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Abstract

Since the Brazilian Cerrado has been heavily impacted by agricultural activities over the last

four  to  five  decades,  reference  evapotranspiration  (ETo)  plays  a  pivotal  role  in  water

resources management for irrigation agriculture. The Penman-Monteith (PM) is one of the

most accepted models for ETo estimation, but it requires many inputs that are not commonly

available. Therefore, assessing the FAO guidelines to compute ETo when meteorological data

are missing could lead to a better understanding of how climatic variables are related to water

requirements and atmospheric demands for a grass-mixed savanna region and which variable
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impacts the estimates the most. In this study, ETo was computed from April 2010 to August

2019. We tested twelve different scenarios considering radiation, relative humidity, and/or

wind speed as missing climatic data using guidelines given by FAO. When wind speed and/or

relative humidity data were the only missing data, the PM method showed the lowest errors

in the ETo estimates and correlation coefficient (r) and Willmott’s index of agreement (d)

values close to 1.0.  When radiation data were missing, computed ETo was overestimated

compared to the benchmark. FAO procedures to estimate the net radiation presented good

results  during  the  wet  season;  however,  during  the  dry  season,  their  results  were

overestimated, especially because the method could not estimate negative Rn. Therefore, we

can infer  that  radiation data  have the highest  impact  on ETo for our study area and also

regions with similar conditions and FAO guidelines are not suitable when radiation data are

missing.

Keywords: reference evapotranspiration, FAO Penman-Monteith, limited data, Cerrado.

2

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

3
4



1. INTRODUCTION

Over the last few decades, the Brazilian savanna (locally known as Cerrado) hydrological 

cycle and climate have been heavily affected by human activities, especially the replacement 

of native vegetation by crops (Giambelluca et al., 2009; Nóbrega et al., 2018; P. T. S. 

Oliveira et al., 2014; Rodrigues et al., 2014; Silva et al., 2019; Valle Júnior et al., 2020). Due 

to this irrigated agricultural expansion, it is important to have good management of available 

water resources.

To handle issues involving water requirements and atmospheric demand, the United Nations 

Food and Agriculture Organization (FAO) recommended calculating crop evapotranspiration 

(ETc) from reference evapotranspiration (ETo) (Doorenbos & Pruitt, 1977). Water demands 

and ETc are important considerations to improve water use efficiency in agriculture (Allen, 

1996; Dong et al., 2020; Droogers & Allen, 2002; Hargreaves, 1994; She et al., 2017; Tyagi 

et al., 2000).

ETo is the evapotranspiration of a defined hypothetical reference well-watered crop with a

crop height of 0.12 m, a canopy resistance of 70 s.m-1, and an albedo of 0.23 (Allen et al.,

1994). A “real” ETo value can only be obtained using lysimeters or other precision-measuring

devices, which require time and are expensive (Droogers & Allen, 2002; Martins et al., 2017;

Sharifi & Dinpashoh, 2014), however, ETo can be computed from weather data, and climatic

parameters are the only factors that affect ETo estimates (Allen et al., 1998; Xu et al., 2006).

Several  authors (Blaney & Criddle,  1950;  Hargreaves  & Samani,  1985;  Jensen & Haise,

1963;  Priestley  & Taylor,  1972) have reported  different  methods to  compute  ETo.  Those

different methods have been tested in distinct regions and climates (Bourletsikas et al., 2017;

Shafieiyoun et al., 2020; Shiri, 2019; Tabari et al., 2013; Valle Júnior et al., 2020; Zhang et

al., 2018); however, the Penman-Monteith (PM) method is suggested by FAO to calculate

ETo anywhere the requisite meteorological data are available (Allen et al., 1998). The FAO-

PM method can be used globally without any regional correction and is well documented and

tested, but it has a relatively high data demand (Dinpashoh et al., 2011; Droogers & Allen,

2002; Gong et al., 2006). 

