Biological control consequences
In addition to their evolutionary relevance, our findings are also relevant from a biological control perspective. Strategies have been implemented to monitor and control the cactus moth in both native and non-native ranges. These include the sterile male technique (Hight, Carpenter, Bloem & Bloem, 2005), and a pheromone-based attractant trap for males (Heath et al., 2006). These strategies are set to be complemented with biological control strategies using a parasitoid natural enemy from the native range of C. cactorum , currently under evaluation and being mass reared in quarantine in the United States (Mengoni-Goñalons et al., 2014; Varone et al. 2015; Varone et al. 2020).
The use of pheromone-based attractants for males, together with parasitoids, may be optimized by taking into account population genetic structure of the target species, together with patterns of gene flow, and the climatic factors that underpin range changes and population genetic differentiation. In the context of C. cactorum , a word of caution is warranted for the implementation of pheromone traps, as potential pheromone specificity may be associated with divergent lineages. In this case, the pheromone currently used in monitoringC. cactorum was developed based on virgin females from the East lineage (Heath et al., 2006). With the evidence of strong genetic structure within C. cactorum , additional field and laboratory experiments may be necessary to test the effectiveness of pheromone monitoring, specifically the Central and South lineages which are well differentiated and where the impact of the moth is especially high in Argentina (Varone et al., 2014). In a similar vein, although bioinsecticides are not currently recommended for the control ofC. cactorum (Bloem, Mizell, Bloem, Hight & Carpenter, 2005), differentiated populations may also tend to exhibit differential susceptibility to bioinsecticides or synthetic insecticides (Ríos-Díez & Saldamando-Benjumea, 2011; Arias et al., 2019). Taking into account population structure within C. cactorum may enhance the effectiveness of management strategies considering the specific lineages identified herein.
Acknowledgements
We are grateful to Mariel Guala and Malena Fuentes Corona for fieldwork support. We are also grateful to the Centro de Cómputo de Alto Rendimiento (CeCAR) and Biocódices S.A. for granting use of computational resources. Funding was obtained from FONCyT through grant PICT1447/2016 awarded to G.L. and USDA APHIS-PPQ, Farm Bill 10201. D.P.M. is the recipient of a PhD scholarship awarded by CONICET. V.N was supported by a Juan de la Cierva-Formación postdoctoral fellowship (grant FJC2018-035611-I) funded by MCIN/AEI/10.13039/501100011033. L.V. and E.H. are members of Carrera del Investigador CONICET.
References
Agrain, F. A., Domínguez, C. M., Carrara, R., Griotti, M., & Roig‐Juñent, S. A. (2021). Exploring the role of climatic niche changes in the evolution of the southern South American genus Baripus(Coleoptera: Carabidae): optimization of non‐hereditary climatic variables and phylogenetic signal measurement. Cladistics, 37 (6), 816-828.
Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models.Ecography, 38 (5), 541-545.
Andrews, S., Krueger, F., Segonds-Pichon, A., Biggins, L., Krueger, C., & Wingett, S. (2010). FastQC. A quality control tool for high throughput sequence data, 370.
Arias, O., Cordeiro, E., Corrêa, A. S., Domingues, F. A., Guidolin, A. S., & Omoto, C. (2019). Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): implications for insect resistance management programs. Pest Management Science, 75 (11), 2948-2957.
Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16 (1), 37-48.
Barros, M. J., Silva-Arias, G. A., Fregonezi, J. N., Turchetto-Zolet, A. C., Iganci, J. R., Diniz-Filho, J. A. F., & Freitas, L. B. (2015). Environmental drivers of diversity in Subtropical Highland Grasslands.Perspectives in Plant Ecology, Evolution and Systematics, 17 (5), 360-368.
Bloem, S., R.F. Mizell, III, K.A. Bloem, S.D. Hight, & J.E. Carpenter. 2005. Laboratory evaluation of insecticides for control of the invasive Cactoblastis cactorum (Lepidoptera: Pyralidae). Florida Entomologist 88(4): 395-400.
Bonatelli, I. A., Gehara, M., Carstens, B. C., Colli, G. R., & Moraes, E. M. (2022). Comparative and predictive phylogeography in the South American diagonal of open formations: Unravelling the biological and environmental influences on multitaxon demography. Molecular Ecology, 31 (1), 331-342.
Borer, M., Arrigo, N., Buerki, S., Naisbit, R. E., & Alvarez, N. (2012). Climate oscillations and species interactions: large‐scale congruence but regional differences in the phylogeographic structures of an alpine plant and its monophagous insect. Journal of Biogeography, 39 (8), 1487-1498.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., & Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10 (4), e1003537.
