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1 Introduction

The boundary-value problems for singularly perturbed differential-difference equations
arise in various practical problems in biomechanics and physics such as in variational problem

in control theory and depolarization in stein’s model. Many scholars have done a lot of works
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on this field, especially for linear problems [7,8,10,11,16,17]. For nonlinear problems, some
results [2,5,6,12,13,15] have also been obtained. However, most of these works are related
to boundary layers, numerical solution or the proof of the existence of the solution. Few of
them concerns the contrast structures and the uniform validity of the asymptotic expansions
[2,15]. Recently, the contrast structures become the focus of attention in singular perturba-
tion[1,3,9,14]. The fundamental characteristic of contrast structures is that there exists a .. (or
multiple 7,) within the domain of interest, which is called as an internal transition point. The
position of ¢, is unknown in advance and it needs to be determined thereafter. In the neigh-
borhood of ., the solution y(z, ) will have an abrupt structure change. In the different sides
of ., if y(¢, ) approaches to different reduced solutions, we call it step-type contrast structure.
If y(¢, i) approaches to the same reduced solution, we call it spike-type contrast structure. In
paper[4], Wang, Xu and Ni study the spike-type contrast structure for the following singularly
perturbed differential-difference equation which only contains negative shift in it:

(1) = Fy(t),y(t — o), 1), 0<t<T; (1.1)

Yt p) = alt),—-oc <t <0, yT,u) =y, (1.2)

In this paper, we will study the step-type contrast structure for system (1.1),(1.2). Where
0 < u < 11is a small parameter and o is a delay argument. a(f) is a smooth function which
defined in [—o, 0]. T is a positive constant and satisfies o < T < 2¢-. The restriction on T will

not influence the essence of the problem and it is only convenient for our discussion.

2 Algorithm for the construction of asymptotics

Let uy’ = z, then (1.1) can be rewrite as

wy'(0) = 2(1),  pz' (1) = F(y(0), y(t = 0), 1). 2.1

When necessary we impose several additional conditions on equation (2.1).

H, Suppose that F(y, u, t) is sufficiently smooth with respect to each argument and for
0<t<T.Whereu=y(t-o).

H, Suppose the reduced equation F(y(¢),y(t — 0),t) = 0 has three disjoint real roots
¥() = @i(t)(i = 1,2,3) in [0, o], but an isolate root ¥(¢) = ¢ (¢) in [0, T].

H3  Suppose F\(y(2),y(t — 0),1) > 0, wheny(r) = ¢;(t)(i = 1,3), or () = 1(¢). While
Fy(p2(), pa(t — 0),1) < 0.



Let ¢, € (0, o) be the transfer point of the contrast structure and it has the series form,
o=t +uty + -+ pfo g+ (2.2)

where f;(k = 0,1, ---) are unknown constants which determined by the smooth connection at
t=1t..

Setting x = (y,z)” and using the method of boundary function, we construct a series
formally satisfying (2.1),(1.2) in [0, ¢.], [t, o], [0, T] respectively.

O = 3 W E 0+ Tarog + 0 (e, 23)

k=0
X2, p) = iﬂ"(fcf)(r, 0 + 0 xi(r, 1) + 0 0, ). 2.4)

k=0

x 3, ) = iu"(fcﬁf%r,u) + 0ty ) + Rui(Tr, ), 2.5)

k=0
Where 7o = ﬁ £ = t;t*, o= = % Mx(re), 07 x(r.), 0 x(r.). O x(x,).
Q](:“)x(r(r), Rix(tr), (k > 0) are called boundary functions, and TOILTOO ITix(t9) = 0, T*li)n_loo Q,(:)

x(r)=0. lim 0x(t,) =0, lim 0x(r,)=0. lim 0{"x(r,) =0, lim Rex(rr)=
To—+00 Te—>—00 To—+00 T ——00
0 hold.

By the method of boundary function, we obtain

Diy=0, FGL@),at-0)0 = 0;

a5, & :
-1 _ =D k-1 _ p(D-(D) Dy,
7 - Zk (l), 7 - Fy yk (t) + hk (t)’

where F y take its values at (yél)(t),a/(t — 0),1) and ﬁl(cl)(t) are determined functions. (2.6)
coincides with the reduced equation of (2.1), so we have )'/E)l)(t) = ¢1(b), Zgl)(t) = 0. Ob-
viously, by H, and (2.7), Xﬁ(])(t) are completely determined. Similar as )"cl({l)(t), we obtain
FP 0 = o302 = 0, 30 = 10,20 (1) = 0 and 371, (1) are completely de-
termined.