For  daily  calculation,  FAO-PM  method  meteorological  inputs  are  the  maximum  and

minimum temperatures, relative air humidity, solar radiation, and wind speed. Allen et al.,

(1998) suggested using the Hargreaves-Samani (HS) method (Hargreaves & Samani, 1985)

as an alternative equation when only air temperature data are available. However, the HS

method  should  be  verified  and  compared  with  the  FAO-PM  method,  since  it  tends  to

overestimate  ETo under  high  relative  humidity  conditions,  and  underestimate  under
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conditions  of  high  wind  speed  (Allen  et  al.,  1998).  FAO  also  recommends  the  Pan

evaporation  (Epan)  method,  which  is  related  to  ETo using  an  empirically  derived  pan

coefficient (Kp).

For many locations around the globe, there is a lack of meteorological data. In Brazil, it is

possible  to  collect  climatic  data  from  automatic  stations  of  the  National  Institute  of

Meteorology (INMET). Although these data are public and the stations cover a significant

part of the Cerrado region, there is neither measure of net radiation or estimates of regional

solar radiation. Several studies have  evaluated the use of FAO-PM method procedures to

estimate ETo when solar radiation, wind speed, and relative humidity data are missing (Čadro

et al., 2017; Djaman, Irmak, Asce, et al., 2016; Jabloun & Sahli, 2008; Popova et al., 2006;

Raziei & Pereira, 2013a, 2013b; Todorovic et al., 2013), however, results vary according to

the climatic conditions. Recent studies have used machine learning models to estimate ETo

(Ferreira et al., 2019; Karimi et al., 2017; Mattar, 2018; Mehdizadeh et al., 2017; Salam &

Islam, 2020; Valle Júnior et al., 2020) and Epan (Kisi, 2015; Wang, Kisi, Hu, et al., 2017;

Wang, Kisi, Zounemat-Kermani, et al., 2017) with limited weather data. Though, few studies

have reported the effects of meteorological data variability on reference evapotranspiration in

the Cerrado region. However, no studies are addressing missing climatic data for estimating

ETo in a Brazilian tropical savanna.

Therefore, this research intends to close this gap in the literature. It is important to evaluate 

the performance of the procedures and recommendations when ETo is obtained using missing 

climatic data. Knowing which meteorological data have the highest impact on ETo estimates 

could guide better investments in measurement instruments and provide a better 

understanding of the seasonal behavior of weather variables for the Cerrado region. Thus, the 

prime objective of this study was to assess the guidelines provided by FAO to estimate ETo 

when meteorological data are limited for a grass-mixed Cerrado region and discuss the 

impact of each climatic variable on the estimates. The outcomes of this work will provide a 

scientific and practical database and information to the water resource managers, irrigation 

engineers, and other professionals in this vital region.

2. MATERIALS AND METHODS 

2.1 Study area

This study was conducted at the Fazenda Miranda (15°17’S, 56°06’W), located in the Cuiaba

municipality (Fig. 1), Brazil. The vegetation is grass-dominated with sparse trees and shrubs, 
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known as campo sujo or “dirty field” Cerrado (Rodrigues, Vourlitis, et al., 2016). According 

to the Köppen climate classification, the climate in this area is characterized as Aw, tropical 

semi-humid, with dry winters and wet summers (Alvares et al., 2013). The average rainfall is 

1420 mm and the mean annual air temperature is 26.5°C, with a dry season that extends from 

May to October (Rodrigues et al., 2014; Vourlitis & da Rocha, 2011). The study area is on 

flat terrain at an altitude of 157 m above sea level.

[Insert Figure 1]

2.2 Micrometeorological measurements

The measurements were conducted from April 2009 to August 2019. The measurement 

instruments were installed on a 20 m tall micrometeorological tower. The data collected were

net radiation (Rn), solar radiation (Rs), soil heat flux (G), air temperature (Ta), relative 

humidity (RH), wind speed (u), soil temperature (Tsoil), soil moisture (SM), and precipitation 

(P). Rn and Rs were measured 5 m above the ground level using a net radiometer (NR-LITE-

L25,Kipp & Zonen, Delft, Netherlands) and a pyranometer (LI200X, LI-COR Biosciences, 

Inc., Lincoln, NE, USA), respectively. G was measured using a heat flux plate (HFP01-L20, 

Hukseflux Thermal Sensors BV, Delft, Netherlands) installed 1.0 cm below the soil surface. 