Bouckaert, R. R., & Heled, J. (2014). DensiTree 2: seeing trees through the forest. BioRxiv, 012401.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J. Y., Abe-Ouchi, A., … & Zhao, Y. (2007). Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum–Part 1: experiments and large-scale features. Climate of the Past, 3 (2), 261-277.
Brooks, C. P., Ervin, G. N., Varone, L., & Logarzo, G. A. (2012). Native ecotypic variation and the role of host identity in the spread of an invasive herbivore, Cactoblastis cactorum. Ecology, 93 (2), 402-410.
Broquet, T. & Petit, E. J. (2009). Molecular estimation of dispersal for ecology and population genetics. Annual Review of Ecology, Evolution, and Systematics, 40 , 193–216
Brusquetti, F., Netto, F., Baldo, D., & Haddad, C. F. (2019). The influence of Pleistocene glaciations on Chacoan fauna: genetic structure and historical demography of an endemic frog of the South American Gran Chaco. Biological Journal of the Linnean Society, 126 (3), 404-416.
Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., & RoyChoudhury, A. (2012). Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis.Molecular Biology and Evolution, 29 (8), 1917-1932.
Bucher, E. H. (1982). Chaco and Caatinga—South American arid savannas, woodlands and thickets. In Ecology of tropical savannas (pp. 48-79). Springer, Berlin, Heidelberg.
Calatayud‐Mascarell, A., Ferretti, N., Enguídanos, A., & Arnedo, M. A. 2022. Same place, different stories: Disparate evolutionary trends of mygalomorph spiders from the Peripampasic orogenic arc. Journal of Biogeography , 49 (7), 1234-1247.
Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T., & Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science, 323 (5915), 785-789.
Caterino, M. S., & Sperling, F. A. (1999). PapilioPhylogeny based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics and Evolution, 11 (1), 122-137.
Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019). kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7 , e6281.
Cook, K. H., & Vizy, E. K. (2006). South American climate during the Last Glacial Maximum: delayed onset of the South American monsoon.Journal of Geophysical Research: Atmospheres, 111 (D2).
Crisci-V, J., Freire-E, S., Sancho, G., & Katinas, L. (2001). Historical biogeography of the Asteraceae from Tandilia and Ventania mountain ranges (Buenos Aires, Argentina). Caldasia, 23 (1), 21–41.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., … & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics, 27 (15), 2156-2158.
Driscoe, A. L., Nice, C. C., Busbee, R. W., Hood, G. R., Egan, S. P., & Ott, J. R. (2019). Host plant associations and geography interact to shape diversification in a specialist insect herbivore. Molecular Ecology, 28 (18), 4197-4211.
Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29 (8), 1969-1973.
Eaton, D. A., & Overcast, I. (2020). ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics, 36 (8), 2592-2594.
Ervin, G. N. (2012). Indian fig cactus (Opuntia ficus-indica (L.) Miller) in the Americas: an uncertain history. Haseltonia, 2012 (17), 70-81.
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32 (19), 3047-3048.
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust demographic inference from genomic and SNP data.PLoS Genetics, 9 (10), e1003905.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 (12), 4302-4315.
Foll, M., & Gaggiotti, O. (2008). A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics, 180 (2), 977-993.
Forbes, A. A., Devine, S. N., Hippee, A. C., Tvedte, E. S., Ward, A. K., Widmayer, H. A., & Wilson, C. J. (2017). Revisiting the particular role of host shifts in initiating insect speciation. Evolution, 71 (5), 1126-1137.
Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6 (8), 925-929.https://doi.org/10.1111/2041
Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient estimation of individual ancestry coefficients. Genetics, 196 (4), 973-983.https://doi.org/10.1534/genetics.113.160572
Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences, 103 (9), 3209-3213.https://doi.org/10.1073/pnas.0508653103
Goudet, J. (2005). Hierfstat, a package for R to compute and test hierarchical F‐statistics. Molecular Ecology Notes, 5 (1), 184-186.
Guo, Q. (2012). Incorporating latitudinal and central–marginal trends in assessing genetic variation across species ranges. Molecular Ecology, 21 (22), 5396-5403.
Hall, K. R., Anantharaman, R., Landau, V. A., Clark, M., Dickson, B. G., Jones, A., … & Shah, V. B. (2021). Circuitscape in Julia: empowering dynamic approaches to connectivity assessment. Land, 10 (3), 301.
