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Abstract

We study the response of various linear and nonlinear differential equations to different kinds
of forced oscillations, specially the periodic and almost periodic oscillations. A special attention is
given to differential equations with time-almost periodic type and state-dependent delays. To the
best of our knowledge, there are no results in literature that address this problem.
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1 Introduction

The capability of ordinary and functional differential equations to mimic the dynamics in a periodically
fluctuating environment has been the driving force for researchers to make valuable contributions to
such problems. There has also been great interest in finding conditions under which periodic differential
equations admit periodic solutions. Such problems have wide applications in many physical, chemical,
biological, economic and ecological phenomena. This usually happens when the involved systems are
strongly influenced by periodic environmental variations or external factors. Usually, the study of
these phenomena require concepts that go beyond the concept of periodicity, which take into account
the fact that these phenomena are not quite periodic. Therefore it is not unreasonable to consider
the various parameters of systems to be changing “almost-periodically” rather than periodically with
a common period.

In general, the occurrence of almost periodic oscillations in nature is actually much more common
than the periodic ones. This shows the need for a mathematical theory which addresses those kind of
oscillations.
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The theory of almost periodic functions was initiated between 1924 and 1926 by Danish mathemati-
cian Harald Bohr [10]. Bohr’s work was preceded by the important investigations of P. Bohl and E.
Esclangon [9, 18]. Subsequently, important contributions were made by A. Besicovitch, S. Bochner, J.
von Neumann, V. Stepanov, and B. Levitan [6, 7, 8, 21, 28]. Recently, the existence of almost periodic
solutions for differential equations has been extensively studied. In the literature, several books are
devoted to almost periodic differential equations. For example, let us indicate the books of Amerio
and Prouse [5], Corduneanu [14], Fink [19], Levitan and Zhikov [22] and Zaidman [31]. Recently,
there has being a great interest in studying time periodic and almost periodic differential equations
[3, 4, 11, 16, 24, 34].

Let us consider the following differential equation in Rn:

x′ (t) = G(t)x (t) + f (t) for t ∈ R, (1.1)

where the matrix G(t) and the vector f(t) are both continuous and ω-periodic for some ω > 0. In [23],
Massera proved that the existence of a bounded solution of Equation (1.1) on the positive real line
is enough to get the existence of an ω-periodic solution. This result is known in the literature as the
Massera theorem. Fixed point theory plays an important role in this kind of results.

For almost periodic equations, the situation is more complicated, since one cannot use fixed point
arguments. Bohr and Neugebauer, see [19], extended Massera’s theorem for Equation (1.1) to the
almost periodic case when G(t) = G a constant matrix. In addition, they proved what it is known in
the literature as the Bohr-Neugebauer Theorem, namely, they showed that all bounded solutions of
Equation (1.1) on R are almost periodic. We note that this result (the Bohr-Neugebauer Theorem)
does not hold for the periodic case (see Remark 3.6).

Differential equations with time-dependent and state-dependent delays have its applications in
ecology, biology and many other disciplines. Despite the role of such equations in describing real
phenomena, we see very few works in literature in this direction. This is partly due to the problem
of existence of solutions for such equations been not trivial, specially in the context of finding almost
periodic solutions. This constituted a motivation for us to investigate sufficient conditions for the
existence of almost periodic and pseudo almost periodic solutions for the following nonlinear differential
equations:

x′(t) = −α(t)x(t) + f(t, x (x(t)))

x′(t) = −α(t)x(t) + f(t, x(t− σ(t)))

x′(t) = −α(t)x(t) + f(t, x(t− ρ(x(t)))).

To the best of our knowledge, there are no results in literature that address this problem.
This work is organized as follows: In section 2, we give some preliminary results about exponential

dichotomy and almost periodic type functions. In section 3, we study the nonautonomous linear
differential equation x′ = A(t)x + b(t) both in the periodic and almost periodic case. Section 3 is
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devoted to the nonlinear case with nested states, time-dependent and state-dependent delay.

2 Preliminaries

Let X be a Banach space. Throughout the paper, we denote by C(R, X) space of continuous functions
from R to X and by Cb(R, X) the space of functions f ∈ C(R, X) which are bounded on R. We denote
by |f |∞ the supremum norm of a function f ∈ Cb(R, X) defined by

|f |∞ := sup
t∈R
|f(t)| ,

where |.| is the norm on the space X. Let T > 0, we denote by CT (R, X) the space of functions
f ∈ C(R, X) which are T -periodic.

2.1 Almost periodic functions

Definition 2.1. [13] A continuous function f : R → X is said to be almost periodic in Bohr’s sense
(or simply almost periodic) if for every ε > 0 there exists a positive number l such that every interval
of length l contains a number τ such that

|f(t+ τ)− f(t)| < ε for t ∈ R.

We denote this class of functions by AP (R, X) .

Consider the following spaces

PAP0(R, X) =

{
ϕ ∈ Cb(R, X), lim

r→∞

1

2r

∫ r

−r
|ϕ(s)| ds = 0

}
,

P̃AP0(R, X) =

{
ϕ ∈ C(R, X), lim

r→∞

1

2r

∫ r

−r
|ϕ(s)| ds = 0

}
.

Definition 2.2. [15] A function f ∈ Cb(R, X) is said to be pseudo almost periodic if f is written in
the form

f = fap + fe,

where fap ∈ AP (R, X) and fe ∈ PAP0(R, X). The functions fap and fe are respectively called the
almost periodic and ergodic components of f . We denote this class of functions by PAP (R, X) .