For ITyx(7p), we have

Moy _ 1z, M2 B, (0) + Moy, (-0, 0); 2.6)
dro drg
MToy(0) = a(0) - ¢1(0), Toy(+00) = 0. @7



Let ¢1(0) + Ioy = 3, (V)" = 21 and we get

dy D 45D
S =0, Z = FGO, a(-0),0); 2.8)

drg drg
FP(0) = a(0), 7V (+00) = ¢;(0). (2.9)

Integrating (2.8), we have
N 1
20 == V2 f F(y, a(=0), 0)dy)" £ 201G (2.10)
¢1(0)

by H,, the equilibrium M (¢;(0),0) is a saddle point on the phase plane (31, z(D). Let
the steady manifold be X; : 7 = —@; (V). Under the condition that the line " = a(0)
intersects with X, the solution of problem (2.8),(2.9) exist.

For Iz x(1g), we have the following system

dIl dIl -

oz S = By + Gi(ro): @.11)
dT() dTO

ey(0) = —5(0), Tey(+o0) = 0, (2.12)

where F y get its value at the point (¢1(0) + Ipy, a(=0),0). Gi(r) are functions formed by
Xi(0), Mix(ro)(i = 0,1, - -+ , k= 1).

According to Liouville formulas and constant-change method, we infer that

_ ), oy . fTO RS f" -
Iy = Z(O)( ¥y, (0)) + Z(70) D 20 S Z2(s)Gr(s)dsdn. (2.13)

Thus, I1xx(79) are completely determined. The exponential decay of [I;x(7g) can easy be ob-
tained from (2.13).

For Qg_)x(r*), we have

- 0% —— = Flgi(t) + Oy, alto — o). 1o); (2.14)
05730 = pa(to) — @i(to), OF y(=00) = 0. (2.15)

Let ¢ (fo) + Qé_)y =@, @) =z? and we get

dy® dz®
D20 Z 2 PGP, alt - o). 10); (2.16)
dr., dr.

F2(0) = ga(t0), 7P (=00) = 1 (o). (2.17)
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Integrating (2.16), we get

y(Z)

([

1
F(y,a(ty - 0), to)dy)’ 2 +0,(G?) (2.18)
¢1(10)

by H>, the equilibrium M;(p;(t),0) is a saddle point on the phase plane (#?,z?). Let
the steady manifold be %, : 7@ = @2@(2)). Under the condition that the line 5)(2) = ¢o(tp)
intersects with X, the solution of problem (2.16),(2.17) exist.

For Q/(c_) x(7.), we have the following system

dQ(_)y B dQ(—)Z ~ B
T S g =Ry G 2.19)
0\ 75(0) = (¢(10) — ¢ (1)t + ¢ (to, 11, -+, t5—1), QL y(+00) =0, (2.20)

where F ;l) get its value at the point (¢;(#) + Qé_)y, a(ty — o), tp). Gl(cl)(r*) are functions com-
pound formed by X;(1), Qg_)x(ro) (i=0,1,---,k—1).
Similar to (2.11), the solution of (2.19),(2.20) is

#2)
O, 2@ o
O,y = 72)(0) ((?2([0) 1)l +q, )+ (2.21)

| 7
+23(r) f - f 229G (s)dsdn.
0 < (n) —c0

Thus, Q](C_)x(m) are completely determined.

For QE)” x(t.), we have

dQ(+)y dQ(+)Z
—0 = =9z =2 = Fes(to) + Oy, altg — ), 1) (2.22)
dr, dr,
07Y(0) = pa(to) — @3(to), OFPy(+00) = 0. (2.23)

Let g3(10) + 05y = 7, 3P =z and we get

d~(3) d~(3)
D20, Z 2 FED,alt - 0),0); (2.24)

dr, dr.,
F(0) = a(tg), 7 (+00) = 3(10). (2.25)

Integrating (2.24), we have
F 1
29 = = Vo( f F(y,a(to = 0),0)dy)* £ +3) (2.26)
@3(to)



by Hj, the equilibrium M3(p3(ty), 0) is a saddle point on the phase plane 6(3), 7). Let
the steady manifold be X3 : ¥ = —®3(3®). Under the condition that the line 7 = ¢,(1)
intersects with Z3, the solution of problem (2.24),(2.25) exist.

