References
Alluri, H., Wilson R.L., Anasooya Shaji C., Wiggins-Dohlvik K., Patel
S., Liu Y., et al. (2016). melatonin preserves blood-brain barrier
integrity and permeability via matrix metalloproteinase-9 inhibition.
PLoS One, 11: e0154427.
Andersen, L.P., Gogenur I., Rosenberg J., & Reiter R.J. (2016a). The
Safety of melatonin in humans. Clin Drug Investig, 36: 169-175.
Andersen, L.P., Werner M.U., Rosenkilde M.M., Fenger A.Q., Petersen
M.C., Rosenberg J., et al. (2016b). Pharmacokinetics of high-dose
intravenous melatonin in humans. J Clin Pharmacol, 56: 324-329.
Andersen, L.P., Werner M.U., Rosenkilde M.M., Harpsoe N.G., Fuglsang H.,
Rosenberg J., et al. (2016c). Pharmacokinetics of oral and intravenous
melatonin in healthy volunteers. BMC Pharmacol Toxicol, 17: 8.
Anderson, G., Maes M., Markus R.P., & Rodriguez M. (2015). Ebola virus:
melatonin as a readily available treatment option. J Med Virol, 87:
537-543.
Anderson, G., & Reiter R.J. (2020). Melatonin: Roles in influenza,
Covid-19, and other viral infections. Rev Med Virol, e2109.
Arbour, N., Day R., Newcombe J., & Talbot P.J. (2000). Neuroinvasion by
human respiratory coronaviruses. J Virol, 74: 8913-8921.
Bingol, B., Wang C.F., Arnott D., Cheng D., Peng J., & Sheng M. (2010).
Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes
to dendritic spines. Cell, 140: 567-578.
Brigo, F., Igwe S.C., & Del Felice A. (2016). Melatonin as add-on
treatment for epilepsy. Cochrane Database Syst Rev, CD006967.
Brzezinski, A. (1997). Melatonin in humans. N Engl J Med, 336: 186-195.
Carrascal, L., Nunez-Abades P., Ayala A., & Cano M. (2018). Role of
melatonin in the inflammatory process and its therapeutic potential.
Curr Pharm Des, 24: 1563-1588.
Carrillo-Vico, A., Guerrero J.M., Lardone P.J., & Reiter R.J. (2005). A
review of the multiple actions of melatonin on the immune system.
Endocrine, 27: 189-200.
Changeux, J.P., Amoura Z., Rey F., & Miyara M. (2020). A nicotinic
hypothesis for Covid-19 with preventive and therapeutic implications.
Qeios, ID: FXGQSB 1-11.
Chen, N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. (2020).
Epidemiological and clinical characteristics of 99 cases of 2019 novel
coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395:
507-513.
Chen, R., Wang K., Yu J., Chen Z., Wen C., & Xu Z. (2020). The spatial
and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and
mouse brain. bioRxiv, 2020.2004.2007.030650.
Conti, P., Ronconi G., Caraffa A., Gallenga C.E., Ross R., Frydas I., et
al. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and
lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2):
anti-inflammatory strategies. J Biol Regul Homeost Agents, 34.
Deftereos, S.G., Siasos G., Giannopoulos G., Vrachatis D.A., Angelidis
C., Giotaki S.G., et al. (2020). The Greek study in the effects of
colchicine in COVID-19 complications prevention (GRECCO-19 study):
Rationale and study design. Hellenic J Cardiol, in press.
Desforges, M., Le Coupanec A., Stodola J.K., Meessen-Pinard M., &
Talbot P.J. (2014). Human coronaviruses: viral and cellular factors
involved in neuroinvasiveness and neuropathogenesis. Virus Res, 194:
145-158.
Di, W.L., Kadva A., Johnston A., & Silman R. (1997). Variable
bioavailability of oral melatonin. N Engl J Med, 336: 1028-1029.
Ding, Y., He L., Zhang Q., Huang Z., Che X., Hou J., et al. (2004).
Organ distribution of severe acute respiratory syndrome (SARS)
associated coronavirus (SARS-CoV) in SARS patients: implications for
pathogenesis and virus transmission pathways. J Pathol, 203: 622-630.
