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1 Introduction

Stability of stochastic differential equations (SDEs) has become a very prevalent theme of recent
research in Mathematics and its applications. Stochastic systems are used to model problems
from the real world in which some kind or randomness or noise must be taken into account.
Some stochastic models cannot be proved to fulfill stability properties with respect all the un-
known variables of the system. However, it is very interesting in some situations to analyze
if it is still possible to prove some stability properties with respect to some of the variables in
the problem. It is worth mentioning that, recently considerable attention has been paid to the
concept of stability with respect to a part of the system states. Such concept arises from the
study of combustion systems [1], vibrations in rotating machinery [10], biocenology [19], inertial
navigation systems [23], electro-magnetics [25], and spacecraft stabilization via gimballed gyro-
scopes and/or flywheels [26].
The method of Lyapunov functions is one of the most powerful tool to study the stability of
stochastic dynamical systems. Lyapunov stability of stochastic dynamical systems has attracted
the attention of several authors, we would like to mention here the references [3, 4, 8, 14], among
others.
With the emergence of the second method of Lyapunov as an essential means in science, en-
gineering, and applied mathematics, numerous exciting and important variants to Lyapunov’s
original concept stability were proposed. One of these involves the notion of stability with re-
spect to a part of the variables, Peiffer and Rouche [16], Rouche et al. [19], Rumyantsev [20],
Rumyantsev and Oziraner [21], Savchenko and Ignatyev [24], Vorotnikov [26], Vorotnikov and
Rumyantsev [27]. This type of stability has been used in investigating the qualitative proper-
ties of equilibria and boundedness properties of motions of dynamical systems determined by
ordinary differential equations, difference equations, functional differential equations, stochastic
differential equations, etc. It involves a notion of stability with respect to only a prespecified
subset of the state variables characterizing the motions of the system under investigation.
For the dormant applications in uncertainty problems, risk measures, and superhedging in fi-
nance, considerable attention has been paid to the theory of nonlinear expectation. Notably,
Peng [17] built the fundamental theory of time-consistent G-expectation and G-conditional ex-
pectation, where G is the infinitesimal generator of a nonlinear heat equation. Under the G-
framework, Peng [15, 17] introduced the notion of G-normal disribution, G-Brownian motion
and he also established the corresponding stochastic calculus of Itô’s type. Since then, many
researches have been carried out on the stochastic analysis with respect to the G-Brownian mo-
tion. On that basis, Gao [7] and Peng [15] studied the existence and uniqueness of the solution
of G-SDE under a standard Lipschitz condition. Moreover, Lin [13] obtained the existence and
uniqueness of the solution of G-SDE with reflecting boundary. The G-Brownian motion has a
very rich and interesting new structure which non-trivially, for a recent account and development
of this theory we refer the reader to see [2],[11], and [12].
However, so far no work have been reported about stability with respect to a part of variables
of G-stochastic differential equations. Consequently, this paper is devoted to establishing some
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criteria for the p-th moment exponential stability and the quasi sure exponential stability with
respect to a part of the variables of GSDEs by means of the G-Lyapunov functions method and
Gronwall inequalities.
The content of this paper is organized as follows: In Section 2, we recall some necessary pre-
liminaries and results. In Section 3, we establish sufficient conditions to ensure p-th moment
exponential stability and quasi sure exponential stability with respect to a part of the variables
of stochastic differential equations driven by G-Brownian motion (GSDEs, in short) by using
the G-Lyapunov techniques. In section 4, we give sufficient conditions of quasi sure exponential
stability with respect to a part of the variables of G-stochastic perturbed systems based on Gron-
wall’s inequalities. Moreover, we exhibit some illustrative examples to show the applicability of
our abstract theory.

2 Preliminaries

In this section, we briefly recall some notations and preliminaries about sublinear expectations
and G-Brownian motion. For more details, one can refer to [9, 15, 17, 18].

Notations on G-stochastic calculus

• Rn : the space of n−dimensional real column vectors.

• 〈x, y〉 : the scalar product of two vectors x, y ∈ Rn.

• |.| : arbitrary spacial norm.

• B(Ω) : the Borel σ−algebra of Ω.

• Cb,Lip(Rn) : the space of all bounded real-valued Lipshitz continuous functions.

• L0 : the space of all B(Ω)−measurable real functions.

• Mp,0
G = {ζt :=

∑N−1
j=0 ζj1[tj ,tj+1[ : ζj ∈ LpG(ωj)}.

• Mp
G(0, T ) : the completion of Mp,0

G under ||.||Mp
G
.

Let Ω be a given set and let H be a linear space of real valued defined on Ω. We further suppose
that H satisfies a ∈ H for each constant a and |X| ∈ H if X ∈ H.

Definition 2.1. A sublinear expectation Ê on H is a functional Ê : H → R satisfying the fol-
lowing properties: for all X, Y ∈ H,
i) Monotonicity: if X ≥ Y, then Ê[X] ≥ Ê[Y ].

ii) Constant preserving: Ê[a] = a, ∀ a ∈ R.
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iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ].

iv) Positive homogeneity: Ê[λX] = λÊ[X], λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space. X ∈ H is called a random vari-

able in (Ω,H, Ê). Y = (Y1, ..., Yn), where Yi ∈ H is called a n-dimensional random vector in

(Ω,H, Ê).