It is easy to verify that PAP (R, X) is a translation invariant closed subspace of Cb(R, X) containing
the constant functions. Furthermore,

PAP (R, X) = AP (R, X)⊕ PAP0(R, X).

3



2.2 Exponential dichotomy

Let A(t) be a continuous n× n matrix and consider the following differential equation

x′ = A(t)x, (2.1)

and let X(t) be its fundamental matrix satisfying X(0) = I, where I is the unit matrix.

Definition 2.3. [12] The differential equation (2.1) is said to possess an exponential dichotomy on an
interval J , if there exists a projection matrix P (i.e. P 2 = P ) and constants k > 1, α > 0, such that

∣∣X(t)PX−1(s)
∣∣ ≤ ke−α(t−s), for s ≤ t, with s, t ∈ J

∣∣X(t)(I − P )X−1(s)
∣∣ ≤ ke−α(s−t), for t ≤ s, with s, t ∈ J.

(2.2)

We denote by (P, k, α) the parameters associated to this exponential dichotomy.

The differential equation (2.1) is said to have a bounded growth on an interval J if, for some fixed
h > 0, there exists a constant C ≥ 1 such that every solution x(t) of (2.1) satisfies

|x(t)| ≤ C |x(s)| for s, t ∈ J and s ≤ t ≤ s+ h.

Remark 2.4. The equation (2.1) has bounded growth if and only if there exist real constants K, α
such that its fundamental matrix X(t) satisfies

∣∣X(t)X−1(s)
∣∣ ≤ Keα(t−s) for t ≥ s.

If the coefficient matrix A(t) is bounded, then equation (2.1) has a bounded growth.

Proposition 2.5. [12] Suppose (2.1) has bounded growth. Then the homogeneous equation (2.1) has
an exponential dichotomy on R if and only if the inhomogeneous equation

y′ = A(t)y + f(t)

has a unique bounded solution on R for every bounded continuous function f on R.

Remark 2.6. When A(t) = A is a constant matrix, the system (2.1) has an exponential dichotomy on an
infinite interval if and only if the eigenvalues of A have a nonzero real part. When A(t) is periodic, the
system (2.1) has an exponential dichotomy on an infinite interval if and only if the Floquet multipliers
lie off the unit circle. For more properties of exponential dichotomies, we refer to [1, 12, 25, 26].

We have the following perturbation result:

Lemma 2.7. Assume that Equation (2.1) has a bounded growth and has an exponential dichotomy on
R with parameters (P, k, α). If E(t) is a bounded continuous n × n matrix with |E|∞ <

α

2k
, then the

differential equation
x′ = (A(t) + E(t))x

has also an exponential dichotomy.
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Proof. Let X(t) be the fundamental matrix associated to Equation (2.1) and consider the function

G(t, s) =

X(t)PX−1(s) if t ≥ s

−X(t)(I − P )X−1(s) if t < s.

Then |G(t, s)| ≤ ke−α|t−s|. Let f ∈ Cb(R,Rn) and consider the differential equation

x′ = (A(t) + E(t))x+ f(t). (2.3)

Let x ∈ Cb(R,Rn), since f+Ex ∈ Cb(R,Rn) and (2.1) has an exponential dichotomy then the equation

y′ = A(t)y + (f(t) + E(t)x(t))

has a unique bounded solution yx = Tx on R which is given by

(Tx)(t) =

∫
R
G(t, s)(f(s) + E(s)x(s))ds.

Let x1, x2 ∈ Cb(R,Rn), then

|(Tx1 − Tx2)(t)| =
∣∣∣∣∫
R
G(t, s)E(s)(x1(s)− x2(s))ds

∣∣∣∣
≤ k |E|∞

∫
R
e−α|t−s|| |x1(s)− x2(s)| |ds.

Thus
|Tx1 − Tx2|∞ ≤

2k |E|∞
α

|x1 − x2|∞ .

Therefore by the contraction fixed point principle, Equation (2.3) has a unique bounded solution on
R. The exponential dichotomy follows then from Proposition 2.5. �

Remark 2.8. In [12], in the general case, the author proved a variant of Lemma 2.7 using the following
condition

|E|∞ <
α

4k2
. (2.4)

The condition in Lemma 2.7 improves (2.4). In fact, if we take t = s = 0 in (2.2) we get |P | ≤ k and
|I − P | ≤ k which implies that k ≥ 1.

Consider the following scalar differential equation

x′(t) = −α(t)x(t). (2.5)

Then, (2.5) has an exponential dichotomy if there exist k and c > 0 such that

e−
∫ t
s
α(u) du ≤ ke−c(t−s), for all t ≥ s (2.6)
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or

e
∫ t
s
α(u) du ≤ ke−c(t−s), for all t ≥ s. (2.7)

Proposition 2.9. [2] Let α ∈ Cb(R,R). If there exists r0 > 0 such that

inf
t∈R

∫ t

t−r0
α(ξ) dξ > 0,

then, Equation (2.5) has an exponential dichotomy.

3 The equation x′ = A(t)x+ b(t)

In this section, K denotes either R or C and Mn(K) the space of K-valued n× n matrices.