Heath, R. R., Teal, P. E., Epsky, N. D., Dueben, B. D., Hight, S. D., Bloem, S., … & Bloem, K. A. (2006). Pheromone-based attractant for males of Cactoblastis cactorum (Lepidoptera: Pyralidae).Environmental Entomology, 35 (6), 1469-1476.
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages.Nature, 405 (6789), 907-913.https://doi.org/10.1038/35016000
Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359 (1442), 183-195.
Hight, S. D., & Carpenter, J. E. (2009). Flight phenology of maleCactoblastis cactorum (Lepidoptera: Pyralidae) at different latitudes in the southeastern United States. Florida Entomologist, 92 (2), 208-216.
Hight, S. D., Carpenter, J. E., Bloem, S., & Bloem, K. A. (2005). Developing a sterile insect release program for Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae): Effective overflooding ratios and release-recapture field studies. Environmental Entomology, 34 (4), 850-856.
Hijmans, R. J., & van Etten, J. (2016). raster: Geographic data analysis and modeling. R package, 734.
Hoffmann, J. H., Moran, V. C., Zimmermann, H. G., & Impson, F. A. (2020). Biocontrol of a prickly pear cactus in South Africa: Reinterpreting the analogous, renowned case in Australia. Journal of Applied Ecology, 57 (12), 2475-2484.
Julien, MH and Griffiths, MW (1998), Biological Control of Weeds a World Catalogue of Agents and their Target Weeds, 4th ed., CABI Publishing, Wallingford, UK
Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W., & Prodöhl, P. A. (2013). diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors.Methods in Ecology and Evolution, 4 (8), 782-788.
Keightley, P. D., Pinharanda, A., Ness, R. W., Simpson, F., Dasmahapatra, K. K., Mallet, J., … & Jiggins, C. D. (2015). Estimation of the spontaneous mutation rate in Heliconius melpomene . Molecular Biology and Evolution, 32 (1), 239-243.
Köhler, M., Esser, L. F., Font, F., Souza-Chies, T. T., & Majure, L. C. (2020). Beyond endemism, expanding conservation efforts: What can new distribution records reveal?. Perspectives in Plant Ecology, Evolution and Systematics, 45 , 125543.
Laukkanen, L., Mutikainen, P., Muola, A., & Leimu, R. (2014). Plant-species diversity correlates with genetic variation of an oligophagous seed predator. PLoS One, 9 (4), e94105.
Lavinia, P. D., Barreira, A. S., Campagna, L., Tubaro, P. L., & Lijtmaer, D. A. (2019). Contrasting evolutionary histories in Neotropical birds: Divergence across an environmental barrier in South America. Molecular Ecology, 28 (7), 1730-1747.
Leigh, J. W., & Bryant, D. (2015). POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110-1116.
Lynch, M., & Conery, J. S. (2003). The origins of genome complexity.Science, 302 (5649), 1401–1404.
Marsico, T. D., Wallace, L. E., Ervin, G. N., Brooks, C. P., McClure, J. E., & Welch, M. E. (2011). Geographic patterns of genetic diversity from the native range of Cactoblastis cactorum (Berg) support the documented history of invasion and multiple introductions for invasive populations. Biological Invasions, 13 (4), 857-868.
McFadyen, R. E. (1985). Larval characteristics of Cactoblastis spp.(Lepidoptera: Pyralidae) and the selection of species for biological control of prickly pears (Opuntia spp.). Bulletin of Entomological Research, 75 (1), 159-168.
McRae, B. H., & Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104 (50), 19885-19890.
McRae, B. H. (2006). Isolation by resistance. Evolution, 60 (8), 1551-1561.
Mengoni-Goñalons, C. M., Varone, L., Logarzo, G., Guala, M., Rodriguero, M., Hight, S. D., & Carpenter, J. E. (2014). Geographical range and laboratory studies on Apanteles opuntiarum (Hymenoptera: Braconidae) in Argentina, a candidate for biological control ofCactoblastis cactorum (Lepidoptera: Pyralidae) in North America.Florida Entomologist , 1458-1468.
Morrone, J. J. (2014). Biogeographical regionalisation of the Neotropical region. Zootaxa, 3782 (1), 1-110.
Mourelle, C., & Ezcurra, E. (1997). Differentiation diversity of Argentine cacti and its relationship to environmental factors.Journal of Vegetation Science, 8 (4), 547-558.
Noguerales, V., Cordero, P. J., & Ortego, J. (2018). Inferring the demographic history of an oligophagous grasshopper: Effects of climatic niche stability and host-plant distribution. Molecular Phylogenetics and Evolution, 118 , 343-356.