Definition 2.2. Let X1 and X2 be two n-dimensional random vectors defined on sublinear expec-
tation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2), respectively. They are called identically distributed,

denoted by X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cb,Lip(Rn).

X̄ is said to be an independent copy of X if X̄
d
= X and X̄ is independent from X.

Definition 2.3. (G-Normal Distribution) A random variable X on a sublinear expectation

space (Ω,H, Ê) is called G-normal distributed, if for any a, b ≥ 0

aX + bX̄
d
=
√
a2 + b2X,

where, X̄ is an independent copy of X.

Let Ω be the space of all Rd−valued continuous paths (ωt)t≥0 with ω(0) = 0. We assume
moreover that Ω is a metric space equipped with the following distance:

ρ(ω1, ω2) :=
∞∑
N=1

2−N
(

max
0≤t≤N

(|ω1
t − ω2

t |) ∧ 1
)
,

and consider the canonical process Bt(ω) = ω(t), t ∈ [0,∞), for ω ∈ Ω; then for each fixed
T ∈ [0,∞), we have

L0
ip(ΩT ) := {ϕ(Bt1 , Bt2 , ..., Btn) : n ≥ 1, 0 ≤ t1 ≤ ... ≤ tn ≤ T, ϕ ∈ Cb,lip(Rd×n)}.

Definition 2.4. On the sublinear expectation space (Ω, L0
ip(ΩT ), Ê), the canonical process (Bt)t≥0

is called a G-Brownian motion, if the following properties are satisfied:
(i) B0 = 0.

(ii) for t, s ≥ 0, the increment Bt+s −Bt
d
=
√
sX, where X is G-normal distributed.

(iii) for t, s ≥ 0, the increment Bt+s − Bt is independent from (Bt1 , Bt2 , ..., Btn) for each n ∈ N,
and 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ t.
Moreover, the sublinear expectation Ê[.] is called G-expectation.
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Let (Bt)t≥0 be a 1-dimensional G-Brownian motion. The letter G denotes the function

G(a) :=
1

2
Ê[aB2

1 ] =
1

2
(σ2a+ − σ2a−), a ∈ R,

with, σ2 := −Ê[−B2
1 ] ≤ Ê[B2

1 ] := σ2, 0 ≤ σ ≤ σ <∞.

(Recall that a+ = max{0, a} and a− = −min{0, a}).

Now, we introduce the natural choquet capacity.

Definition 2.5. Let B(Ω) the borel σ−algebra and P be a weakly compact collection of proba-
bility measures P defined on (Ω,B(Ω)), then the capacity Ĉ(.) associated to P is defined by

Ĉ(A) := sup
P∈P

P (A), A ∈ B(Ω).

Definition 2.6. A set A ⊂ B(Ω) is polar if Ĉ(A) = 0. A property holds ”quasi-surely” (q.s.) if
it holds outside a polar set.

Lemma 2.1. [6] Let {Ak} ⊂ B(Ω) such that

∞∑
k=1

Ĉ(Ak) <∞.

Then, limk→∞ supAk is polar.

Lemma 2.2. [6] Let X ∈ L0(Ω) satisfying Ê|X|p <∞, for p > 0. Then, for each M > 0,

Ĉ(|X| > M) ≤ Ê|X|p

Mp
.

Lemma 2.3. [7] For each p ≥ 1, η ∈Mp
G(0, T ), and 0 ≤ s ≤ t ≤ T. Then,

Ê
[

sup
s≤u≤t

|
∫ u

s

ηrd〈Ba, Bā〉r|p
]
≤
(σ(a+ā)+(a+ā)T + σ(a−ā)+(a−ā)T

4

)p
|t− s|p−1

∫ t

s

Ê[|ηu|p]du.

Lemma 2.4. [7] Let p ≥ 2, η ∈ Mp
G(0, T ) and 0 ≤ s ≤ t ≤ T. Then, there exists some constant

Cp depending only on p such that

Ê
[

sup
s≤u≤t

|
∫ u

s

ηrdBr|p
]
≤ Cp|t− s|

p
2
−1

∫ t

s

Ê[|ηu|p]du.
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3 p-th moment exponential stability of G-stochastic dif-

ferential equations with respect to a part of the vari-

ables

In this section, we aim to prove the pth moment exponential stability of stochastic differen-
tial equations driven by G-Brownian motion with respect to a part of the variables, via the
G-Lyapunov functions.

Consider the following SDE driven by an m-dimensional G-Brownian motion:

dx(t) = f(t, x(t))dt+ h(t, x(t))d〈B〉t + g(t, x(t))dBt, ∀x ∈ Rn, t ≥ 0, (3.1)

where, Bt = (B1(t), ...., Bm(t))T is an m-dimensional G-Brownian motion, and (〈B〉)t≥0 is the
quadratic variation process of B.