3.1 The periodic case

Let T > 0, A ∈ CT (R,Mn(K)) and b ∈ CT (R, Kn). Consider the following differential equation

x′ = A(t)x (3.1)

and its associated inhomogeneous equation

x′ = A(t)x+ b(t). (3.2)

The central question of this subsection is to investigate under what conditions does (3.2) have a T -
periodic solution.

Lemma 3.1. Let x be a solution of (3.2). Then x is T -periodic if and only if x(0) = x(T ).

Proof. The first implication is trivial. For the second implication, assume that x is a solution of (3.2)

such that x(0) = x(T ). Then x and x̃ : t 7→ x(t+ T ) are two solutions of (3.2) having the same initial
condition (x(0) = x̃(0)). It follows by uniqueness of solutions that x(t) = x̃(t) = x(t+T ) for all t ∈ R. �

Lemma 3.2. The following properties are equivalent:

(i) The zero solution is the unique T -periodic solution of (3.1).

(ii) Equation (3.2) has a unique T -periodic solution for each b ∈ CT (R,Kn).

Proof. The implication (ii)⇒(i) is trivial. Let us prove the implication (i)⇒(ii). Assume that the
zero solution is the unique T -periodic solution of (3.1). Let SH be the n-dimensional space of solutions
of (3.1) and f : SH → Kn be the linear operator defined for each x ∈ SH by

f(x) := x(T )− x(0).

It follows from Lemma 3.1 that ker f = {0}. Since dimSH = dimKn, we deduce that f is an
isomorphism. Let xP be a particular solution of (3.2). Thus there exists a unique solution xH of (3.1)
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satisfying f(xH) = xP (0)− xP (T ). Consider the function x := xP + xH . Then x is a solution of (3.2).
Moreover x is T -periodic since

x(0) = xP (0) + xH(0)

= f(xH) + xP (T ) + xH(0)

= xH(T ) + xP (T )

= x(T ).

Let y := xp + yH be another T -periodic solution of (3.2). Then y(0) = y(T ) which implies that
f(yH) = xP (0)− xP (T ). Therefore by uniqueness of xH we have xH = yH and thus x = y. �

Let A∗ be the conjugate transpose of A. In what follows, we denote by H(t) the matrix defined by

H(t) := A(t) +A∗(t)

and σ(H(t)) the set of its eigenvalues.

Lemma 3.3. Assume that
⋃
t∈R

σ(H(t)) ⊂ R+ ( or R−). Let x be a T -periodic solution of (3.1). Then

x(t) ∈ kerH(t) for all t ∈ R.

Proof. Let x be a T -periodic solution of (3.1) and set y(t) = |x(t)| 2. Then

y′ = 〈Ax, x〉+ 〈x,Ax〉 = 〈Hx, x〉.

It follows that y is monotone and T -periodic, so it is constant, that is, y′ = 0 hence 〈Hx, x〉 = 0. Since
the eigenvalues of H(t) have the same sign, we conclude that H(t)x(t) = 0. �

Proposition 3.4. Assume that
⋃
t∈R

σ(H(t)) ⊂ R+ ( or R−) and there exists t0 ∈ R such that

kerH(t0) = {0}. Then, for all b ∈ CT (R,Kn) Equation (3.2) has a unique T -periodic solution.

Proof. By Lemma 3.2), it is sufficient to prove that the zero solution is the unique T -periodic solution
of (3.1). Let x be a solution of (3.1). Using Lemma 3.3, we have x(t) ∈ kerH(t) for all t ∈ R, in
particular x(t0) ∈ kerH(t0) = {0}. Thus x(t0) = 0 and by the uniqueness of solution of the Cauchy
problem {

x′(t) = A(t)x(t)

x(t0) = 0

we deduce that x = 0. �

Proposition 3.5. Assume that A(t) is Hermitian positive (or Hermitian negative) for all t ∈ R.
Then, the following properties are equivalent:

(i) Equation (3.2) has a unique T -periodic solution for each b ∈ CT (R, Kn).
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(ii)
⋂
t∈R

kerA(t) = {0}.

Proof. (i)⇒(ii) Let x0 ∈
⋂
t∈R

kerA(t), then the constant function x(t) = x0 is a T -periodic solution of

(3.1). But since the zero solution is the unique T -periodic solution of (3.1) (Lemma 3.2), then we have
x0 = 0. Therefore

⋂
t∈R

kerA(t) = {0}.

(ii)⇒(i) Using again Lemma 3.2), it is sufficient to prove that the zero solution is the unique T -periodic
solution of (3.1). Let x be a T -periodic solution of (3.1). We have A = A∗, thus H(t) = 2A(t) and⋃
t∈R

σ(H(t)) ⊂ R+ ( or R−). It follows by Lemma 3.3 that

x(t) ∈ kerH(t) = ker 2A(t) = kerA(t).

Hence x′(t) = A(t)x(t) = 0 and x is then constant, which implies that x(0) = x(t) ∈ kerA(t). Since
t ∈ R is arbitrary, we deduce that x(0) ∈

⋂
t∈R

kerA(t) = {0} and thus x = 0. �

Example. Let b be a 2π-periodic function and consider the following differential equation

x′ = A(t)x+ b(t), (3.3)

where A(t) =

(
cos2 t − sin t

sin t 2 cos2 t

)
. Then (3.3) has a unique 2π-periodic solution..