For Q,(:)x(‘r*), we have the following system

40y (),
i ™, 5 = FP oMy + G2, (2.27)

T Ty
Q{¥(0) = (@y(t0) — $t))te + g (to, 11, thr), O y(+00) =0, (2.28)

where F ;2) get its value at the point (¢3(#) + Qgr)y, a(ty — o), ty). G;CZ)(T*) are functions com-
pound formed by % 7(1), 0" x(r.)(i = 0,1, -+ ,k = 1),

similarly, according to Liouville formulas and constant-change method, we get the solu-
tion of (2.27),(2.28)

#3(z,)
50) ————((¢5(t0) - ¢3(lo))tk + 6] )+

5(3) =(3) (2)
+7 (T*)L B j;mz ()G, (s)dsdn.

Thus, Q,(:)x(n) are completely determined. The exponential decay of Q/(:r) x(7.) can easily be
obtained from (2.29).

Q,(:)y —
(2.29)

Specially, at the point ¢ = o, we set

Yo, 1) = p(u) = po+upy +@Ppr+ -+ pp+ oo,

where pr(k = 0,1,---) are unknown constants which determined by the smooth connection at
t=o0

Qg_)x(‘rg) are determined by the following system:

a0y 40z -
ﬁ = 0\z, djg = F(gs(0) + 05y, a(0), o); (2.30)
0573(0) = po — p3(0), 05 y(~00) = 0. (2.31)

Let g3(0) + 05 )y(te) = 59, 05 2(t) = 2 and we get

54 >(4)
D 7@, e FGW, a(0), 0); (2.32)

dr, dr,
FD0) = po, 7P (~00) = 3(0). (2.33)
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Integrating (2.32), we get

74

"y 1
2 = V3 f F(y,a(0), 0)dy)’ £ £04(7Y)
p3(0)

By the virtue of condition H, the equilibrium (¢3(0),0) is a saddle point on the phase
plane Y, 7). So passing through (¢3(0), 0) there exist a steady manifold X4 7@ = @y GP)

Under the condition that the line )7(4)(0) = po intersects with the manifold 4. The solution of
system (2.32),(2.33) exist.

o

x(74) are determined by the following system:

A=) (),
ko y _ Q(_) ko

3 3
- e = R0y + G w0
o (o

(2.34)

00 = Py = 5,7(0), 0} y(=00) = 0 (2.35)

where F §3)’ F ;3) get their values at (¢3(0) + Qg)y, a(0),0). G](f)(rg) are determined functions

In fact, the homogeneous system, corresponding to (2.34)

dQ,({_)y 5 dot” 3 A
=0y’ —— = ) 2.36
dr, Q2 dr, v QY (2.36)
is the variational equation of (2.30). under the boundary condition Q_I((_)y(O) = pr — )‘122)((7),
Q]((_)y(—oo) =0, we get
(07 Y@ = (pr = (@)1 (1) P71 (0),

N " (2.37)
(021 = 02 (i - o) ) O
y

Next, let O, "y*, O, 'z" be the particular solution of (2.34). Introducing a new transformation
. dd ( (4))
(=),* _ ( ) * aPiy ) ( ) *

and substituting it into (2.34), we get

sy _ d0s?)

= 51+ 6,

dre  ay® 7

doy  dD,(5Y) 3)
dr, - Taym 2O



ds dDs(FW
Let 6, = CY¥Yy(74) be the general solution of =2 - (&
To dy@

solution

6 = f Po (1) 5 ()G (s)ds,

(69

d ONENS

p W)éz + G](<3)(Tg—). Furthermore, we have
To 5

5 = fo V()BT (9] f ¥2()¥; ()G (p)dplds.

So, we have

07y (1) = f W (1) 7 (5)] f o ()W, (0)GY (p)dplds,
4@)

077 (1) =
Thus, we obtain

07V(1y) = (pr = TL(@N 1 (1) P (0) + Oy (1),

4(y4)

0\ 72(1,) = (P = k(@1 (7)Y (0) + 07" (7).

0Oy (1g) + f ¥ (1) %5 ()G (5)ds,

)92, then we get a particular

(2.38)

Now, Q_Z_)X(Tg-) are all completely determined, but they contain the unknown numbers

pk- Obviously, the estimation about exponential decay of Q](c_)x(rg) can easily be obtained

from (2.38).