We make a partition of the state x := (x1, x2) ∈ Rb × Rn−b, with 1 ≤ b ≤ n. We obtain
the following system:{

dx1(t) = f1(t, x1(t), x2(t))dt+ h1(t, x1(t), x2(t))d〈B〉t + g1(t, x1(t), x2(t))dBt

dx2(t) = f2(t, x1(t), x2(t))dt+ h2(t, x1(t), x2(t))d〈B〉t + g2(t, x1(t), x2(t))dBt.
(3.2)

f := (f1, f2), h := (h1, h2), g := (g1, g2).

Assume that,

• f1, h1, and g1 ∈M2
G([0, T ],Rb) satisfy the following condition:

|φ1(t, x1, x2)− φ1(t, y1, x2)| ≤ K1|x1 − y1|, for all t ∈ [0, T ], x1, y1 ∈ Rb, x2 ∈ Rn−b,
φ1 = f1, h1, and g1 respectively, and K1 is a positive constant.

• f2, h2, and g2 ∈M2
G([0, T ],Rn−b) satisfy the following condition:

|φ2(t, x1, x2)− φ2(t, x1, y2)| ≤ K2|x2 − y2|, for all t ∈ [0, T ], x1 ∈ Rb, x2, y2 ∈ Rn−b,
φ2 = f2, h2, and g2 respectively, and K2 is a positive constant.

Under the precedent assumptions, there exists a unique global solution x(t, t0, x0) = (x1(t, t0, x0), x2(t, t0, x0))

corresponding to the initial condition x(t0) = x0 = (x10 , x20) ∈ Rn (see S. Peng [15, 11], Y. Ren,
Q. Bi and R. sakthivel [22], for more details).
In what follows we use x(t, t0, x0) = (x1(t, t0, x0), x2(t, t0, x0)), or simply x(t) = (x1(t), x2(t)) to
denote a solution of our system on some small interval.

We assume that the origin x = (0, 0) is an equilibrium point of system (3.2), that is fi(t, 0, 0) =
hi(t, 0, 0) = gi(t, 0, 0) = 0, ∀t ≥ t0 ≥ 0, (i = 1, 2).
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Definition 3.1. The equilibrium point x = (0, 0) of The G-SDE (3.2) is said to be
(i) Pth moment exponentially stable with respect to x1, if there exist positive constant λ1, λ2,
and p > 0 such that for all x0 ∈ Rn, the following inequalities are satisfied:

Ê(|x1(t; t0, x0)|p) ≤ λ1|x0|pe−λ2(t−t0), ∀t ≥ t0 ≥ 0.

(ii) Quasi surely exponentially stable with respect to x1, if

lim
t→∞

sup
1

t
ln(|x1(t, t0, x0)|) < 0, q.s. (3.3)

for all x0 ∈ Rn.

Definition 3.2. The solution of the sub-system with respect to the variable x2 is said to be quasi
surely globally uniformly bounded, if for each α > 0, there exists c = c(α) > 0 (independent of
t0) such that,

for every t0 ≥ 0, and all x20 ∈ Rn−b with |x20 | ≤ α, sup
t≥t0
|x2(t, t0, x0)| ≤ c(α), q.s. (3.4)

where, x20 = x2(t0; t0, x0).

Definition 3.3. C1,2(R+ × Rn,R) is the family of all real-valued functions V (t, x) defined on
R+ × Rn which are twice continuously differentiable in x and once in t.
If V ∈ C1,2(R+ × Rn,R), we define an operator L (called as G-Lyapunov function) from
R+ × Rn −→ R as follows:

LV (t, x) := Vt(t, x) + Vxf(t, x) +G
(
〈Vx(t, x), 2h(t, x)〉+ 〈Vxx(t, x)g(t, x), g(t, x)〉

)
,

where,

Vt(t, x) =
∂V

∂t
(t, x) ; Vx(t, x) = (

∂V

∂x1

(t, x),
∂V

∂x2

(t, x)) ; Vxx(t, x) =
( ∂2V

∂xi∂xj
(t, x)

)
n×n

.

By G-Itô’s formula [18], it follows

dV (t, x(t)) = LV (t, x(t))dt+ Vx(t, x(t))g(t, x(t))dBt.

Our first main result in this section reads as follow.

Theorem 3.1. Assume that there exist V ∈ C1,2(R+ × Rn,R+) and positive constants ci (i =
1, 2, 3), p, such that for all t ≥ t0 ≥ 0, and all x = (x1, x2) ∈ Rn,

c1|x1|p ≤ V (t, x) ≤ c2|x1|p, (3.5)

LV (t, x) ≤ −c3|x1|p. (3.6)

Furthermore, we suppose that x2(t, t0, x0) is quasi surely globally uniformly bounded.
Then, the trivial solution of the G-stochastic system (3.2) is pth moment exponentially stable
with respect to x1.
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In order to prove this theorem we need to recall an important Lemma [28]:

Lemma 3.2. Let η ∈M1
G(0, T ) and Mt =

∫ t

0

η(s)d〈B〉s −
∫ t

0

2G(η(s))ds.

Then, for each t ∈ [0, T ], Ê(Mt) ≤ 0.

