References
Alves-Ferreira, M., Wellmer, F., Banhara, A., Kumar, V., Riechmann, J. L., & Meyerowitz, E. M. (2007). Global expression profiling applied to the analysis of Arabidopsis stamen development. Plant Physiol, 145 (3), 747-762. doi:10.1104/pp.107.104422
Bedinger, P. A., Broz, A. K., Tovar-Mendez, A., & McClure, B. (2017). Pollen-Pistil Interactions and Their Role in Mate Selection. Plant Physiol, 173 (1), 79-90. doi:10.1104/pp.16.01286
Costaglioli, P., Joubès, J., Garcia, C., Stef, M., Arveiler, B., Lessire, R., & Garbay, B. (2005). Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis.Biochim Biophys Acta, 1734 (3), 247-258. doi:10.1016/j.bbalip.2005.04.002
Dickinson, H. (1995). Dry stigmas, water and self-incompatibility inBrassica. Sexual Plant Reproduction, 8 (1), 1-10.
Doughty, J., Dixon, S., Hiscock, S. J., Willis, A. C., Parkin, I. A., & Dickinson, H. G. (1998). PCP-A1, a defensin-like Brassica pollen coat protein that binds the S locus glycoprotein, is the product of gametophytic gene expression. Plant Cell, 10 (8), 1333-1347. doi:10.1105/tpc.10.8.1333
Edlund, A. F., Swanson, R., & Preuss, D. (2004). Pollen and stigma structure and function: the role of diversity in pollination.Plant Cell, 16 Suppl (Suppl), S84-97. doi:10.1105/tpc.015800
Elleman, C. J., & Dickinson, H. G. (1990). The role of the exine coating in pollen–stigma interactions in Brassica oleracea L. New Phytologist, 114 (3), 511-518.
Fiebig, A., Mayfield, J. A., Miley, N. L., Chau, S., Fischer, R. L., & Preuss, D. (2000). Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell, 12 (10), 2001-2008. doi:10.1105/tpc.12.10.2001
Gu, J. N., Zhu, J., Yu, Y., Teng, X. D., Lou, Y., Xu, X. F., . . . Yang, Z. N. (2014). DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. Plant J, 80 (6), 1005-1013. doi:10.1111/tpj.12694
Haslam, T. M., Haslam, R., Thoraval, D., Pascal, S., Delude, C., Domergue, F., . . . Joubès, J. (2015). ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol, 167 (3), 682-692. doi:10.1104/pp.114.253195
Haslam, T. M., & Kunst, L. (2013). Extending the story of very-long-chain fatty acid elongation. Plant Sci, 210 , 93-107. doi:10.1016/j.plantsci.2013.05.008
Hernández-Pinzón, I., Ross, J. H., Barnes, K. A., Damant, A. P., & Murphy, D. J. (1999). Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus. Planta, 208 (4), 588-598. doi:10.1007/s004250050597
Hulskamp, M., Schneitz, K., & Pruitt, R. E. (1995). Genetic Evidence for a Long-Range Activity That Directs Pollen Tube Guidance in Arabidopsis. Plant Cell, 7 (1), 57-64. doi:10.1105/tpc.7.1.57
Joubès, J., Raffaele, S., Bourdenx, B., Garcia, C., Laroche-Traineau, J., Moreau, P., . . . Lessire, R. (2008). The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol, 67 (5), 547-566. doi:10.1007/s11103-008-9339-z
Li-Beisson, Y., Nakamura, Y., & Harwood, J. (2016). Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications. Subcell Biochem, 86 , 1-18. doi:10.1007/978-3-319-25979-6_1
Lou, Y., Xu, X. F., Zhu, J., Gu, J. N., Blackmore, S., & Yang, Z. N. (2014). The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nat Commun, 5 , 3855. doi:10.1038/ncomms4855
Lou, Y., Zhou, H. S., Han, Y., Zeng, Q. Y., Zhu, J., & Yang, Z. N. (2018). Positive regulation of AMS by TDF1 and the formation of a TDF1-AMS complex are required for anther development in Arabidopsis thaliana. New Phytol, 217 (1), 378-391. doi:10.1111/nph.14790
Lu, J. Y., Xiong, S. X., Yin, W. Z., Teng, X. D., Lou, Y., Zhu J., Zhang, C., Gu, J. N., Wilson, Z. A., Yang, Z. N. (2020). MS1, a direct target of MS188, regulates the expression of key sporophytic pollen coat protein genes in Arabidopsis. J Exp Bot, (DOI: 10.1093/jxb/eraa219).