Remark 3.6. In general, if Equation (3.3) has a periodic solution, the other bounded solutions on R
are not necessarily periodic. This happens even in the autonomous case

x′(t) = Ax(t). (3.4)

In fact, consider the following matrix

A =


0 −3 1 −3

1 0 1 0

0 3 0 0

1 1 11
9 0

 .

The trivial solution of (3.4) is of course periodic. However, the following solution

x(t) = etA


1

0

0

0

 =


−4 cos t+ 5 cos

√
2t

− sin t+
√

2 sin
√

2t

3 cos t− 3 cos
√

2t

cos t− cos
√

2t− 1
3 sin t+ 2

√
2

3 sin
√

2t


is bounded on R but is not periodic. It belongs however to a larger class which is the class of almost
periodic functions. In fact, all solutions of (3.4) are almost periodic. This is known in the literature
as the Bohr-Neugebauer property [16, 17, 19, 27, 29, 30].
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3.2 The almost periodic case

In this subsection, we assume that A ∈ C(R,Mn(R)) and b ∈ C(R,Rn). Consider the following
differential equation

x′ = A(t)x+ b(t). (3.5)

Proposition 3.7. [1, 33] Let A ∈ AP (R,Mn(R)) and b ∈ AP (R,Rn) such that x′ = A(t)x has an
exponential dichotomy. Then the differential equation (3.5) has a unique bounded solution which is in
AP (R,Rn).

Remark 3.8. Without the exponential dichotomy, the existence of an almost periodic solution to the
differential equation (3.5) can fail even if a bounded solution exists [20].

Proposition 3.9. [1, 33] Let A ∈ C(R,Mn(R)) and b ∈ PAP0(R,Rn) such that x′ = A(t)x has an
exponential dichotomy. Then the differential equation (3.5) has a unique bounded solution which is in
PAP0(R,Rn).

Proposition 3.10. Let A ∈ PAP (R,Mn(R)) and b ∈ PAP (R,Rn) such that both x′ = Aap(t)x and
x′ = A(t)x have an exponential dichotomy. Then the differential equation (3.5) has a unique bounded
solution which is in PAP (R,Rn).

Proof. By Proposition 3.7 the equation

x′ = Aap(t)x+ bap(t)

has a unique bounded solution ϕ1 ∈ AP (R,Rn).
On the other hand, since Ae(t)ϕ1 + be(t) ∈ PAP0(R,Rn) then by Proposition 3.9 the equation

x′ = A(t)x+ (Ae(t)ϕ1 + be(t))

has a unique bounded solution ϕ2 ∈ PAP0(R,Rn). Let ϕ := ϕ1 + ϕ2, then

ϕ′ = Aap(t)ϕ1 + bap(t) +A(t)ϕ2 + (Ae(t)ϕ1 + be(t))

= A(t)ϕ1 +A(t)ϕ2 + b(t)

= A(t)ϕ+ b(t).

That is, ϕ is a solution of (3.5) which is in PAP (R,Rn). The solution ϕ is the unique bounded solution
of (3.5) on R because x′ = A(t)x has an exponential dichotomy (Proposition (2.5)). �

Corollary 3.11. Let A ∈ PAP (R,Mn(R)) and b ∈ PAP (R,Rn) such that x′ = Aap(t)x has an
exponential dichotomy with parameters (P, k, α) and sup

t∈R
|Ae(t)| < α

2k
. Then the differential equation

(3.5) has a unique bounded solution which is in PAP (R,Rn).

Proof. The proof is a direct consequence of Proposition 3.10 and the perturbation result in Lemma
2.7. �
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4 The nonlinear case

4.1 Differential equations with nested states

Consider the following scalar differential equation

x′(t) = −α(t)x(t) + f (t, x (x(t))) , (4.1)

where α ∈ C(R,R) and f ∈ C(R× R,R). Consider the following hypotheses:

(H1) α ∈ PAP (R,R) with

c := sup
t∈R

∫ t

−∞
e−

∫ t
s
α(u)duds <∞. (4.2)

(H2) f(., x) ∈ PAP (R,R) for all x ∈ R.

(H3) There exists Lf > 0 such that for all t, x, y ∈ R

|f(t, x)− f(t, y)| ≤ Lf |x− y|.

Remark 4.1. If inf
t∈R

α(t) > 0, then Condition (4.2) is satisfied.

Lemma 4.2. Assume that (H1) holds. Then for all v ∈ PAP (R,R), the equation

x′ = −α(t)x+ v(t) (4.3)

has a unique bounded solution on R. Furthermore this solution is in PAP (R,R) and is given by the
formula

xv(t) =

∫ t

−∞
e−

∫ t
s
α(u)duv(s)ds.

Proof. Let v ∈ PAP (R,R) and consider the function xv defined by

xv(t) =

∫ t

−∞
e−

∫ t
s
α(u)duv(s)ds.

Since v is bounded, it is clear from (H1) that xv is a bounded solution of (4.3) on R. Let yv be another
bounded solution of (4.3) on R. Then xv − yv is a solution of the equation

x′(t) + α(t)x(t) = 0.

That is
xv(t)− yv(t) = e−

∫ t
0
α(u)du (xv(0)− yv(0)) .