Proof of Theorem 3.1. Applying G-Itô’s formula to e
c3
c2
t
V (t, x(t)), we obtain

d(e
c3
c2
t
V (t, x(t)))

= e
c3
c2
t
(c3

c2

V (t, x(t)) + Vt(t, x(t)) + 〈Vx(t, x(t)), f(t, x(t))〉
)
dt

+ e
c3
c2
t〈Vx(t, x(t)), h(t, x(t))〉d〈B〉t + e

c3
c2
t〈Vx(t, x(t)), g(t, x(t))〉dBt

+
1

2
e

c3
c2
t〈Vxx(t, x(t))g(t, x(t)), g(t, x(t))〉d〈B〉t.

That is,

e
c3
c2
t
V (t, x(t))

=e
c3
c2
t0V (t0, x(t0)) +

∫ t

t0

e
c3
c2
s
[c3

c2

V (s, x(s)) + Vs(s, x(s)) + 〈Vx(s, x(s)), f(s, x(s))〉

+G
(
〈Vx(s, x(s)), 2h(s, x(s))〉+ 〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉

)]
ds

−
∫ t

t0

e
c3
c2
s
G
(
〈Vx(s, x(s)), 2h(s, x(s))〉+ 〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉

)
ds

+

∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), h(s, x(s))〉d〈B〉s +

∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), g(s, x(s))〉dBs

+
1

2

∫ t

t0

e
c3
c2
s〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉d〈B〉s

= e
c3
c2
t0V (t0, x(t0)) +

∫ t

t0

e
c3
c2
s
(c3

c2

V (s, x(s)) + LV (s, x(s))
)
ds+M t0

t

+

∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), g(s, x(s))〉dBs.

Where,

M t0
t =

∫ t

t0

e

c3

c2

s

〈Vx(s, x(s)), h(s, x(s))〉d〈B〉s

+
1

2

∫ t

t0

e
c3
c2
s〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉d〈B〉s

−
∫ t

t0

e
c3
c2
s
G
(
〈Vx(s, x(s)), 2h(s, x(s))〉+ 〈Vxx(s, x(s))g(s, x(s)), g(s, x(s))〉

)
ds.
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Taking, G-expectation on both sides, we get

Ê(e
c3
c2

tV (t, x(t)))

≤ e
c3
c2

t0V (t0, x(t0)) + Ê
∫ t

t0

e

c3
c2

s(c3
c2

V (s, x(s)) + LV (s, x(s))
)
ds + Ê(M t0

t ) + Ê
∫ t

t0

e
c3
c2

s〈Vx(s, x(s)), g(s, x(s))〉dBs.

On the other hand, since Ê
∫ t

t0

e
c3
c2
s〈Vx(s, x(s)), g(s, x(s))〉dBs = 0, and by Lemma (3.2), we have

Ê(M t0
t ) ≤ 0. Consequently,

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s
(c3

c2

V (s, x(s)) + LV (s, x(s))
)
ds.

This together with (3.5) and (3.6), implies

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s
(c3

c2

V (s, x(s))− c3|x1(s)|p
)
ds.

≤ e
c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s
(c3

c2

V (s, x(s))− c3

c2

V (s, x(s))
)
ds

≤ e
c3
c2
t0V (t0, x(t0))

≤ c2e
c3
c2
t0|x10|p.

That is,

Ê(V (t, x(t))) ≤ c2e
− c3

c2
(t−t0)|x10|p.

Due to (3.5) again and the fact that |x10| ≤ |x0|, we deduce that

Ê|x1(t, t0, x0)|p ≤ Ê(V (t, x(t)))

c1

≤ c2

c1

e
− c3

c2
(t−t0)|x0|p.

Therefore, the trivial solution of the G-stochastic system (3.2) is pth moment exponentially sta-
ble with respect to x1. 2

Theorem 3.3. Assume that there exist V ∈ C1,2(R+ × Rn,R+) and positive constants ci (i =
1, 2, 3), p, such that for all t ≥ t0 ≥ 0, and all x = (x1, x2) ∈ Rn,

c1|x1|p ≤ V (t, x) ≤ c2|x1|p, (3.7)

LV (t, x) ≤ (−c3 + ϕ(t))|x1|p. (3.8)

where ϕ(t) is a continuous nonnegative function with∫ +∞

0

ϕ(t)dt ≤M < +∞. (3.9)
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Furthermore, we suppose that x2(t, t0, x0) is quasi surely globally uniformly bounded.
Then, the trivial solution of the G-stochastic system (3.2) is pth moment exponentially stable
with respect to x1.

In order to prove this theorem, we need to recall the following Gronwall Lemma (see, for
instance, Dragomir [5]).

Theorem 3.4. Let u(t) and b(t) be nonnegative continuous functions for t ≥ α, and let

u(t) ≤ a+

∫ t

α

b(s)u(s)ds, t ≥ α, (3.10)

where a ≥ 0 is a constant. Then,

u(t) ≤ a exp(

∫ t

α

b(s)ds), t ≥ α. (3.11)

Proof of Theorem (3.3). By using a similar reasoning as above we obtain,

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s
(c3

c2

V (s, x(s)) + LV (s, x(s))
)
ds.

