Reference
1. Kleene SC. Representation of events in nerve nets and finite automata. RAND PROJECT AIR FORCE SANTA MONICA CA; 1951.
2. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989;1(4):541-51.
3. LeCun Y. Generalization and network design strategies. Connectionism in perspective. 19: Citeseer; 1989.
4. Liu X, Annangi P, Gupta MD, Yu B, Padfield DR, Banerjee J, et al. Learning-based scan plane identification from fetal head ultrasound images. Proceedings of SPIE. 2012;8320.
5. Chen H, Dou Q, Ni D, Cheng J-Z, Qin J, Li S, et al. Automatic Fetal Ultrasound Standard Plane Detection Using Knowledge Transferred Recurrent Neural Networks. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science2015. p. 507-14.
6. Sak H, Senior AW, Beaufays F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. 2014.
7. Chen H, Ni D, Qin J, Li S, Yang X, Wang T, et al. Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks. IEEE Journal of Biomedical and Health Informatics. 2015;19(5):1627-36.
8. Maurits NM, Lei B, Tan E-L, Chen S, Zhuo L, Li S, et al. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector. Plos One. 2015;10(5):e0121838.
9. Baumgartner CF, Kamnitsas K, Matthew J, Fletcher TP, Smith S, Koch LM, et al. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound. IEEE Trans Med Imaging. 2017;36(11):2204-15.
10. Yu Z, Tan E-L, Ni D, Qin J, Chen S, Li S, et al. A Deep Convolutional Neural Network-Based Framework for Automatic Fetal Facial Standard Plane Recognition. IEEE Journal of Biomedical and Health Informatics. 2018;22(3):874-85.
11. Sridar P, Kumar A, Quinton A, Nanan R, Kim J, Krishnakumar RJUim, et al. Decision Fusion-Based Fetal Ultrasound Image Plane Classification Using Convolutional Neural Networks. 2019.
12. Sofka M, Zhang J, Good S, Zhou SK, Comaniciu D. Automatic Detection and Measurement of Structures in Fetal Head Ultrasound Volumes Using Sequential Estimation and Integrated Detection Network (IDN). IEEE Transactions on Medical Imaging. 2014;33(5):1054-70.
13. Nie S, Yu J, Chen P, Wang Y, Zhang JQ. Automatic detection of standard sagittal plane in the first trimester of pregnancy using 3-D ultrasound data. Ultrasound in medicine & biology. 2017;43(1):286-300.
14. Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv preprint arXiv:180402767. 2018.
15. Xie S, Girshick R, Dollár P, Tu Z, He K, editors. Aggregated residual transformations for deep neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.
16. Redmon J, Divvala SK, Girshick RB, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. computer vision and pattern recognition. 2016:779-88.
17. Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu C, et al. SSD: Single Shot MultiBox Detector. european conference on computer vision. 2016:21-37.
18. Ren S, He K, Girshick RB, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;39(6):1137-49.
19. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. computer vision and pattern recognition. 2016:770-8.
20. Xu B, Wang N, Chen T, Li M. Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:150500853. 2015.
21. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. international conference on machine learning. 2015:448-56.
22. He K, Zhang X, Ren S, Sun J. Identity Mappings in Deep Residual Networks. european conference on computer vision. 2016:630-45.
23. Szegedy C, Ioffe S, Vanhoucke V. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. 2016.
24. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. international conference on learning representations. 2015.