Donoghue, M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano
N., et al. (2000). A novel angiotensin-converting enzyme-related
carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ
Res, 87: E1-9.
Ekmekcioglu, C. (2006). Melatonin receptors in humans: biological role
and clinical relevance. Biomed Pharmacother, 60: 97-108.
Elmahallawy, E.K., Luque J.O., Aloweidi A.S., Gutierrez-Fernandez J.,
Sampedro-Martinez A., Rodriguez-Granger J., et al. (2015). Potential
relevance of melatonin against some infectious agents: a review and
assessment of recent research. Curr Med Chem, 22: 3848-3861.
Farez, M.F., Mascanfroni I.D., Mendez-Huergo S.P., Yeste A., Murugaiyan
G., Garo L.P., et al. (2015). Melatonin contributes to the seasonality
of multiple sclerosis relapses. Cell, 162: 1338-1352.
Filatov, A., Sharma P., Hindi F., & ESpinosa P.S. (2020). Neurological
complications of coronavirus disease (COVID-19): Encephalopathy. Cureus,
12: e7352.
Galougahi, M.K., Ghorbani J., Bakhshayeshkaram M., Naeini A.S., &
Haseli S. (2020). Olfactory bulb magnetic resonance imaging in
SARS-CoV-2-induced anosmia: The first report. Acad Radiol, in press.
García-García, P., López-Muñoz F., & Álamo C. (2016). New galenic
formulations of melatonin. In melatonin, neuroprotective agents and
antidepressant therapy. eds López-Muñoz, F, Srinivasan, V, de Berardis,
D, Álamo, C, & Kato, TA Springer India: New Delhi, pp 193-202.
Gerber, J., Lotz M., Ebert S., Kiel S., Huether G., Kuhnt U., et al.
(2005). Melatonin is neuroprotective in experimental Streptococcus
pneumoniae meningitis. J Infect Dis, 191: 783-790.
Gotti, C., & Clementi F. (2004). Neuronal nicotinic receptors: from
structure to pathology. Prog Neurobiol, 74: 363-396.
Gu, J., Han B., & Wang J. (2020). COVID-19: Gastrointestinal
Manifestations and Potential Fecal-Oral Transmission. Gastroenterology,
158:1518-1519.
Guan, W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., et al. (2020).
Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J
Med, 382: 1708-1720
Harpsoe, N.G., Andersen L.P., Gogenur I., & Rosenberg J. (2015).
Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin
Pharmacol, 71: 901-909.
Helms, J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen
C., et al. (2020). Neurologic Features in Severe SARS-CoV-2 Infection.
New England Journal of Medicine.
Hoffmann, M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T.,
Erichsen S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and
TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell,
181: 271-280 e278.
Holappa, M., Valjakka J., & Vaajanen A. (2015). Angiotensin(1-7) and
ACE2, ”the hot spots” of renin-angiotensin system, detected in the human
aqueous humor. Open Ophthalmol J, 9: 28-32.
Huang, C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. (2020).
Clinical features of patients infected with 2019 novel coronavirus in
Wuhan, China. Lancet, 395: 497-506.
Huang, S.H., Cao X.J., Liu W., Shi X.Y., & Wei W. (2010). Inhibitory
effect of melatonin on lung oxidative stress induced by respiratory
syncytial virus infection in mice. J Pineal Res, 48: 109-116.
Huang, Y., & Zhao N. (2020). Generalized anxiety disorder, depressive
symptoms and sleep quality during COVID-19 outbreak in China: a
web-based cross-sectional survey. Psychiatry Res, 288: 112954.
Jin, H., Hong C., Chen S., Zhou Y., Wang Y., Mao L., et al. (2020).
Consensus for prevention and management of coronavirus disease 2019
(COVID-19) for neurologists. Stroke and Vascular Neurology,
svn-2020-000382.
Junaid, A., Tang H., van Reeuwijk A., Abouleila Y., Wuelfroth P., van
Duinen V., et al. (2020). Ebola hemorrhagic shock syndrome-on-a-chip.
iScience, 23: 100765.
Kabbani, N., & Olds J.L. (2020). Does COVID19 infect the brain? If so,
smokers might be at a higher risk. Mol Pharmacol, 97: 351-353.