On account of (3.7) and (3.8), we obtain

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s
(c3

c2

V (s, x(s)) + (−c3 + ϕ(s))|x1(s)|p
)
ds.

≤ e
c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

e
c3
c2
s
(c3

c2

V (s, x(s))− c3

c2

V (s, x(s)) +
ϕ(s)

c1

V (s, x(s))
)
ds.

Hence,

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0)) + Ê

∫ t

t0

ϕ(s)

c1

e
c3
c2
s
V (s, x(s))ds. (3.12)

By Gronwall’s inequality and condition (3.7), we obtain

Ê(e
c3
c2
t
V (t, x(t))) ≤ e

c3
c2
t0V (t0, x(t0))e

1
c1

∫ t
t0
ϕ(s)ds

≤ e
c3
c2
t0V (t0, x(t0))e

1
c1

∫+∞
0 ϕ(s)ds

≤ e
c3
c2
t0V (t0, x(t0))e

M
c1

≤ e
c3
c2
t0c2|x10|pe

M
c1 .

That is,

Ê(V (t, x(t))) ≤ c2e
M
c1 |x10|pe

− c3
c2

(t−t0)
.
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Due to the fact that |x10| ≤ |x0| and condition (3.7), we deduce from the last inequality that

Ê(|x1(t)|p) ≤ c2

c1

e
M
c1 |x0|pe−

c3
c2

(t−t0)
.

Setting λ1 =
c2

c1

e
M
c1 and λ2 =

c3

c2

, we conclude that the G-stochastic system (3.2) is pth moment

exponentially stable with respect to x1. 2

In what follows, we provide the conditions under which the pth moment exponential stabil-
ity with respect to a part of the variables of the trivial solution to such a G-SDEs implies the
quasi sure exponential stability with respect to a part of the variables.

Theorem 3.5. Consider the G-stochastic system (3.2), assume that there exists a positive con-
stant η such that

Ê
(
|f1(t, x1, x2)|p+|h1(t, x1, x2)|p+|g1(t, x1, x2)|p

)
< ηÊ(|x1|p), ∀x1 ∈ Rb, ∀x2 ∈ Rn−b,∀t ≥ t0 ≥ 0.

(3.13)
Furthermore, we suppose that x2(t, t0, x0) is quasi surely globally uniformly bounded.
Then, the pth moment exponetial stability with respect to x1 of the trivial solution of the G-
stochastic system (3.2), implies the quasi sure exponential stability.

Proof. By the definition of the pth moment exponential stability with respect to x1, there is a
pair of positive constants λ1 and λ2 such that

Ê(|x1(t; t0, x0)|p) ≤ λ1|x0|pe−λ2(t−t0), ∀t ≥ t0 ≥ 0. (3.14)

Furthermore, we have

x1(t+s) = x1(t)+

∫ t+s

t
f1(u, x1(u), x2(u))du+

∫ t+s

t
h1(u, x1(u), x2(u))d〈B〉u+

∫ t+s

t
g1(u, x1(u), x2(u))dBu.

Which implies,

|x1(t + s)|p ≤ 4p−1
(
|x1(t)|p + |

∫ t+s

t
f1(u, x1(u), x2(u))du|p

+ |
∫ t+s

t
h1(u, x1(u), x2(u))d〈B〉u|p + |

∫ t+s

t
g1(u, x1(u), x2(u))dBu|p

)
.

By the sub-additivity of G-expectation, we obtain

Ê( sup
0≤s≤τ

|x1(t+ s)|p)

≤ 4p−1
[
Ê|x1(t)|p + Ê

(∫ t+s

t

|f1(u, x1(u), x2(u))|du
)p

+ Ê
(

sup
0≤s≤τ

|
∫ t+s

t

g1(u, x1(u), x2(u))dBu|p
)

+ Ê
(

sup
0≤s≤τ

|
∫ t+s

t

h1(u, x1(u), x2(u))d〈B〉u|p
)]
.

(3.15)
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On account of (3.13), (3.14), and by Hölder’s inequality [6], we obtain

Ê
(∫ t+τ

t

|f1(u, x1(u), x2(u))|du
)p
≤ τ p

∫ t+τ

t

Ê|f1(u, x1(u), x2(u))|pdu

≤ λ1

λ2

ητ p|x0|pe−λ2(t−t0).

(3.16)

On the other hand, by (3.13), (3.14), and Lemma (2.4), we obtain

Ê
(

sup
0≤s≤τ

|
∫ t+τ

t

g1(u, x1(u), x2(u))dBu|p
)
≤ Cpτ

p
2
−1

∫ t+τ

t

Ê|g1(u, x1(u), x2(u))|pdu

≤ λ1

λ2

Cpητ
p
2 |x0|pe−λ2(t−t0).