Due to the deviation of arguments, the equations determining Q_](:)x(rg) will be relevant

to I1;y(rp), 0 < j < k. namely,

(+)
dQ Q(+)
dt, ©
Q(+) _
= = F(0) + 04"y, 1(0) + Toy(ry), 0);

0579(0) = po - y1(0), OFy(+00) =0

Let y1(0) + 05)y(r5) = 59, 0 2(15) = 29, we have

dy_(S) =30 dZ_(S)

o = FG, 01(0) + Hoy(t4), o);

dr,

(2.40)

(2.41)

(2.42)



(0) = po, 7O (+00) = Y1(0). (2.43)

Combining (2.8),(2.9) with (2.42),(2.43), we have a couple system:

df/(S) . dZ(S) _ _
——= 2, = FG, 50, o)
G0 a0 1 (2.44)
2 = = = FOYa-0). 0);
FD0) = a(0), 7V (+00) = 91(0), 79(0) = po, 7 (+00) = 1 (o). (2.45)

Here, the phase space (5,79, 51, z1) is the direct sum of (5, z®) and (3, z1). The equi-
librium M(y1(0), 0, ¢1(0), 0) is a hyperbolic saddle point because the characteristic equation at
M(y1(0), 0, ¢1(0),0) is

[ = Fyol[A*> = Fy0] =0

and its eigenvalues satisfy
LA = —Fy<5) <0, A3d4=- 5 < 0.

Thus, going through equilibrium M there exist a two-dimensional stable submanifold W*¥(M)

and a two-dimensional unstable submanifold W*(M). Set
Wi (M) : Z = O(Y),

where Y = 5,37, Z = 9,7z, d = (&, ®5)T. Obviously, the projection of W*(M) on
the phase plane (57, z1) is ;. Namely, (WS(M))&I),Z(I)) =3, Set
(W‘Y(M))(J_y(s)j@)) = 2s,
then
29 = oy 5O, 51,

under the condition that the plane )7(5)(0) = po intersects with the steady submanifold X5 in the
phase space, the solution of (2.42),(2.43) exist.
Q](:r)x(‘rg) are determined by the following system:
A(+) A(+)
dO."y 4 4O,z

(4 A(+) C))
= , =F; +G ;
dr, Qk < dr, y Qk y k (TO')

0y(0) = P - 50(0), 0\ y(+00) = 0,



where F §+), F )(+) take their values at (1(0) + Qgr)y, ©1(0) + Iy, o). H]fr)(rg) are determined

functions.

In a similar manner for solving Q,(:)x(rg), we can obtain

0V (10) = (P = T (@)W3(r) W5 (0) + Oy (1),
5(y ) (2.48)

0 2(ty) = (P = TN (T3 (0) + 02" (1),
where -

0y (zy) = fo PV O [ 6w 06 pdplds
and

02" (1) = S(y) Oy (1) + f T”\h(n—)‘?;‘(s)Gi“)(s)ds.

Thus, Q](:)x(rg) are completely determined.

Lemma. Under conditions Hy, H,, H3,
Mex(ro), O x(r.), O x(r,)(k = 0)

are all satisfy exponential decay.

For boundary functions Ryx(t7)(k > 0), they have no essential influence on the interior
layer and the solving method of them completely coincide with ITxx(7g)(k > 0). We will don’t

discuss them in detail.

3 The smooth connection of the asymptotic solution

In order to get a smooth solution in [0, T'], yV(z, ) and y®(¢, 1) must joint smoothly at
t = t,, at the same time, y? (¢, ) and y¥ (¢, u) joint smoothly at ¢ = . namely,

d d

WV = =P ), 3.1
t

d d

o =~y o, . (3.2)

Substituting (2.3),(2.4) and (2.5) into (3.1),(3.2) respectively, we get a series of equations:
d o= 4 Ao
e Q, '¥0) = e Q, '¥0), (3.3)
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d d
%w+gﬁb@=%m+ng©.

d d
ownm+Eqwmﬂﬁwm+E@®@
and

d - d -
-0, ¥(0) = —0”y(0).

d - d -+
#4(0) + —079(0) = ¢ (@) + —-0\7¥(0).

d )y d -
G2 @+ =050 = G2 (@) + —07¥0)
Substituting (2.8),(2.26) into (3.3) we have

1(f0) @3(10)

02(10) p2(10)
f F(yv a(to - 0-)9 to)dy = f F(V’ a(to - 0-)9 to)dya
[

that is,
03(10)
H(ty) = f FQO,a(ty — o), t9)dy =0,
@

1(f0)

which is the equation for find 7.

d
H,. Suppose that (3.9) is solvable for 75(0 < #g < o), and d_tH(tO) # 0.