SM was measured by a time-domain reflectometry probe (CS616-L50, Campbell Scientific, 

Inc., Logan, UT, USA) installed 20 cm below the soil surface. Tsoil was measured by a 

temperature probe (108 Temperature Probe, Campbell Scientific, Inc., Logan, UT, USA) 

installed 1 cm below the ground level. Ta and RH were measured by a thermohygrometer 

(HMP45AC, Vaisala Inc., Woburn, MA, USA) installed 2 m above the ground level. u was 

measured 10 m above the ground level using an anemometer (03101 R.M. Young Company).

Precipitation was measured using a tipping bucket rainfall gauge (TR-525M, Texas 

Electronics, Inc., Dallas, TX, USA) installed 5 m above the ground level. We considered only

data from days without gaps and measurement errors to avoid inconsistent information.

2.3 Penman-Monteith method and FAO procedures when climatic data are missing

The Penman-Monteith (FAO-PM) method (Equation 1) is recommended by the Food and 

Agriculture Organization (FAO) as the standard method for determining reference 

evapotranspiration (ETo) (Allen et al., 1998). We considered ETo computed with full data set 

as reference data for comparisons. 
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ETo=

0.408 ∆ ( Rn−G )+γ
900

(T a+273 )
u2 (es−ea )

∆+γ (1+0.34u2)

(1)

where ETo is the reference evapotranspiration (mm.day-1), Rn is net radiation (MJ.m-2.day-1), 

G is the soil heat flux (MJ.m-2.day-1), Ta is the mean daily air temperature (°C), u2 is the wind 

speed at 2 m height (m.s-1), es is the saturation water vapor pressure (kPa), ea is the actual 

water vapor pressure (kPa), γ is the psychrometric constant (kPA.°C-1), and Δ is the slope of 

water vapor pressure curve (kPa.°C-1). We used Equation 2 (Allen et al., 1998) to convert u to

u2.

u2=uz
4.87

ln ⁡(67.8 z−5.42)
(2)

where uz is the measured wind speed at z m above ground surface (m.s-1), and z is the height 

of measurement above ground surface (m), which is 10 m in our study.

To test the impact of radiation, relative humidity, and wind speed data, ETo was also 

calculated by the FAO-PM using estimated meteorological variables, Rs, u2, and ea, obtained 

by procedures given by Allen et al. (1998) with data collected measurements.

FAO recommends two different approaches to estimate Rs when climatic data are missing: 

using temperature data or linear regression. In this study, we computed solar radiation by 

linear regression. Rs was estimated using Equation 3.

R s=(as+bs
n
N )Ra

(3)

where Rs is the solar radiation (MJ.m-2.day-1), n is the actual duration of sunshine (h), N is the 

maximum possible duration of daylight hours (h), Ra is the extraterrestrial radiation (MJ.m-

2.day-1), and as and bs are local regression constants.  To estimate Ra we used Equation 4.

Ra=
24 (60)

π
Gsc dr [ ωssin (φ )sin (δ )+cos ( φ ) cos (δ )sin (ωs ) ] (4)

where Ra is the extraterrestrial radiation (MJ.m-2.day-1), Gsc is the solar constant of 0.0820 

MJ.m-2.min-1, dr is the inverse relative distance Earth-Sun, ωs is the sunset hour angle (rad), φ 

is the latitude of the meteorological station (rad), and δ is the solar decimation (rad). The 

values of dr and δ were computed using Equations 5 and 6.

dr=1+0.033 cos( 2π
365

J ) (5)

δ=0.409 sin( 2π
365

J−1.39) (6)
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where J is the number of the day in the year between 1 (1 January) and 365 or 366 (31 

December). ωs was estimated using Equation 7.

ωs=cos−1 [−tan (φ ) tan (δ ) ] (7)

N was estimated using Equation 8.

N=
24
π

ωs
(8)

where N is the maximum possible duration of daylight hours (h), and ωs is the sunset hour 

angle (rad) computed by Equation 7.

An estimate clear-sky solar radiation (Rso) (Equation 9), net shortwave radiation (Rns) 

(Equation 10), and net longwave radiation (Rnl) is needed to estimate Rn from Rs (Equation 

11).

R so=(as+bs) Ra (9)

where Rso is the clear-sky radiation (MJ.m-2.day-1), as and bs are the parameters from Equation 

3, and Ra is the extraterrestrial radiation (MJ.m-2.day-1).