(3.17)

Likewise, by Lemma (2.3) we obtain

Ê
(

sup
0≤s≤τ

|
∫ t+τ

t

h1(u, x1(u), x2(u))d〈B〉u|p
)
≤ C ′pτ

p−1

∫ t+τ

t

Ê|h1(u, x1(u), x2(u))|pdu

≤ λ1

λ2

C ′pητ
p|x0|pe−λ2(t−t0),

(3.18)

where, C ′p is a positive constant dependent only on p.
We conclude from the above inequalities (3.16), (3.17), and (3.18) that

Ê( sup
0≤s≤τ

|x1(t+ s)|p) ≤ Re−λ2t,

where, R = 4p−1λ1

λ2

|x0|p
(
λ2 + ητ p(1 + Cpτ

− p
2 + C ′p)

)
.

Now, let ε ∈ (0, λ2) be arbitrary. Thanks to Lemma (2.2), we have

Ĉ
(

sup
0≤s≤τ

|x1(nτ + s)|p > e−(λ2−ε)nτ
)

≤ e(λ2−ε)nτ Ê( sup
0≤s≤τ

|x1(nτ + s)|p) ≤ Re−εnτ .

By the Borel-Cantelli Lemma for the capacity (2.1), we see that there exists n0 := n0(ω), such
that for almost all ω ∈ Ω, n > n0(ω),

sup
0≤s≤τ

|x1(t+ s)|p ≤ e−(λ2−ε)nτ , q.s.

Where, t ∈ [nτ, (n+ 1)τ ]. Then, we obtain

1

t
log(|x1(t)|) =

1

pt
log(|x1(t)|p) ≤ −(λ2 − ε)nτ

pnτ
, q.s.
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Hence, limt−→∞ sup
1

t
log(|x1(t)|) ≤ − (λ2−ε)

p
, q.s.

Since ε > 0 is arbitrary, we obtain the desired result

lim
t−→∞

sup
1

t
log(|x1(t)|) ≤ −λ2

p
, q.s.

That is, the trivial solution of the G-stochastic (3.2) system is quasi surely exponentially stable
with respect to x1.
Which completes the proof. 2

4 Exponential stability of G-stochastic perturbed differ-

ential equations with respect to a part of the variables

In this section, we consider the following linear stochastic system:

dx(t) = Ax(t)dt, ∀t ≥ t0 ≥ 0, (4.1)

where,

A =

(
A1 0
0 A2

)
, x := (x1, x2) ∈ Rb × Rn−b, 1 ≤ b ≤ n.

• A1 is a constant b× b matrix.

• A2 is a constant (n− b)× (n− b) matrix.

The above system (4.1) might be regarded as the following system:{
dx1(t) = A1x1(t)dt

dx2(t) = A2x2(t)dt,
(4.2)

with initial condition x(t0) := x0 := (x10 , x20) ∈ Rb × Rn−b.
Assume that some parameters are excited or perturbed by G-Brownian motion, and the perturbed
system has the form: {

dx1(t) = A1x1(t)dt+ g(t, x1(t), x2(t))dBt

dx2(t) = A2x2(t)dt,
(4.3)

with the same initial conditions, where Bt = (B1(t), ...., Bm(t))T is an m-dimensional G-Brownian
motion, and g : R+ × Rb × Rn−b −→ Rb×m.
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Assume that conditions of existence and uniqueness of solutions are satisfied, see [17]. Denote
by x(t, t0, x0) = (x1(t; t0, x0), x2(t; t0, x0)) the solution of system (4.3).
We suppose that the origin of the linear stochastic system (4.2) is quasi surely exponentially
stable with respect to x1. Furthermore, we assume that the origin x = (0, 0) is an equilibrium
point of the G-stochastic perturbed system (4.3), that is g(t, 0, 0) = 0 for all t ≥ 0.
The objective of this section is to give sufficient conditions under which the G-stochastic per-
turbed system (4.3) is still quasi surely exponentially stable with respect to x1.

Theorem 4.1. Let λ1 be the maximum of the real parts of all eigenvalues of −A1.
Suppose there exist a constant c1 ≥ 0, and a polynomial p1(t) such that for all x1 ∈ Rb, x2 ∈ Rn−b,
and sufficiently large t,

|g(t, x1(t), x2(t))|2 ≤ p1(t)e(−2λ1+c1)t, q.s. (4.4)

Furthermore, we assume that limt−→∞ sup
log |eA1t|2

t
≤ −c2, where, c2 is a positive constant.

Moreover, we suppose that x2(t, t0, x0) is quasi surely globally uniformly bounded.
Then,

limt−→∞ sup
log |x1(t; t0, x0)|2

t
≤ −(c2 − c1), q.s. for all t0 ≥ 0 and x0 ∈ Rn.

In particular, if c2 > c1, then the G-stochastic perturbed system (4.3) is said to be quasi surely
exponentially stable with respect to x1.

In order to prove this theorem, let us start by recalling an important Gronwall Lemma [5],
which will be very useful later on.

Lemma 4.2. Let b(t), c(t), and u(t) be continuous functions for t ≥ t0 ≥ 0, let b(t) be nonneg-
ative for t ≥ t0 ≥ 0, φ is a constant and suppose

u(t) ≤ φ+

∫ t

t0

[
b(s)u(s) + c(s)

]
ds, t ≥ t0 ≥ 0.