Karasek, M. (2004). Melatonin, human aging, and age-related diseases.
Exp Gerontol, 39: 1723-1729.
Karimi, N., Sharifi Razavi A., & Rouhani N. (2020). Frequent convulsive
seizures in an adult patient with COVID-19: A case report. Iran Red
Crescent Med J, 22: e102828.
Kuba, K., Imai Y., Rao S., Gao H., Guo F., Guan B., et al. (2005). A
crucial role of angiotensin converting enzyme 2 (ACE2) in SARS
coronavirus-induced lung injury. Nat Med, 11: 875-879.
Lambert, D.W., Clarke N.E., Hooper N.M., & Turner A.J. (2008).
Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and
inhibits shedding of its ectodomain. FEBS Lett, 582: 385-390.
Lapina, C., Rodic M., Peschanski D., & Mesmoudi S. (2020). The
potential genetic network of human brain SARS-CoV-2 infection. bioRxiv,
2020.2004.2006.027318.
Lau, K.K., Yu W.C., Chu C.M., Lau S.T., Sheng B., & Yuen K.Y. (2004).
Possible central nervous system infection by SARS coronavirus. Emerg
Infect Dis, 10: 342-344.
Lee, C.H., Yoo K.Y., Choi J.H., Park O.K., Hwang I.K., Kwon Y.G., et al.
(2010). Melatonin’s protective action against ischemic neuronal damage
is associated with up-regulation of the MT2 melatonin receptor. J
Neurosci Res, 88: 2630-2640.
Li, K., Wohlford-Lenane C., Perlman S., Zhao J., Jewell A.K., Reznikov
L.R., et al. (2016). Middle east respiratory syndrome coronavirus causes
multiple organ damage and lethal disease in mice transgenic for human
dipeptidyl peptidase 4. J Infect Dis, 213: 712-722.
Li, Y., Zhai P., & Ding Y. (2020). The impact of COVID-19 on ischemic
stroke: A case report. Research Square. 10.21203/rs.3.rs-20393/v1
Li, Y.C., Bai W.Z., & Hashikawa T. (2020). The neuroinvasive potential
of SARS-CoV2 may play a role in the respiratory failure of COVID-19
patients. J Med Virol, in press.
Linton, N.M., Kobayashi T., Yang Y., Hayashi K., Akhmetzhanov A.R., Jung
S.M., et al. (2020). Incubation period and other epidemiological
characteristics of 2019 novel coronavirus infections with right
truncation: a statistical analysis of publicly available case data. J
Clin Med, 9: 538
Lippi, A., Domingues R., Setz C., Outeiro T.F., & Krisko A. (2020).
SARS-CoV-2: At the crossroad between aging and neurodegeneration. Mov
Disord, in press.
Liu, J., Clough S.J., Hutchinson A.J., Adamah-Biassi E.B.,
Popovska-Gorevski M., & Dubocovich M.L. (2016). MT1 and MT2 melatonin
receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol, 56:
361-383.
Liu, L., Chen H., Jin J., Tang Z., Yin P., Zhong D., et al. (2019).
Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3
activation. Life Sci, 239: 117036.
Liu, W.C., Wang X., Zhang X., Chen X., & Jin X. (2017). Melatonin
supplementation, a strategy to prevent neurological diseases through
maintaining integrity of blood brain barrier in old people. Front Aging
Neurosci, 9: 165.
Ma, S., Chen J., Feng J., Zhang R., Fan M., Han D., et al. (2018).
Melatonin ameliorates the progression of atherosclerosis via mitophagy
activation and NLRP3 inflammasome inhibition. Oxid Med Cell Longev,
2018: 9286458.
Mahase, E. (2020). Covid-19: WHO declares pandemic because of “alarming
levels” of spread, severity, and inaction. BMJ, 368: m1036.
Mao, L., Wang M., Chen S., He Q., Chang J., Hong C., et al. (2020).
Neurological manifestations of hospitalized patients with COVID-19 in
Wuhan, China: a retrospective case series study. medRxiv,
2020.2002.2022.20026500.