Mayfield, J. A., Fiebig, A., Johnstone, S. E., & Preuss, D. (2001). Gene families from the Arabidopsis thaliana pollen coat proteome.Science, 292 (5526), 2482-2485. doi:10.1126/science.1060972
Mayfield, J. A., & Preuss, D. (2000). Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nat Cell Biol, 2 (2), 128-130. doi:10.1038/35000084
Nasrallah, J. B., & Nasrallah, M. E. (2014). S-locus receptor kinase signalling. Biochem Soc Trans, 42 (2), 313-319. doi:10.1042/bst20130222
Piffanelli, P., Ross, J. H., & Murphy, D. J. (1998). Biogenesis and function of the lipidic structures of pollen grains. Sexual Plant Reproduction, 11 (2), 65-80. doi:10.1007/s004970050122
Preuss, D., Lemieux, B., Yen, G., & Davis, R. W. (1993). A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev, 7 (6), 974-985. doi:10.1101/gad.7.6.974
Safavian, D., & Goring, D. R. (2013). Secretory activity is rapidly induced in stigmatic papillae by compatible pollen, but inhibited for self-incompatible pollen in the Brassicaceae. PLoS One, 8 (12), e84286. doi:10.1371/journal.pone.0084286
Sorensen, A. M., Kröber, S., Unte, U. S., Huijser, P., Dekker, K., & Saedler, H. (2003). The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J, 33 (2), 413-423. doi:10.1046/j.1365-313x.2003.01644.x
Takayama, S., Shiba, H., Iwano, M., Asano, K., Hara, M., Che, F. S., . . . Isogai, A. (2000). Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen-stigma adhesion. Proc Natl Acad Sci U S A, 97 (7), 3765-3770. doi:10.1073/pnas.040580797
Updegraff, E. P., Zhao, F., & Preuss, D. (2009). The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen.Sex Plant Reprod, 22 (3), 197-204. doi:10.1007/s00497-009-0104-5
Wang, K., Guo, Z. L., Zhou, W. T., Zhang, C., Zhang, Z. Y., Lou, Y., . . . Yang, Z. N. (2018). The Regulation of Sporopollenin Biosynthesis Genes for Rapid Pollen Wall Formation. Plant Physiol, 178 (1), 283-294. doi:10.1104/pp.18.00219
Wang, L., Clarke, L. A., Eason, R. J., Parker, C. C., Qi, B., Scott, R. J., & Doughty, J. (2017). PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions. New Phytol, 213 (2), 764-777. doi:10.1111/nph.14162
Wheeler, M. J., Franklin-Tong, V. E., & Franklin, F. C. H. (2001). The molecular and genetic basis of pollen-pistil interactions. New Phytol, 151 (3), 565-584. doi:10.1046/j.0028-646x.2001.00229.x
Wilson, Z. A., Morroll, S. M., Dawson, J., Swarup, R., & Tighe, P. J. (2001). The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J, 28 (1), 27-39. doi:10.1046/j.1365-313x.2001.01125.x
Wolters-Arts, M., Lush, W. M., & Mariani, C. (1998). Lipids are required for directional pollen-tube growth. Nature, 392 (6678), 818-821. doi:10.1038/33929
Xiong, S. X., Lu, J. Y., Lou, Y., Teng, X. D., Gu, J. N., Zhang, C., . . . Zhu, J. (2016). The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. Plant J, 88 (6), 936-946. doi:10.1111/tpj.13284
Xu, J., Yang, C., Yuan, Z., Zhang, D., Gondwe, M. Y., Ding, Z., . . . Wilson, Z. A. (2010). The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell, 22 (1), 91-107. doi:10.1105/tpc.109.071803
Xu, X. F., Wang, B., Lou, Y., Han, W. J., Lu, J. Y., Li, D. D., . . . Yang, Z. N. (2015). Magnesium Transporter 5 plays an important role in Mg transport for male gametophyte development in Arabidopsis.Plant J, 84 (5), 925-936. doi:10.1111/tpj.13054
Yang, C., Vizcay-Barrena, G., Conner, K., & Wilson, Z. A. (2007). MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell, 19 (11), 3530-3548. doi:10.1105/tpc.107.054981
Zhan, H., Xiong, H., Wang, S., & Yang, Z. N. (2018). Anther Endothecium-Derived Very-Long-Chain Fatty Acids Facilitate Pollen Hydration in Arabidopsis. Mol Plant, 11 (8), 1101-1104. doi:10.1016/j.molp.2018.05.002
Zhang, W., Sun, Y., Timofejeva, L., Chen, C., Grossniklaus, U., & Ma, H. (2006). Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development, 133 (16), 3085-3095. doi:10.1242/dev.02463
Zhang, Z. B., Zhu, J., Gao, J. F., Wang, C., Li, H., Li, H., . . . Yang, Z. N. (2007). Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J, 52 (3), 528-538. doi:10.1111/j.1365-313X.2007.03254.x
Zheng, Y. Y., Lin, X. J., Liang, H. M., Wang, F. F., & Chen, L. Y. (2018). The Long Journey of Pollen Tube in the Pistil. Int J Mol Sci, 19 (11). doi:10.3390/ijms19113529
Zhu, J., Chen, H., Li, H., Gao, J. F., Jiang, H., Wang, C., . . . Yang, Z. N. (2008). Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J, 55 (2), 266-277. doi:10.1111/j.1365-313X.2008.03500.x
Zhu, J., Lou, Y., Xu, X., & Yang, Z. N. (2011). A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol, 53 (11), 892-900. doi:10.1111/j.1744-7909.2011.01078.x