Rns= (1−α ) R s
(10)

where Rns is the net shortwave radiation (MJ.m-2.day-1), α is the albedo, which is 0.23 for the 

hypothetical grass reference crop, and Rs is the solar radiation (MJ.m-2.day-1)

Rnl=σ (T max, K
4
+Tmin , K

4

2 )(0.34−0.14√ea )(1.35
Rs

R so

−0.35) (11)

where Rnl is the net longwave radiation (MJ.m-2.day-1), σ is the Stefan-Boltzmann constant of 

4.903 x 10-9 MJ.K-4.m-2.day-1, Tmax,K is the maximum absolute temperature during the 24-hour 

period (K), Tmin,K is the minimum absolute temperature during the 24-hour period (K), ea is 

the actual vapor pressure (kPa), Rs is the solar radiation (MJ.m-2.day-1), and Rso is the clear-

sky radiation (MJ.m-2.day-1).

Rn was estimated using Equation 12.

Rn=Rns−Rnl (12)

where Rn is the net radiation (MJ.m-2.day-1), Rns is the net shortwave radiation (MJ.m-2.day-1), 

and Rnl is the net longwave radiation (MJ.m-2.day-1).

For locations that there is no solar radiation data available, or no calibration for improved 

estimates of as and bs, Allen et al. (1998) recommends as = 0.25 and bs = 0.50. We calibrated 

as and bs values using observed Rs values from April 2009 to March 2010. Using linear 

regression, the values of as and bs were, respectively, 0.192 and 0.506 (R2 = 0.833; n = 358 
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observations). Estimations of Rs were calculated using both the calibrated and recommended 

regression constants. Allen et al. (1998) suggests considering daily G ≈ 0.

ea was estimated using Equation 13, considering absence of relative air humidity data.

ea=0.6108 e
(

17.27T min

T min+237.3 ¿
¿) (13)

where ea is the actual water vapor pressure (kPa), and Tmin is the minimum temperature (°C). 

Allen et al. (1998) recommends to use dewpoint temperature, however, when humidity data 

are lacking, it can be assumed that dewpoint temperature is near the daily minimum 

temperature.

For estimates of wind speed at 2 m-height, Allen et al., (1998) suggest to use the average of 

wind speed from a nearby weather station over a several-day period. Therefore, u2 was 

considered a constant value estimated using the daily mean value of wind speed during the 

period of measurements (April 2009 to August 2019).

2.4 Hargreaves-Samani method

The Hargreaves-Samani method (Hargreaves & Samani, 1985) is recommended by FAO to 

compute ETo, in mm.day-1, when only temperature data are available,

ET o=0.0023 (T mean+17.8 )√T max−Tmin 0.408 Ra
(14)

where Tmean is the mean daily temperature (°C), Tmax is the maximum daily temperature (°C), 

Tmin is the minimum daily temperature (°C), and Ra is the extraterrestrial radiation (MJ.m-

2.day-1). The constant value of 0.408 is a conversion factor for MJ.m-2.day-1 to mm.day-1.

2.5 ETo with missing climatic data

Table 1 summarizes the calculation of ETo from April 2010 to August 2019 using limited 

climatic data. We computed ETo with the following scenarios of estimated data: a) solar 

radiation with calibrated parameters (Rs-a); b) solar radiation with recommended parameters 

(Rs-b); c) relative air humidity (RH); d) wind speed (WS); e) Rs-a and RH; f) Rs-b and RH; g)

Rs-a and WS; h) Rs-b and WS; i) RH and WS; j) Rs-a, RH, and WS; k) Rs-b, RH, and WS, 

and l) using the Hargreaves-Samani method (HS).

[Insert Table 1]
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2.5 Performance evaluation

We compared each result obtained from the calculations with the ETo estimates with full data,

considered as the benchmark. The comparisons were made by simple linear regression. The 

performance of each scenario was assessed using Willmott’s index of agreement (d) 

(Willmott, 1982) (Equation 15), correlation coefficient (r) (Equation 16), root mean square 

error (RMSE) in mm.day-1 (Equation 17), and mean bias error (MBE) in mm.day-1 (Equation 

18).

d = 1 - [
∑
i=1

n

( Pi -Oi )
2

∑
i=1

n

(|Pi -  O| + |Oi - O|)
2 ] (15)

r = 
∑
i=1

n

[ (P i- P ) (Oi - O) ]