Mehta, P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson
J.J., et al. (2020). COVID-19: consider cytokine storm syndromes and
immunosuppression. Lancet, 395: 1033-1034.
Menendez-Pelaez, A., & Reiter R.J. (1993). Distribution of melatonin in
mammalian tissues: the relative importance of nuclear versus cytosolic
localization. J Pineal Res, 15: 59-69.
Montiel, M., Bonilla E., Valero N., Mosquera J., Espina L.M., Quiroz Y.,
et al. (2015). Melatonin decreases brain apoptosis, oxidative stress,
and CD200 expression and increased survival rate in mice infected by
Venezuelan equine encephalitis virus. Antivir Chem Chemother, 24:
99-108.
Moriguchi, T., Harii N., Goto J., Harada D., Sugawara H., Takamino J.,
et al. (2020). A first case of meningitis/encephalitis associated with
SARS-Coronavirus-2. Int J Infect Dis, 94: 55-58.
Nataf, S. (2020). An alteration of the dopamine synthetic pathway is
possibly involved in the pathophysiology of COVID-19. J Med Virol, in
press.
Ng, K.Y., Leong M.K., Liang H., & Paxinos G. (2017). Melatonin
receptors: distribution in mammalian brain and their respective putative
functions. Brain Struct Funct, 222: 2921-2939.
Nickkholgh, A., Schneider H., Sobirey M., Venetz W.P., Hinz U., Pelzl le
H., et al. (2011). The use of high-dose melatonin in liver resection is
safe: first clinical experience. J Pineal Res, 50: 381-388.
Niranjan, R., Nath C., & Shukla R. (2012). Melatonin attenuated
mediators of neuroinflammation and alpha-7 nicotinic acetylcholine
receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat
astrocytoma cells, C6. Free Radic Res, 46: 1167-1177.
Oakes, J.M., Fuchs R.M., Gardner J.D., Lazartigues E., & Yue X. (2018).
Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr
Comp Physiol, 315: R895-R906.
Paniz-Mondolfi, A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky
J., et al. (2020). Central nervous system involvement by severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol, in press.
Parada, E., Buendia I., Leon R., Negredo P., Romero A., Cuadrado A., et
al. (2014). Neuroprotective effect of melatonin against ischemia is
partially mediated by alpha-7 nicotinic receptor modulation and HO-1
overexpression. J Pineal Res, 56: 204-212.
Peschechera, E., & Veronesi P.A. (2020). Injectable melatonin: an
anti-cancer and anti-viral treatment option. Melatonin Research.
Melatonin Research, 3: 77-80.
Poyiadji, N., Shahin G., Noujaim D., Stone M., Patel S., & Griffith B.
(2020). COVID-19-associated acute hemorrhagic necrotizing
encephalopathy: CT and MRI Features. Radiology, 201187.
Pozo, D., Garcia-Maurino S., Guerrero J.M., & Calvo J.R. (2004). mRNA
expression of nuclear receptor RZR/RORalpha, melatonin membrane receptor
MT, and hydroxindole-O-methyltransferase in different populations of
human immune cells. J Pineal Res, 37: 48-54.
Qi, F., Qian S., Zhang S., & Zhang Z. (2020). Single cell RNA
sequencing of 13 human tissues identify cell types and receptors of
human coronaviruses. Biochem Biophys Res Commun, 526: 135-140.
Radmanesh, F., Rodriguez-Pla A., Pincus M.D., & Burns J.D. (2020).
Severe cerebral involvement in adult-onset hemophagocytic
lymphohistiocytosis. J Clin Neurosci, in press.
Ramos, E., Gil-Martín E., & Romero A. (2020). Chapter Three - Melatonin
and neurodegeneration: From neurotoxic environment to cell resilience.
In Advances in Molecular Toxicology. eds Fishbein, JC, & Heilman, JM
Elsevier, pp 69-108.
Ramos, E., Patiño P., Reiter R.J., Gil-Martin E., Marco-Contelles J.,
Parada E., et al. (2017). Ischemic brain injury: New insights on the
protective role of melatonin. Free Radic Biol Med, 104: 32-53.