Then,

u(t) ≤ φ exp(

∫ t

t0

b(τ)dτ) +

∫ t

t0

c(s) exp(

∫ t

s

b(τ)dτ)ds, t ≥ t0 ≥ 0.

We also need the following Lemma [15], which has its own importance.

Lemma 4.3. Let Bt be a one-dimensional G-Brownian motion. Suppose that there exist con-
stants ε > 0 and α > 0 such that

Ê
(

exp[
α2

2
(1 + ε)

∫ T

0

g2(s)d〈B〉s]
)
<∞, ∀g ∈M2

G(0, T ).

Then, for any T > 0 and β > 0,

Ĉ
(

sup
0≤t≤T

[ ∫ t

0

g(s)dBs −
α

2

∫ t

0

g2(s)d〈B〉s
]
> β

)
≤ exp(−αβ).
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Now, we are able to prove our theorem.

Proof of Theorem 4.1. Fix ε > 0 arbitrarly, and there exists ρ = ρ(ε) such that

|e−A1t|2 ≤ ρe(2λ1+ε)t, p1(t) ≤ ρeεt, t > 0.

By G-Itô’s formula, we obtain

d(e−A1tx1(t)) = e−A1tg(t, x1(t), x2(t))dBt.

Define W (t) = |e−A1tx1(t)|2. By G-Itô’s formula again,

W (t) = W (t0) + 2

∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs

+

∫ t

t0

trace(e−A1sg(s, x1(s), x2(s))gT1 (s, x1(s), x2(s))e−A
T
1 s)d〈B〉s. (4.5)

It follows from Lemma (4.3) that for any α > 0, β > 0, and τ > t0.

Ĉ
(

supt0≤t≤τ
[ ∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs −

α

2∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))gT1 (s, x1(s), x2(s))e−A

T
1 se−A1sx1(s)d〈B〉s

]
> β

)
≤ exp(−αβ).

Choose an arbitrary θ > 1, and let k be an integer large enough so that k > t0. Set

α = e−c1k, β = θec1k log k, τ = k.

Then, we obtain

Ĉ
(

sup
t0≤t≤k

[ ∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs −

e−c1k

2∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))gT (s, x1(s), x2(s))e−A

T
1 se−A1sx1(s)d〈B〉s

]
> θec1k log k

)
≤ 1

kθ
.

Applying the Borel-Cantelli Lemma for the capacity, we see that for almost all ω ∈ Ω, there
exists k0 = k0(ω) such that

∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs

≤ e−c1k

2

∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))gT (s, x1(s), x2(s))e−A

T
1 se−A1sx1(s)d〈B〉s + θec1k log k,
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for all k > k0, t0 ≤ t ≤ k. By using condition (4.4), it follows that∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))dBs

≤ e−c1k

2

∫ t

t0

xT1 (s)e−A
T
1 se−A1sg(s, x1(s), x2(s))gT (s, x1(s), x2(s))e−A

T
1 se−A1sx1(s)d〈B〉s + θec1k log k

≤ e−c1k

2
ρ2

∫ t

t0

W (s)ec1sd〈B〉s + θec1k log k.

This together with (4.5), we obtain

W (t) ≤ W (t0) + e−c1kρ2

∫ t

t0

W (s)ec1sd〈B〉s + 2θec1k log k

+

∫ t

t0

trace(e−A1sg(s, x1(s), x2(s))gT (s, x1(s), x2(s))e−A
T
1 s)d〈B〉s

≤ W (t0) + e−c1kρ2

∫ t

t0

W (s)ec1sd〈B〉s + 2θec1k log k + bρ2

∫ t

t0

ec1sd〈B〉s. (4.6)

In chapter III of Peng [15], we have for each 0 ≤ s ≤ t ≤ T,

〈B〉t − 〈B〉s ≤ σ̄2(t− s).

Based on this fact and the inequality (4.6), we obtain

W (t) ≤ W (t0) + e−c1kρ2σ2

∫ t

t0

W (s)ec1sds+ 2θec1k log k + bρ2σ2

∫ t

t0

ec1sds.

Thanks to Lemma (4.2), we have

W (t) ≤
(
W (t0) + 2θec1k log k

)
exp

(
e−c1kρ2σ2

∫ t

t0

ec1sds
)

+ bρ2σ2

∫ t

t0

exp
(
ρ2σ2e−c1k

∫ t

s

ec1rdr
)
ec1sds

≤
(
W (t0) + 2θec1k log k +

bρ2σ2

c1

ec1k
)

exp
(
e−c1kρ2σ2

∫ t

t0

ec1sds
)

≤
(
W (t0) + 2θec1k log k +

bρ2σ2

c1

ec1k
)

exp
(ρ2σ2

c1

)
, t0 ≤ t ≤ k, k ≥ k0, q.s.

That is,

W (t) ≤
(
W (t0) + 2θec1k log k +

bρ2σ2

c1

ec1k
)

exp
(ρ2σ2

c1

)
, t0 ≤ t ≤ k, k ≥ k0, q.s. (4.7)
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Since θ > 1 is arbitrary and
W (t)

ec1t log t
≤ W (t)

ec1(k−1) log(k − 1)
, k − 1 ≤ t ≤ k.