By (H1), the function t 7→ e
∫ t
0
α(u)du is integrable on (−∞, 0). This implies that t 7→ e−

∫ t
0
α(u)du

cannot be bounded. In fact, if it is bounded then there exists M > 0 such that e−
∫ t
0
α(u)du ≤ M ,

that is e
∫ t
0
α(u)du ≥ 1

M > 0 which contradicts the integrability of t 7→ e
∫ t
0
α(u)du on (−∞, 0). There-

fore t 7→ e−
∫ t
0
α(u)du must not be bounded. Now, since xv(t) − yv(t) is bounded, one must have
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xv(0) − yv(0) = 0. Therefore xv is the only bounded solution of (4.3) on R. This implies that the
equation x′(t) = −α(t)x(t) has an exponential dichotomy (Proposition 2.5 ). That is α(t) satisfies
(2.6) (since it cannot satisfy both (2.7) and (4.2)). It follows from [2, Lemma 7.4] that the equation
x′(t) = −αap(t)x(t) has also an exponential dichotomy. Hence we deduce from Proposition 3.10 that
xv ∈ PAP (R,R). �

Theorem 4.3. Assume that (H1)-(H3) hold. Then Equation (4.1) has a unique pseudo almost
periodic solution, provided that √

|f(·, 0)| cLf (c |α|∞ + 1) < 1− cLf (4.4)

where |f(·, 0)| := sup
t∈R
|f(t, 0)|.

Remark 4.4. Provided that cLf < 1, one can see that (4.4) is equivalent to

|f(·, 0)| < (1− cLf )2

cLf (c |α|∞ + 1)
.

Thus (4.4) can be met if Lf and |f(·, 0)| are small enough.

In order to prove Theorem 4.3 one needs the following lemmas.

Lemma 4.5. Let ϕ ∈ PAP (R,R) and Φ : R→ R be a continuous function. Then Φ◦ϕ ∈ PAP (R,R).

Proof. The proof is similar to the one in [32], but here we do not need to assume Φ to be uniformly
continuous. In fact, Φ is continuous on the range of ϕ which is a bounded subset of R, thus by the Stone-
Weierstrass theorem, Φ can be approximated uniformly on the range of ϕ by a sequence of polynomials
Φn. Since the functions Φn◦ϕ are in PAP (R,R), then their uniform limit Φ◦ϕ is also in PAP (R,R). �

Lemma 4.6. [33] Let ϕ ∈ PAP (R,R) and f : R2 → R satisfy (H2) and (H3). Then t 7→ f(t, ϕ(t)) ∈
PAP (R,R).

Proof of Theorem 4.3. Let Λ be the subset of PAP (R,R) defined by

Λ :=
{
x ∈ PAP (R,R) : x is k-Lipschitz and |x|∞ ≤ m

}
,

where m =
c |f(·, 0)|
1− cLf

and k =

(
|α|∞ +

1

c

)
m. Remark that (4.4) implies that cLf< 1 and thus m ≥ 0.

Hence Λ is not empty. Notice that a solution of Equation (4.1) which is bounded on R is necessarily
k-Lipschitz and satisfies |x|∞ ≤ m. In fact, let x be such a solution. Then for all t ≥ σ

x(t) = e−
∫ t
σ
α(u)dux(σ) +

∫ t

σ

e−
∫ t
s
α(u)duf(s, x(x(s)))ds. (4.5)

From the proof of Lemma 4.2 one can see that α(t) satisfies (2.6), and since x(t) is bounded on R then

11



lim
σ→−∞

e−
∫ t
σ
α(u)dux(σ) = 0. It follows by taking σ → −∞ in (4.5) that

x(t) =

∫ t

−∞
e−

∫ t
s
α(u)duf(s, x(x(s)))ds.

Thus for all t ∈ R we have

|x(t)| ≤ c (Lf |x|∞ + |f(·, 0)|) .

That is
|x|∞ ≤

c |f(·, 0)|
1− cLf

= m.

Moreover since x satisfies Equation (4.1), we have

|x′(t)| ≤ |α|∞ |x|∞ + Lf |x|∞ + |f(t, 0)|

≤ |α|∞m+ Lfm+ |f(., 0)|

= |α|∞m+
m

c
= k.

Let PAPu(R,R) be the space of uniformly continuous pseudo almost periodic functions. Consider the
operator P : PAPu(R,R)→ C(R,R) defined by

P (x)(t) =

∫ t

−∞
e−

∫ t
s
α(u)duf(s, x(x(s)))ds for t ∈ R.

Using Lemma 4.2, Lemma 4.5 and Lemma 4.6, it is clear that P maps PAPu(R,R) into itself. We
claim that the operator P maps Λ into itself. In fact, for x ∈ Λ and t ∈ R we have

|(Px)(t)| ≤ c (Lfm+ |f(·, 0)|) = m.

We now verify that Px is k-Lipschitz. Since Px satisfies the differential equation

(Px)
′
(t) = −α(t)Px(t) + f(t, x (x(t))),

then

∣∣(Px)
′
(t)
∣∣ ≤ |α|∞m+ Lfm+ |f(t, 0)|

= |α|∞m+
m

c

= k.

12



This means that Px ∈ Λ. Now it suffices to prove that P is a contraction on Λ. We have for x, y ∈ Λ

|P (x)(t)− P (y)(t)| ≤
∫ t

−∞
e−

∫ t
s
α(u)du |f(s, x(x(s)))− f(s, y(y(s)))| ds

≤ Lf

∫ t

−∞
e−

∫ t
s
α(u)du |x(x(s)))− y(y(s))| ds.