Reiter, R.J., Craft C.M., Johnson J.E., Jr., King T.S., Richardson B.A.,
Vaughan G.M., et al. (1981). Age-associated reduction in nocturnal
pineal melatonin levels in female rats. Endocrinology, 109: 1295-1297.
Reiter, R.J., Tan D.X., Kim S.J., & Cruz M.H. (2014). Delivery of
pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal
fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Struct
Funct, 219: 1873-1887.
Reiter, R.J, Ma Q., & Sharma R. (2020a). Treatment of ebola and other
infectious diseases: melatonin “goes viral”. Melatonin Research, 3:
43-57.
Reiter, R.J., Ma Q., & Sharma R. (2020b). Melatonin in mitochondria:
Mitigating clear and present dangers. Physiology (Bethesda), 35: 86-95.
Rizzo, P., Vieceli Dalla Sega F., Fortini F., Marracino L., Rapezzi C.,
& Ferrari R. (2020). COVID-19 in the heart and the lungs: could we
”Notch” the inflammatory storm? Basic Res Cardiol, 115: 31.
Rodriguez, C., Mayo J.C., Sainz R.M., Antolin I., Herrera F., Martin V.,
et al. (2004). Regulation of antioxidant enzymes: a significant role for
melatonin. J Pineal Res, 36: 1-9.
Rosenberg, G.A. (2012). Neurological diseases in relation to the
blood-brain barrier. J Cereb Blood Flow Metab, 32: 1139-1151.
Ruan, Q., Yang K., Wang W., Jiang L., & Song J. (2020). Clinical
predictors of mortality due to COVID-19 based on an analysis of data of
150 patients from Wuhan, China. Intensive Care Med.
Seabra, M.L., Bignotto M., Pinto L.R., Jr., & Tufik S. (2000).
Randomized, double-blind clinical trial, controlled with placebo, of the
toxicology of chronic melatonin treatment. J Pineal Res, 29: 193-200.
Shukla, M., Chinchalongporn V., Govitrapong P., & Reiter R.J. (2019).
The role of melatonin in targeting cell signaling pathways in
neurodegeneration. Ann N Y Acad Sci, 1443: 75-96.
Silvestri, M., & Rossi G.A. (2013). Melatonin: its possible role in the
management of viral infections–a brief review. Ital J Pediatr, 39:
61.
Slominski, R.M., Reiter R.J., Schlabritz-Loutsevitch N., Ostrom R.S., &
Slominski A.T. (2012). Melatonin membrane receptors in peripheral
tissues: distribution and functions. Mol Cell Endocrinol, 351: 152-166.
Stewart, L.S., & Leung L.S. (2005). Hippocampal melatonin receptors
modulate seizure threshold. Epilepsia, 46: 473-480.
Su, H., Li J., Chen T., Li N., Xiao J., Wang S., et al. (2016).
Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy
through the CyPA/CD147 signaling pathway. Mol Cell Biochem, 422: 85-95.
Tan, D.X. (2010). Melatonin and brain. Curr Neuropharmacol, 8: 161.
Tan, D.X., Korkmaz A., Reiter R.J., & Manchester L.C. (2014). Ebola
virus disease: potential use of melatonin as a treatment. J Pineal Res,
57: 381-384.
Tan, DX., & Hardeland R. (2020). Potential utility of melatonin in
deadly infectious diseases related to the overreaction of innate immune
response and destructive inflammation: focus on COVID-19 Melatonin
Research, 3: 120-143.
Tarocco, A., Caroccia N., Morciano G., Wieckowski M.R., Ancora G.,
Garani G., et al. (2019). Melatonin as a master regulator of cell death
and inflammation: molecular mechanisms and clinical implications for
newborn care. Cell Death Dis, 10: 317.
Tiong, Y.L., Ng K.Y., Koh R.Y., Ponnudurai G., & Chye S.M. (2019).
melatonin prevents oxidative stress-induced mitochondrial dysfunction
and apoptosis in high glucose-treated schwann cells via upregulation of
Bcl2, NF-kappaB, mTOR, Wnt signalling pathways. Antioxidants (Basel), 8:
198.