√[∑
i=1

n

( Pi - P )
2][∑

i=1

n

( Oi - O )
2]

(16)

RMSE = √∑i=1

n

(Oi - Pi )
2

n

(17)

MBE = 
∑
i=1

n

( Pi -Oi )

n

(18)

where Pi is the estimate value of the ith day (mm.day-1), Oi is the observed value of the ith day 

(mm.day-1), P is the mean of estimated values (mm.day-1), O is the mean of observed values 

(mm.day-1), and n is the number of observed values. Willmott’s index of agreement (d) was 

used to quantify the degree of correspondence between Pi and Oi, where d = 1 indicates 

complete correspondence and d = 0 indicates no correspondence between measured and 

modeled values (Willmott, 1982). The root mean square error (RMSE) used to quantify the 

amount of error between the observed and estimated values (Willmott, 1982).

3. RESULTS

3.1 Micrometeorological conditions

The climate in the study area showed a seasonal rainfall variation (Fig. 2). We considered the 

dry season as the period with a rainfall depth lower than 100 mm/month (Hutyra et al., 2005; 
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Rodrigues et al., 2014; Rodrigues, Curado, et al., 2016). The dry season was defined from 

April to October, with approximately 25% of the recorded rainfall during the study period 

(Fig. 2f). Mean yearly accumulated rainfall (±sd) was 941 ± 297 mm during the study period,

which is 34% lower than the expected rainfall for this region.

The mean (±sd) temperature during the study period was 26.4 ± 2.9°C. The month with the 

highest average air temperature was September (28.3 ± 3.4°C), while the month with the 

lowest air temperature was July (23.5 ± 3.7°C). The maximum air temperature recorded was 

42.0 °C, and the minimum was 6.3 °C. Relative humidity (Fig. 2c) also varied seasonally, 

with the highest average values observed during the wet season and the lowest observed 

during the dry season. Average monthly gravimetric soil moisture (mass water/mass dry soil) 

(Fig. 2c) ranged between 4 to 5.5% during the wet season, while soil water content reached 

2.4% during the dry season when rainfall was scarce.

Wind speed at 2-m height (Fig. 2b) showed a small seasonal variation during the study 

period, with an average value (±sd) of 1.2 ± 0.5 m.s-1. Net radiation (Fig. 2d) was higher 

during the wet season than the dry season. Soil heat flux (Fig. 2e) presents a similar behavior 

to soil temperature, with its peak value in September. Mean monthly values (±sd) varied from

-0.11 ± 0.54, in January, to 0.97 ± 1.37 MJ.m-2.day-1, in September. From July to November, 

G mean monthly and standard deviation values were higher than 0.5 and 0.9 MJ.m-2.day-1, 

respectively.

[Insert Figure 2]

Fig. 3 shows monthly mean ETo calculated using the Penman-Monteith method with 

observed meteorological data. The average ETo computed (+sd) was 3.49 ± 1.13 mm.day-1. 

Higher ETo values were observed during the wet season (November to March).

[Insert Figure 3]

3.2 ETo estimates with limited climatic data

For ETo values computed using limited meteorological data (Fig. 4), the d, r, RMSE, and 

absolute MBE values ranged from 0.64 to 0.99, 0.68 to 0.98, 0.21 to 1.56, and 0.01 to 1.29 

mm.day-1, respectively. Table 2 summarizes the statistical analyses and Fig. 5 shows the 

difference between the RMSE and MBE values found.
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[Insert Figure 4]

[Insert Table 2]

[Insert Figure 5]

The methods with relative humidity and/or wind speed as missing data (Fig. 4c, d, and i) 

showed better performance than the other methods, with high r and d values that were close 

to 1.0, which indicate a perfect positive linear correlation and a perfect model performance 

for correlation coefficient and Willmott’s index of agreement, respectively. When using only 

average annual wind speed as estimated data, we obtained the lowest RMSE and the closest 

to zero MBE, with values of 0.21 mm.day-1 and -0.01 mm.day-1, respectively. When relative 

humidity is the only missing climatic data, we obtained RMSE and MBE values of 0.28 

mm.day-1 and -0.07 mm.day-1, respectively. For ETo estimates calculated when both relative 

humidity and wind speed data are missing, we find relative low RMSE and MBE values of 

0.37 mm.day-1 and -0.06 mm.day-1, which indicate that the estimations of ETo using observed 

Rs, ea computed from Tmin, and u2 from average values performed very well.