But since

|x(x(s)))− y(y(s)))| ≤ |x(x(s))− x(y(s))|+ |x(y(s))− y(y(s))|

≤ (k + 1) |x− y|∞ ,

then

|P (x)(t)− P (y)(t)| ≤ cLf (k + 1) |x− y|∞

= cLf

((
|α|∞ +

1

c

)
c |f(·, 0)|
1− cLf

+ 1

)
|x− y|∞ .

Using the contraction principle on the closed subset Λ, we deduce that Equation (4.1) has a unique
pseudo almost periodic solution. �

Example. Consider the following differential equation

x′(t) = −α(t)x(t) + β(t) sin(x(x(t))) + γ(t) for t ∈ R, (4.6)

where

α(t) = a+ sin(t) + sin
(√

2t
)

+
1

1 + t2

β(t) = b+ sin(t) + sin
(√

2t
)

+
1

1 + t2

γ(t) = ε

(
1 + sin(t) + sin

(√
2t
)

+
1

1 + t2

)
with b ≥ 0 and a > b + 5. We have a − 2 ≤ α(t) ≤ a + 3, thus 1

a+3 ≤ c ≤ 1
a−2 . Set f(t, x) =

β(t) sin(x) + γ(t), then Lf ≤ |β|∞ ≤ b + 3. Therefore, the condition cLf < 1 is met. Moreover since
|f(·, 0)| = |γ|∞ ≤ 4ε, then to guarantee (4.4) one can choose ε such that

ε <
(a− b− 5)2

4(b+ 3) (2a+ 1)
.

Since α, β, γ ∈ PAP (R,R), then Equation (4.6) has a unique pseudo almost periodic solution.
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4.2 Differential equations with time-dependent delay

In what follows, we consider the following time-dependent delay differential equation

x′(t) = −α(t)x(t) + f(t, x(t− σ(t))).

In order to prove an existence theorem for such an equation, we need to prove some composition
results of pseudo almost periodic functions.

Lemma 4.7. Let y(.) ∈ AP (R,R) and σ(.) ∈ AP (R,R). Then t 7→ y(t− σ(t)) ∈ AP (R,R).

Proof. Let (sn)n be a sequence of real numbers. Then there exist a subsequence (s′n)n ⊂ (sn)n, a
function ỹ : R→ R and a function σ̃ : R→ R such that

y(t+ s′n)→ ỹ(t),

ỹ(t− s′n)→ y(t),

σ(t+ s′n)→ σ̃(t),

and
σ̃(t− s′n)→ σ(t),

as n→∞, where all the above convergences hold uniformly on R. It follows that

|y ((t+ s′n)− σ(t+ s′n))− ỹ(t− σ̃(t))| ≤ |y(t− σ(t+ s′n) + s′n)− ỹ(t− σ(t+ s′n))|

+ |ỹ(t− σ(t+ s′n))− ỹ(t− σ̃(t))| ,

≤ sup
s∈R
|y(s+ s′n)− ỹ(s)|+ |ỹ(t− σ(t+ s′n))− ỹ(t− σ̃(t))| .

Now since ỹ is uniformly continuous (it is in fact even almost periodic) we deduce that

sup
t∈R
|y ((t+ s′n)− σ(t+ s′n))− ỹ(t− σ̃(t))| → 0

as n→∞. This implies the almost periodicity of the function t 7→ y(t− σ(t)). �

Lemma 4.8. Let σ ∈ P̃AP0 (R) and ϕ ∈ PAP0 (R) such that ϕ is uniformly continuous. Then
t 7→ ϕ(t− σ(t)) is also in PAP0 (R).

Proof. Let ε > 0, then there exists η > 0 such that if |u| ≤ η, then for all x ∈ R

|ϕ(x+ u)− ϕ(x)| ≤ ε.

Let
Ar = {t ∈ [−r, r] : |σ(t)| > η} .

Since σ ∈ PAP0 (R), then lim
r→∞

1

2r
µ (Ar) = 0. Let r0 > 0 be such that for all r ≥ r0,

1

2r
µ (Ar) ≤ ε.
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Then for r ≥ r0 one has

1

2r

∫ r

−r
|ϕ(t− σ(t))− ϕ(t)| dt ≤ 1

2r

∫
Ar

|ϕ(t− σ(t))− ϕ(t)| dt+
1

2r

∫
[−r,r]�Ar

|ϕ(t− σ(t))− ϕ(t)| dt

≤ 2 |ϕ|∞
1

2r
µ (Ar) +

1

2r

∫
[−r,r]�Ar

εdt

≤ 2 |ϕ|∞
1

2r
µ (Ar) + ε.

Hence
lim
r→∞

1

2r

∫ r

−r
|ϕ(t− σ(t))− ϕ(t)| dt = 0.

But since ϕ ∈ PAP0 (R), then t 7→ ϕ(t− σ(t)) ∈ PAP0 (R) . �

In Lemma 4.8, we assumed that σ ∈ P̃AP0 (R), that is the delay σ is not necessarily bounded. If we
assume that σ is bounded then we do not need σ to be in PAP0 (R) as the following lemma shows:

Lemma 4.9. Let σ : R → R be a bounded continuous function and ϕ ∈ PAP0 (R) such that ϕ is
uniformly continuous. Then, t 7→ ϕ(t− σ(t)) is also in PAP0 (R).