Therefore, ng) y(7) exist. By (3.5), the equation to determine # is
H' (to)ty = Py,

where Py, are known constants. Thus Q,fx(r*) are all completely determined

In the following, we will seek the value of py. Let
G(po) =290, po) = 2210, po) = @4(po) — s(po, a(0).

dG
Hs. Suppose there exist a solution pg = po for (3.11) and satisfy — o
For py, by virtue of (2.38),(2.48) and (3.8), we have

d®4(po)  dDPs(po)
( - )Pk
dpo dpo

= (G @) = G2 (@)) -

5(1?0) 4(190)( )

—2 G (o) +

0 0
- f (0%, ()G (s)dss + f l114(())?;1(s)ij”(s)ds

oo +o00
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Z1(0)

3.4

3.5)

(3.6)

3.7)

(3.8)

(3.9

(3.10)

(3.11)



By Hy4, the coefficient of py isn’t equal to zero , so py is determined. Thus Q,((i)x(‘r(r) are
all completely determined.

4 The existence of the complex solution

In this section, using the method of sewing connection, we will prove the existence of the
solution about problem (2.1),(1.2) and give out the estimates of the remainder. The solution of
(2.1),(1.2) may be considered as a solution which is smoothly connected by the solutions of the

following auxiliary problems.

The left problem (0 < ¢ < t,):

{ oY = FoD(@), et - o), 1), (4.1)

DO, 1) = 0), YV (., 1) = $a(2), (4.2)
The middle problem (t. <t < 0):

{ w3 = FOP0), a(t — o), 1), (4.3)

YOt 1) = 2(t), YD (o, 1) = plu), (4.4)

Where p(u) = po + u(p1 + 6). Here, we do not expand the parameter ¢.. 6 is a parameter.

The right problem (o <t < T):

©2O)" = FoO0.yV @ = o). 0), 4.5)
{ Yo = pe. YT =y" (4.6)

Where p(u) = po + p(p1 +9).
The problems (4.1),(4.2); (4.3),(4.4) and (4.5),(4.6) are all boundary layer problems, so

their solutions exist and have the following form:

YOt 1) = @1(6) + Hoy(ro) + 05 y(r.) + Ow). 4.7)
YOt = @3(6) + O y(x.) + 05 y(x) + O(u). 4.8)
YOt 1) = Y1 (1) + 05 y(ts) + Roy(rr) + O(u). (4.9)

Considering (4.2) and (4.4), we see
YOl ) = Y2t ), 1. €(0,1), (4.10)
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which implies that y(z,u) is continuous at + = f.. Therefore, 7. can be determined by the

following formula
Dt p) = 22, ). (4.11)
Next, we introduce a function A(z,) :

At =72V ) — 2Pt 0
= 10720017 - [0} 2(0)1* + O(w). (4.12)

Where I1yz(7¢) and Ryz(7) are exponentially small in the neighborhood of the point ¢t = 7.. We
may consider that O(u) = Cp, C is a real number. The approach of solving Qéﬁz(O) in (4.12)
is similar to those used in section 3. Consequently, In section 2.1-2.2, if we can change 7 into

t., it yields

A(t) = H(t) + O(w)
d
= H(1o) + — H(10)(t. = 10) + O((t, = 10)%) + O(w), (4.13)

where ?( is known by (3.9). Let . = typ = ku and put it into (4.13), we obtain
d
Aty = k) = ikﬂEH(tO) + O(w). (4.14)

Let k in (4.14) be sufficiently large and select u sufficiently small, then the symbols of
right-hand side of (4.14) are different. By virtue of intermediate value theorem, there exists
t. € (to — ku, ty + ku) such that A(z,) = 0. So (4.11) holds, and 7, = 1y + O(u).

From (4.4),(4.6) we know that y?(z, ), y® (¢, ) are continuous at = o. For their

d
smooth connection, Ey(z)(o-,,u) = d—ty(3)(o-, 1) is necessary.

d d
Let W(p,p) = Ey<2>(a, W) — d—ty(3)(0', ). Considering the smooth condition (3.6),(3.7),
we have

d - d .
W) = G ©0) =GP0 + ggi y(0) - $Q§ Y(0)] + o(u) =

dG
= uo—— + o(u).
dpo'po=po
When u is sufficient small and ¢ has different sign, G(p, u) also has different sign. By virtue of

intermediate value theorem, there exists p* € [p; — 9, p1 + 8] such that G(p*, u) = 0.

Write the results in the following theorem.
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Theory 1. Under conditions Hi-Hs, the smooth solution y(z, ) of (1.1),(1.2) exist in the
interval [0, T']. The zeroth asymptotic expansion of (1.1),(1.2) is

1(1) + oy(ro) + O y(r.) + Ow), 0<t
Yt ) =3 @30 + O y(T) + O y(1o) + Ow), t<t<o

Similarly, we can obtain the higher order asymptotic expansion.
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