Noguerales, V., Meramveliotakis, E., Castro-Insua, A., Andújar, C., Arribas, P., Creedy, T. J., … & Papadopoulou, A. (2021). Community metabarcoding reveals the relative role of environmental filtering and spatial processes in metacommunity dynamics of soil microarthropods across a mosaic of montane forests. Molecular Ecology .https://doi.org/10.1111/mec.16275
Nores, M. (1994). Quaternary vegetational changes and bird differentiation in subtropical South America. The Auk, 111 (2), 499-503.
Ochoa, M. J., Targa, M. G., Abdala, G., Leguizamón, G. (2007, October). Extending fruiting season of cactus pear (Opuntia ficus-índica(l.) miller) in Santiago del estero, Argentina. In VI International Congress on Cactus Pear and Cochineal 811 (pp. 87-90).
Oliveira, E. A. D., Perez, M. F., Bertollo, L. A. C., Gestich, C. C., Ráb, P., Ezaz, T., … & Cioffi, M. B. (2020). Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance. Ecography, 43 (9), 1291-1304.
Ortego, J., Céspedes, V., Millán, A., & Green, A. J. (2021). Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Molecular Ecology, 30 (17), 4189-4203.
Ortego, J., Gugger, P. F., Riordan, E. C., & Sork, V. L. (2014). Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. Journal of Biogeography, 41 (10), 1895-1908.
Ortiz-Jaureguizar, E., & Cladera, G. A. (2006). Paleoenvironmental evolution of southern South America during the Cenozoic. Journal of Arid Environments, 66 (3), 498-532.
Pembleton, L. W., Cogan, N. O., & Forster, J. W. (2013). StAMPP: An R package for calculation of genetic differentiation and structure of mixed ploidy level populations. Molecular Ecology Resources, 13 (5), 946-952.
Peterman, W. E., Connette, G. M., Semlitsch, R. D., & Eggert, L. S. (2014). Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Molecular Ecology, 23 (10), 2402-2413.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PloS ONE, 7 (5), e37135.
Pettey, F. W. (1948) The biological control of prickly pear in South Africa. Science Bulletin, Department of Agriculture of the Union of South Africa 271: 1–163
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3-4), 231-259.
Poveda-Martínez, D., Aguirre, M. B., Logarzo, G., Hight, S. D., Triapitsyn, S., Diaz-Sotero, H., … & Hasson, E. (2020). Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control. Ecology and Evolution, 10 (19), 10463-10480.
Poveda-Martínez, D., Varone, L., Fuentes Corona, M., Hight, S., Logarzo, G., & Hasson, E. (2022). Spatial and host related genomic variation in partially sympatric cactophagous moth species. Molecular Ecology, 31 (1), 356-371.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., … & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses.The American Journal of Human Genetics, 81 (3), 559-575.
Raghu, S., & Walton, C. (2007). Understanding the ghost ofCactoblastis past: historical clarifications on a poster child of classical biological control. BioScience, 57 (8), 699-705.
Ríos-Díez, J. D., & Saldamando-Benjumea, C. I. (2011). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: a study of the genetic basis of resistance. Journal of Economic Entomology, 104 (5), 1698-1705.
Rocha, A. V., Cabanne, G. S., Aleixo, A., Silveira, L. F., Tubaro, P., & Caparroz, R. (2020). Pleistocene climatic oscillations associated with landscape heterogeneity of the South American dry diagonal explains the phylogeographic structure of the narrow-billed woodcreeper (Lepidocolaptes angustirostris, Dendrocolaptidae). Journal of Avian Biology, 51 (9), 1–13.
Rodriguero, M. S., Lanteri, A. A., Guzmán, N. V., Carús Guedes, J. V., & Confalonieri, V. A. (2016). Out of the forest: past and present range expansion of a parthenogenetic weevil pest, or how to colonize the world successfully. Ecology and Evolution, 6 (15), 5431-5445.
Rosetti, N., Krohling, D., & Remis, M. I. (2022). Evolutionary history and colonization patterns of the wing dimorphic grasshopperDichroplus vittatus in two Argentinean biomes. Scientific Reports, 12 (1), 1-17.
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34 (12), 3299-3302.
Sherpa, S., Renaud, J., Guéguen, M., Besnard, G., Mouyon, L., Rey, D., & Després, L. (2020). Landscape does matter: Disentangling founder effects from natural and human aided post introduction dispersal during an ongoing biological invasion. Journal of Animal Ecology, 89 (9), 2027-2042.