Proof. For any fixed ε > 0, let δ > 0 be such that

|ϕ (t)− ϕ (s)| < ε,

for all t, s ∈ R with |t− s| ≤ δ.
Let a, b be such that a ≤ σ(t) ≤ b for all t ∈ R. Then, there exist σ1, . . . , σk ∈ [a, b] such that

[a, b] ⊂
k⋃
i=1

[σi − δ, σi + δ] .

For each t ∈ R, there exists σi(t), 1 ≤ i (t) ≤ k such that
∣∣σ(t)− σi(t)

∣∣ ≤ δ. Then, we get

|ϕ(t− σ(t))| ≤
∣∣ϕ(t− σ(t))− ϕ(t− σi(t))

∣∣+
∣∣ϕ(t− σi(t))

∣∣
≤ ε+

k∑
i=1

|ϕ(t− σi)| .

Which gives

1

2r

∫ r

−r
|ϕ(t− σ(t))| dt ≤ ε+

1

2r

k∑
i=1

∫ r

−r
|ϕ(t− σi)| dt.

Since PAP0(R) is translation invariant, we have ϕ(t− σi) ∈ PAP0(R), i = 1 . . . k. Therefore

lim sup
r→∞

1

2r

∫ r

−r
|ϕ(t− σ(t))| dt ≤ ε,

15



where ε is arbitrary. We deduce that

lim
r→∞

1

2r

∫ r

−r
|ϕ(t− σ(t))| dt = 0.

That is t 7→ ϕ(t− σ(t)) ∈ PAP0(R). �

Remark 4.10. Lemma 4.9 gives a property which is stronger than the well known translation invariance
enjoyed by the space PAP0(R). It shows that ergodicity in not affected even by varying translations,
as long as those translations are bounded and the function is uniformly continuous.

Lemma 4.11. Let y(.) ∈ PAP (R,R) be such that y is uniformly continuous and σ(.) ∈ PAP (R,R).
Then t 7→ y(t− σ(t)) ∈ PAP (R,R).

Proof. Let
y(t) = y1(t)︸ ︷︷ ︸

∈AP (R)

+ y2(t)︸ ︷︷ ︸
∈PAP0(R)

σ(t) = σ1(t)︸ ︷︷ ︸
∈AP (R)

+ σ2(t)︸ ︷︷ ︸
∈PAP0(R)

Consider the following decomposition

y(t− σ(t)) = y1(t− σ1(t)) + y(t− σ(t))− y1(t− σ1(t))

= y1(t− σ1(t))︸ ︷︷ ︸
∈AP (R)

+ y(t− σ(t))− y(t− σ1(t))︸ ︷︷ ︸
∈PAP0(R)

+ y2(t− σ1(t))︸ ︷︷ ︸
∈PAP0(R)

By Lemma 4.7, we have y1(t − σ1(t)) ∈ AP (R,R). In the other hand, since y1 and y are uniformly
continuous, then y2 is also uniformly continuous. It follows by Lemma 4.9 that y2(t−σ1(t)) ∈ PAP0(R).
For any fixed ε > 0, let δ > 0 be such that

|y (t)− y (s)| < ε,

for all t, s ∈ R with |t− s| ≤ δ. Let

Mr,δ (σ2) := {t ∈ [−r, r] : |σ2(t)| ≥ δ}

and
Y (t) := y(t− σ(t))− y(t− σ1(t)).

Then we have

1

2r

∫ r

−r
|Y (t)| dt =

1

2r

∫
Mr,δ(σ2)

|Y (t)| dt+
1

2r

∫
[−r,r]\Mr,δ(σ2)

|Y (t)| dt

≤
|Y |∞

2r
µ (Mr,δ (σ2)) + ε.
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Therefore
lim sup
r→∞

1

2r

∫ r

−r
|Y (t)| dt ≤ ε,

where ε is arbitrary. We deduce that

lim
r→∞

1

2r

∫ r

−r
|Y (t)| dt = 0,

that is Y (t) = y(t− σ(t))− y(t− σ1(t)) ∈ PAP0(R). �

We return to the aim of this subsection which is the investigation of the following equation:

x′(t) = −α(t)x(t) + f(t, x(t− σ(t))) for t ∈ R. (4.7)

Consider the following hypothesis:

(H4) σ ∈ PAP (R,R).

Theorem 4.12. Assume that (H1)-(H4) hold. Then Equation (4.7) has a unique pseudo almost
periodic solution, provided that cLf < 1.

Proof. Consider the operator P : PAPu(R,R)→ C(R,R) defined by

P (x)(t) =

∫ t

−∞
e−

∫ t
s
α(u)duf(s, x(s− σ(s)))ds for t ∈ R.

From Lemma 4.2, Lemma 4.6 and Lemma 4.11, it is clear that P maps PAPu(R,R) into itself. For
x, y ∈ PAPu(R,R), we have

|P (x)(t)− P (y)(t)| ≤
∫ t

−∞
e−

∫ t
s
α(u)du |f(s, x(s− σ(s)))− f(s, y(s− σ(s)))| ds

≤ cLf |x− y|.

Using the contraction principle on the Banach space PAPu(R,R), we deduce that Equation (4.7) has
a unique solution in PAPu(R,R). �

4.3 Differential equations with state-dependent delay

Consider the following state-dependent delay differential equation

x′(t) = −α(t)x(t) + f(t, x(t− ρ(x(t)))). (4.8)

where ρ : R→ R+ is Lρ-Lipschitz.