From (4.7), we see immediately that

lim
t−→∞

sup
W (t)

ec1t log(t)
≤ lim

k−→∞
sup

(
W (t0) + 2θec1k log k + bρ2σ2

c1
ec1k
)

exp
(ρ2σ2

c1

)
ec1(k−1) log(k − 1)

≤ 2 exp
(
c1 +

ρ2σ2

c1

)
q.s.

Since,

lim
t−→∞

sup
log |x1(t; t0, x0)|2

t
≤ lim

t−→∞
sup

log |eAt|2

t
+ lim

t−→∞
sup

log |e−Atx1(t; t0, x0)|2

t
.

Consequently,

limt−→∞ sup
log |x1(t; t0, x0)|2

t
≤ −c2 + c1 = −(c2 − c1), q.s.

If the inequality c2 > c1 is satisfied, then the G-stochastic perturbed system (4.3) is quasi surely
exponentially stable with respect to x1. 2

5 Examples

The following illustrative examples are provided to show the usefulness of the obtained results.

Example 5.1. Consider the following G-stochastic system: dx1(t) = −2x1dt−
1

2
sin2(x2)e−2tx1d〈B〉t + (1 + e−t|sin(x2)|)x1dBt

dx2(t) = 2 cos(t)x2dt,
(5.1)

where, x = (x1, x2)T ∈ R2 , B is a one-dimension G-Brownian motion and B = N(0 × [1
2
, 1]),

with initial value x0 = (x10 , x20).

This system has the trivial solution x1 = 0, x2 = 0.
It is clear that x2(t) is quasi surely globally uniformly bounded. In fact, for all t ≥ t0 ≥ 0, and
all x20 ∈ R with |x20| ≤ β, we have |x2(t)| ≤ βe2 sin(t) q.s.
Denote V = x2

1, then we have

LV (t, x) = Vx(t, x)f1(t, x) +G(2Vx(t, x)h1(t, x) + Vxxg
2
1(t, x))

= −4x2
1 +G

(
− 2x2

1 sin2(x2)e−2t + 2(1 + e−t| sin(x2)|)2x2
1

)
= −4x2

1 +G(2x2
1 + 4e−t| sin(x2)|x2

1).
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By the sub-additivity of the function G, we obtain

LV (t, x) ≤ −4x2
1 +G(2x2

1) +G(4e−t| sin(x2)|x2
1)

≤ −4x2
1 + x2

1 + 2e−t| sin(x2)|x2
1

≤ −3x2
1 + 2e−tx2

1.

That is,
LV (t, x) ≤ (−3 + ϕ(t))x2

1,

where ϕ(t) = 2e−t, which satisfies condition (3.9) of Theorem (3.3).
Hence, all conditions of Theorem (3.3) are fulfilled with p = 2 and then the G-stochastic system
(5.1) is pth moment exponentially stable with respect to x1. Furthermore, we have

1. |f1(t, x)|2 = 4|x1|2,

2. |h1(t, x)|2 = |1
2
sin2(x2)e−2tx1|2 ≤ |x1|2,

3. |g1(t, x)|2 = |(1 + e−t|sin(x2)|)x1|2 ≤ 2(1 + e−2t| sin(x2)|2)|x1|2 ≤ 4|x1|2.

Then, we obtain
Ê(|f1(t, x)|2 + |h1(t, x)|2 + |g1(t, x)|2) ≤ 9Ê(|x1|2).

Hence, from Theorem (3.5), with p = 2 and η = 9, one can deduce that the G-stochastic system
(5.1) is quasi sure exponential stable with respect to x1.

Example 5.2. Consider the following G-stochastic system dx1(t) = −2x1(t)dt+ (1 + t2)e−4.5t x(t)

1 + |x(t)|
dBt

dx2(t) = A2x2(t)dt,

(5.2)

where, x = (x1, x2) ∈ R3, x2 = (z1, z2) ∈ R2 and B(t) is one-dimensional G-Brownian motion,

A2 =

(
0 −1
1 0

)
.

With initial value x0 = (x10 , x20), and x20 = (z10 , z20).
By simple resolution, we obtain

x2(t) =

(
z10(t, w) cos(t)− z20(t, w) sin(t)
z10(t, w) sin(t) + z20(t, w) cos(t)

)
.
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Using the 2-norm leads to
|x2(t)| = |x20|.

It is clear that x2(t) is quasi surely globally uniformly bounded. In fact, for all t ≥ t0 ≥ 0, and
all x20 ∈ R2 with |x20 | ≤ α′, we have |x2(t)| ≤ α′ q.s.
It is clear that, the constants of Theorem (4.1) are c1 = 0.5, and c2 = 2.

Hence, by Theorem (4.1) we deduce that lim supt→∞
log |x1(t, t0, x0)|2

t
≤ −1.5 q.s. for all t0 ≥ 0

and x0 ∈ R2. Indeed, the G-stochastic perturbed system (5.2) is quasi sure exponential stable with
respect to x1.
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