10.1021/acsami.6b06446
Tay, C. Y., Yu, H., Pal, M., Leong, W. S., Tan, N. S., Ng, K. W., . . .
Tan, L. P. (2010). Micropatterned matrix directs differentiation of
human mesenchymal stem cells towards myocardial lineage. Exp Cell
Res, 316 (7), 1159-1168. doi:10.1016/j.yexcr.2010.02.010
Tibbitt, M. W., & Anseth, K. S. (2012). Dynamic microenvironments: the
fourth dimension. Sci Transl Med, 4 (160), 160ps124.
doi:10.1126/scitranslmed.3004804
Volarevic, V., Markovic, B. S., Gazdic, M., Volarevic, A., Jovicic, N.,
Arsenijevic, N., . . . Stojkovic, M. (2018). Ethical and Safety Issues
of Stem Cell-Based Therapy. Int J Med Sci, 15 (1), 36-45.
doi:10.7150/ijms.21666
Willerth, S. M., & Sakiyama-Elbert, S. E. (2019). Combining Stem Cells
and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery.StemJournal, 1 , 1-25. doi:10.3233/STJ-180001
Wu, C., Chen, L., Huang, Y. Z., Huang, Y., Parolini, O., Zhong, Q., . .
. Deng, L. (2018). Comparison of the Proliferation and Differentiation
Potential of Human Urine-, Placenta Decidua Basalis-, and Bone
Marrow-Derived Stem Cells. Stem Cells Int, 2018 , 7131532.
doi:10.1155/2018/7131532
Xia, J., Gill, E. E., & Hancock, R. E. (2015). NetworkAnalyst for
statistical, visual and network-based meta-analysis of gene expression
data. Nat Protoc, 10 (6), 823-844. doi:10.1038/nprot.2015.052
Xu, X. Y., Li, X. T., Peng, S. W., Xiao, J. F., Liu, C., Fang, G., . . .
Chen, G. Q. (2010). The behaviour of neural stem cells on
polyhydroxyalkanoate nanofiber scaffolds. Biomaterials, 31 (14),
3967-3975. doi:10.1016/j.biomaterials.2010.01.132
Yeung, C. Y., Zeef, L. A., Lallyett, C., Lu, Y., Canty-Laird, E. G., &
Kadler, K. E. (2015). Chick tendon fibroblast transcriptome and shape
depend on whether the cell has made its own collagen matrix. Sci
Rep, 5 , 13555. doi:10.1038/srep13555
Young, J. L., & Engler, A. J. (2011). Hydrogels with time-dependent
material properties enhance cardiomyocyte differentiation in vitro.Biomaterials, 32 (4), 1002-1009.
doi:10.1016/j.biomaterials.2010.10.020
Zhou, G., Soufan, O., Ewald, J., Hancock, R. E. W., Basu, N., & Xia, J.
(2019). NetworkAnalyst 3.0: a visual analytics platform for
comprehensive gene expression profiling and meta-analysis. Nucleic
Acids Res, 47 (W1), W234-W241. doi:10.1093/nar/gkz240