The methods without observed radiation data (Fig. 5a, b, e, f, g, h, j, and k) showed the 

lowest values of r, i.e., the model results do not indicate a good linear correlation with 

reference data, when comparing ETo using FAO-PM method. However, when the benchmark 

values are close to the average ETo value, those results with estimated radiation were similar 

to ETo with full data. In addition, ETo computed with estimates of Rs showed higher RMSE 

and MBE values than ETo computed when only wind speed and/or relative humidity are the 

missing variables. ETo calculated using radiation data computed with calibrated parameters 

presented better results than ETo results with Rs estimates using regression constants 

recommended by Allen et al. (1998).

When radiation values were considered as missing climatic data, it is possible to observe 

overestimated ETo when the benchmark values are low. Since the Penman-Monteith model 

(Equation 1) uses Rn – G as the radiation data input and Allen et al. (1998) suggests G ≈ 0 on 

a daily basis when there are no G measurements, we compared Rn estimates from Equation 

12 with observed Rn – G values. Fig. 6 presents different linear regressions about Rn and ea 

estimates from Equation 13 when relative humidity data are missing. Fig. 7 shows RMSE and

MBE values for the linear regressions of Fig. 6, classified by seasons. Rn estimates did not 
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present negative values and overestimated net radiation values during the dry season when 

negative observed Rn and Rn – G were found.

[Insert Figure 6]

[Insert Figure 7]

Rn estimates (Fig. 6a, b, c, and d) presented similar results; however, the errors regarding net 

radiation (Fig. 7c and d) had different behaviors between values computed from Rs with 

calibrated and recommended parameters. Rn using calibrated parameters presented lower 

absolute MBE values, especially during the wet season when both real relative humidity have

smaller daily variations (Fig. 2c) and ea estimates presented lower errors (Fig. 7a and b) than 

the dry season. ETo computed when radiation data is missing also does not consider G; 

therefore, the suggestion given by Allen et al. (1998) to consider daily G ≈ 0 may not be 

suitable for our study area conditions. 

The daily ETo values computed from the Hargreaves-Samani model (Fig. 5l) showed the 

worst correlation between estimated and reference values. The RMSE and MBE values were 

1.56 mm.day-1 and 1.29 mm.day-1. Thus, the Hargreaves-Samani equation is not adequate to 

estimate ETo in Cerrado conditions.

4. DISCUSSION

4.1 Seasonal variation in micrometeorological condition

Variations in air and soil temperatures (Fig. 2a) were higher during the dry season compared 

to the wet season, due to frequent cold fronts that come from the south (Grace et al., 1996).

We found relatively large daily wind speed variation, due to the sporadic nature of the wind 

in the study area (Rodrigues, Vourlitis, et al., 2016). Allen et al. (1998) classified mean wind 

speed below 1 m.s-1 as light wind, and wind speed between 1 and 3 m.s-1 as light to moderate 

wind.

We found a larger standard deviation of Rn for that period, since there is a frequent cloud 

cover during those months (Machado et al., 2004). The dry-season decline in net radiation 

may be due to changes in vegetation and decline of greenness during this season when soil 

moisture values were lower (Machado et al., 2004; Rodrigues et al., 2013). On the other 

hand, Rs did not show a notable seasonal pattern like Rn values (Fig. 2d).
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During the dry season, vegetation leaf area declined due to the low soil water availability 

(Rodrigues et al., 2013), causing an increase in uncovered area and, consequently, higher 

values of soil heat flux. According to Rodrigues et al. (2014), during September, G accounts 

for about 30% of the energy balance of campo sujo Cerrado. The contribution of G in other 

tropical ecosystems, such as transition and tropical forests, accounts for about 1 – 2% of the 

available energy (Giambelluca et al., 2009). When compared to the meteorological variables 

in Fig. 2, ETo estimates behaved similarly to Rn values. (Valle Júnior et al., 2020) pointed out 

that ETo models based on Rn perform better than different methods based on other variables 

for the campo sujo Cerrado conditions.