Simmonds, F. J., & Bennett, F. D. (1966). Biological control ofOpuntia spp. by Cactoblastis cactorum in the Leeward Islands (West Indies). Entomophaga 11 : 183-189.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87 (6), 651-701.
Slatkin, M. (1993). Isolation by distance in equilibrium and non‐equilibrium populations. Evolution, 47 (1), 264-279.
Soley-Guardia, M., Carnaval, A. C., & Anderson, R. P. (2019). Sufficient versus optimal climatic stability during the Late Quaternary: using environmental quality to guide phylogeographic inferences in a Neotropical montane system. Journal of Mammalogy, 100 (6), 1783-1807.
Speranza, P. R., Seijo, J. G., Grela, I. A., & Solis Neffa, V. G. (2007). Chloroplast DNA variation in the Turnera sidoides L. complex (Turneraceae): biogeographical implications. Journal of Biogeography, 34 (3), 427-436.
Turchetto‐Zolet, A. C., Pinheiro, F., Salgueiro, F., & Palma‐Silva, C. (2013). Phylogeographical patterns shed light on evolutionary process in South America. Molecular Ecology, 22 (5), 1193-1213.
Varone, L., Acosta, M. M., Logarzo, G. A., Briano, J. A., Hight, S. D., & Carpenter, J. E. (2012). Laboratory performance of Cactoblastis cactorum (Lepidoptera: Pyralidae) on South and North AmericanOpuntia species occurring in Argentina. Florida Entomologist , 1163-1173.
Varone, L., Aguirre, M. B., Lobos, E., Ruiz Pérez, D., Hight, S. D., Palottini, F., … & Logarzo, G. A. (2019). Causes of mortality at different stages of Cactoblastis cactorum in the native range.BioControl, 64 (3), 249-261.
Varone, L., Logarzo, G., Martínez, J. J., Navarro, F., Carpenter, J. E., & Hight, S. D. (2015). Field host range of Apanteles opuntiarum(Hymenoptera: Braconidae) in Argentina, a potential biocontrol agent ofCactoblastis cactorum (Lepidoptera: Pyralidae) in North America.Florida Entomologist, 98 (2), 803-806.
Varone, L., Logarzo, G. A., Briano, J. A., Hight, S. D., & Carpenter, J. E. (2014). Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) use of Opuntia host species in Argentina.Biological Invasions, 16 (11), 2367-2380.https://doi.org/10.1007/s10530-014-0670-9
Varone, L., Mengoni Goñalons, C., Faltlhauser, A. C., Guala, M. E., Wolaver, D., Srivastava, M., & Hight, S. D. (2020). Effect of rearingCactoblastis cactorum on an artificial diet on the behaviour ofApanteles opuntiarum. Journal of Applied Entomology, 144 (4), 278-286.
Vidal, M. C., & Murphy, S. M. (2018). Bottom-up vs. top-down effects on terrestrial insect herbivores: A meta-analysis. Ecology Letters, 21 (1), 138–150.https://doi.org/10.1111/ele.12874
Vidal, M. C., Quinn, T. W., Stireman III, J. O., Tinghitella, R. M., & Murphy, S. M. (2019). Geography is more important than host plant use for the population genetic structure of a generalist insect herbivore.Molecular Ecology, 28 (18), 4317-4334.
Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment.Molecular Ecology, 23 (23), 5649-5662.
Wang, I. J. (2013). Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation.Evolution, 67 (12), 3403-3411.
Wang, I. J. (2020). Topographic path analysis for modelling dispersal and functional connectivity: calculating topographic distances using the topoDistance r package. Methods in Ecology and Evolution, 11 (2), 265-272.
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution , 1358-1370.
Werneck, F. P. (2011). The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives.Quaternary Science Reviews, 30 (13-14), 1630-1648.
Zimmerman, H. G., Moran, V. C., & Hoffmann, J. A. (2000) The renowned cactus moth, Cactoblastis cactorum : its natural history and threat to native Opuntia floras in Mexico and the United States of America. Diversity and Distributions 6 : 259–269
Data Availability
The datasets generated during the current study for each one of the analyses are available in Figshare (https://figshare.com/s/a72fadc5a273aecbf346). Raw reads are available at NCBI as BioProject PRJNA666743. The reference draft genome is available at the NCBI under accession number JADGIL010000000. Mitochondrial haplotypes are available at NCBI under accession numbers OM176592-OM176657. Cactoblastis cactorum and host species occurrences were retrieved from proper field records as well as Gbif records (https://www.gbif.org).
Supplementary data
Supplementary File