Theorem 4.13. Assume that (H1)-(H3) hold. Then Equation (4.8) has a unique pseudo almost
periodic solution, provided that√

|f(·, 0)| cLfLρ (c |α|∞ + 1) < 1− cLf . (4.9)
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Proof. Consider the operator P : PAPu(R,R)→ C(R,R) defined by

P (x)(t) =

∫ t

−∞
e−

∫ t
s
α(u)duf(s, x(s− ρ(x(s))))ds for t ∈ R.

Using Lemma 4.2, Lemma 4.6 and Lemma 4.5, it is clear that P maps PAPu(R,R) into itself.
Let Λ be the subset of PAP (R,R) defined by

Λ :=
{
x ∈ PAP (R,R) : x is k-Lipschitz and |x| ≤ m

}
,

where m =
c |f(·, 0)|
1− cLf

and k =
(
|α|∞ + 1

c

)
m. Using the same argument as in the proof of Theorem

(4.3), one can prove that the operator P maps Λ into itself. It suffices then to prove that P is a
contraction on Λ. We have For x, y ∈ Λ

|P (x)(t)− P (y)(t)| ≤
∫ t

−∞
e−

∫ t
s
α(u)du |f(s, x(s− ρ(x(s))))− f(s, y(s− ρ(y(s))))| ds

≤ Lf

∫ t

−∞
e−

∫ t
s
α(u)du |x(s− ρ(x(s)))− y(s− ρ(y(s)))| ds.

But since

|x(s− ρ(x(s)))− y(s− ρ(y(s)))| ≤ |x(s− ρ(x(s)))− x(s− ρ(y(s)))|+ |x(s− ρ(y(s)))− y(s− ρ(y(s)))|

≤ k |ρ(x(s))− ρ(y(s))|+ |x− y|∞
≤ (kLρ + 1) |x− y|∞ ,

then

|P (x)(t)− P (y)(t)| ≤ cLf (kLρ + 1) |x− y|∞

= cLf

((
|α|∞ +

1

c

)
c |f(·, 0)|
1− cLf

Lρ + 1

)
|x− y|∞ .

Using the contraction principle on the closed subset Λ, we deduce that Equation (4.8) has a unique
solution in PAPu(R,R). �

Remark 4.14. Provided that cLf < 1 Condition (4.9) is equivalent to

Lρ <
(1− cLf )2

cLf (c |α|∞ + 1) |f(·, 0)|
,

which implies that Condition (4.9) can be met if Lρ is small enough (the effect of the delay state-
dependency is small).

Example. Consider the following hematopoiesis model

x′(t) = −α(t)x(t) + β(t)
x2(t− ρ(x(t)))

1 + x2(t− ρ(x(t)))
+ γ(t) for t ∈ R, (4.10)
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where x(t) denotes the density of mature cells in blood circulation at time t. The cells are lost from

the circulation at a time-dependent rate α(t), the term β(t)
x2(t)

1 + x2(t)
represents the flux of the cells

into the circulation from the stem cell compartment. One can see that this flux takes in consideration
the density of mature cells in blood circulation with a time lag (delay) ρ(x(t)) that depends on the
state itself. On the other hand, the term γ(t) represents a flux of blood cells which does not take in
consideration the density of blood cells in circulation (blood donation for example).

In the real-world phenomena, the periodic variations of the environment (e.g., seasonal effects of
weather, resource availability, reproduction, food supplies, mating habits, etc.) plays an important
role in many biological and ecological systems. In particular the effects of a periodically varying
environment for such systems differ from those of a stable environment. Thus, the assumption of
periodicity of the parameters are a way of incorporating the periodicity of the environment.

In what follows, we assume that α(.), β(.) and γ(t) are the pseudo almost periodic functions defined
by

α(t) = 4 + sin(t) + sin
(√

2t
)

+
1

1 + t2

β(t) = γ(t) = sin(t) + sin
(√

2t
)

+
1

1 + t2

The function ρ is defined by ρ(x) = d |cos(x)| , with d ≥ 0. We claim that

inf
t∈R

α(t) = 2.

In fact, on one hand we have α(t) ≥ 2 for all t ∈ R. On the other hand, since
√

2 /∈ Q, all numbers of
the form a

√
2 − b where a and b are integers are dense in the real line. Thus there exist two integer

sequences (an)n and (bn)n such that

lim
n→∞

an
√

2− bn =

√
2− 1

4

with lim
n→∞

|an| =∞. Let

tn := −π
2

+ 2anπ,

then we have lim
n→∞

α(tn) = 2. That is (tn)n is a minimizing sequence and thus inf
t∈R

α(t) = 2. Therefore

α satisfies (H1) with 1
7 ≤ c ≤

1
2 . Set

f(t, x) = β(t)g(x) + γ(t),

where g is the function defined for each x ∈ R by g(x) := x2

1+x2 . Since supx∈R |g′(x)| = 3
√
3

8 and
|β| ≤ 3, then f satisfies (H2) with Lf ≤ 9

√
3

8 < 2, thus cLf < 1. Since Lρ ≤ d, then following the
above-mentioned remark, we conclude that if we choose d small enough, Equation (4.10) has a unique
pseudo almost periodic solution.
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