Valero, N., Nery A., Bonilla E., Espina L.M., Chacin-Bonilla L., Anez
F., et al. (2009). Antagonistic effect of luzindole in mice treated with
melatonin during the infection with the venezuelan equine
encephalomyelitis virus. Neurochem Res, 34: 268-273.
Vriend, J., & Reiter R.J. (2014). Melatonin and ubiquitin: what’s the
connection? Cell Mol Life Sci, 71: 3409-3418.
Wan, Y., Shang J., Graham R., Baric R.S., & Li F. (2020). Receptor
recognition by the novel coronavirus from Wuhan: an analysis based on
decade-long structural studies of SARS coronavirus. J Virol, 94:
e00127-20.
Wang, D., Hu B., Hu C., Zhu F., Liu X., Zhang J., et al. (2020).
Clinical characteristics of 138 hospitalized patients with 2019 novel
coronavirus-infected pneumonia in Wuhan, China. JAMA, 323: 1061-1069
Wang, K., Chen W., Zhou Y.-S., Lian J.-Q., Zhang Z., Du P., et al.
(2020). SARS-CoV-2 invades host cells via a novel route: CD147-spike
protein. bioRxiv, 2020.2003.2014.988345.
Wu, J., Cao S., Li Y., Yue H., Li C., Xia M., et al. (2020). Insight
from a noticeable difference between two families infected with
COVID-19. Research Square, 10.21203/rs.3.rs-22850/v1.
Xia, H., & Lazartigues E. (2010). Angiotensin-converting enzyme 2:
central regulator for cardiovascular function. Curr Hypertens Rep, 12:
170-175.
Xiang, P.P.P. (2020). First case of 2019 novel coronavirus disease with
Encephalitis. ChinaXiv, T202003.
Xiao, F., Tang M., Zheng X., Liu Y., Li X., & Shan H. (2020). Evidence
for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology,158:
1831-1833.
Xu, H., Zhong L., Deng J., Peng J., Dan H., Zeng X., et al. (2020). High
expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral
mucosa. Int J Oral Sci, 12: 8.
Xu, J., Zhong S., Liu J., Li L., Li Y., Wu X., et al. (2005). Detection
of severe acute respiratory syndrome coronavirus in the brain: potential
role of the chemokine mig in pathogenesis. Clin Infect Dis, 41:
1089-1096.
Xu, X., Wang G., Ai L., Shi J., Zhang J., & Chen Y.X. (2018). Melatonin
suppresses TLR9-triggered proinflammatory cytokine production in
macrophages by inhibiting ERK1/2 and AKT activation. Sci Rep, 8: 15579.
Xu, X., Chen P., Wang J., Feng J., Zhou H., Li X., et al. (2020).
Evolution of the novel coronavirus from the ongoing Wuhan outbreak and
modeling of its spike protein for risk of human transmission. Sci China
Life Sci, 63: 457-460.
Ye, M., Ren Y., & Lv T. (2020). Encephalitis as a clinical
manifestation of COVID-19. Brain Behav Immun, in press.
Zetner, D., Andersen L.P., & Rosenberg J. (2016). Pharmacokinetics of
Alternative Administration Routes of Melatonin: A Systematic Review.
Drug Res (Stuttg), 66: 169-173.
Zhang, R., Wang X., Ni L., Di X., Ma B., Niu S., et al. (2020).
COVID-19: Melatonin as a potential adjuvant treatment. Life Sci, 250:
117583.
Zhao, H., Shen D., Zhou H., Liu J., & Chen S. (2020). Guillain-Barre
syndrome associated with SARS-CoV-2 infection: causality or coincidence?
Lancet Neurol.
Zhou, P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al.
(2020). A pneumonia outbreak associated with a new coronavirus of
probable bat origin. Nature, 579: 270-273.
Zhou, Y., Hou Y., Shen J., Huang Y., Martin W., & Cheng F. (2020).
Network-based drug repurposing for novel coronavirus
2019-nCoV/SARS-CoV-2. Cell Discov, 6: 14.
Zou, X., Chen K., Zou J., Han P., Hao J., & Han Z. (2020). Single-cell
RNA-seq data analysis on the receptor ACE2 expression reveals the
potential risk of different human organs vulnerable to 2019-nCoV
infection. Front Med.