4.2 Evaluation of FAO guidelines to estimate ETo

Our findings were expected for missing humidity data since under humid conditions there is a

high probability to Tdew = Tmin (Allen et al., 1998). Several locations presented similar results 

with ea estimated from minimum temperature (Djaman, Irmak, Kabenge, et al., 2016; Jabloun

& Sahli, 2008; Popova et al., 2006). Sentelhas et al. (2010) reported R2 from 0.76 to 0.96 

when compared ETo computed with actual vapor pressure computed from Tmin. This method 

may not be suitable to estimate ETo in humid climates since there are overestimation in VPD 

values (Allen et al., 1998; Córdova et al., 2015).

Allen et al. (1998) also suggest using a wind speed value of 2 m.s-1 when wind speed data are 

not available, however, 93% of data from measurements showed wind speed values below 2 

m.s-1. Since wind speed for Cerrado conditions does not vary greatly throughout the year, it is

possible to use a constant value of wind speed for estimating ETo. Sun et al. (2020) found 

similar results regarding the impact of wind speed on ETo in a mountainous region in China. 

Similar results were found by Popova et al. (2006) and Córdova et al. (2015), with the RMSE

and MBE values near to 0 when u2  = 2 m.s-1. Djaman, Irmak, Kabenge, et al. (2016) 

presented unsuitable FAO-PM performances in dry conditions when wind speed was 

considered as 2 m.s-1; however, using daily average wind speed in the same conditions, the 

results presented MBE values between -0.05 to 0.04.

Our outcomes indicate that wind speed and relative humidity and their variations throughout 

the year have a small effect on ETo estimates. Investments in accurate air temperature sensors

instead of investments in relative humidity probes would be a good option to estimate RH 

when the budget is limited. Also, use a constant value of u2 is also viable to estimate ETo.
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Our results for ETo when Rs is missing presented unsuitable results when compared to those 

found with estimated wind speed and/or relative humidity, especially during the dry season 

when Rn values are above the average. Different studies (Aladenola & Madramootoo, 2014; 

Jahani et al., 2017; Trnka et al., 2005) observed good results for Rs estimates using Equation 

3. However, there is a lack of studies about solar radiation estimates in Brazilian Cerrado, 

therefore, more research is needed to find a better model to estimate solar and net radiation. 

Different results using estimated Rs were found by several authors (Cai et al., 2007; Córdova 

et al., 2015; Djaman, Irmak, Asce, et al., 2016; Jabloun & Sahli, 2008; Paredes et al., 2018; 

Popova et al., 2006; Salam et al., 2020). Those studies were made in different regions of the 

world, however, ETo estimates when Rs is the limited data performed better than our results. 

ETo presented a strong correlation with solar radiation in several different locations 

(Bourletsikas et al., 2017; R. G. de Oliveira et al., 2021; Jhajharia et al., 2012; Shiri, 2019).

Despite our results for the HG method, for different climatic conditions, especially arid 

regions, the Hargreaves-Samani and other temperature-based ETo methods may present 

suitable results (Almorox et al., 2018; Raziei & Pereira, 2013a, 2013b; Todorovic et al., 

2013). There are many different models to estimate ETo, however, FAO does not recommend 

any other equation besides Penman-Monteith and Hargreaves-Samani models.

However, the quality control of dataset utilized for ETo computation with the FAO-PM, or 

the HS equation is vital for the precision of estimates. Therefore, quality control of site and 

weather dataset is certainly needed; as it is essential the appraisal of the quality of satellite-

based and reanalysis datasets when applied to compute FAO-PM. Future studies along this 

line are needed. The data-driven model in this vital agricultural region can also be used for 

estimating ETo in future studies. The outcome obtained from our study can be seasonal 

climate-sensitive. This deserves also further examination. The main implication of this study 

is that the availability of precise models and datasets for quantifying ETo is significant for 

agricultural managers and irrigation engineers in a region with the similar climatic condition.

5. CONCLUSIONS

Overarching  goal  of  our  study  is  to  Penman-Monteith  method  performance  in  a  grass-

dominated Cerrado when climatic data are limited. We used ETo computed with full data set

of  micrometeorological  measurements  as  reference  data  and  tested  the  Penman-Monteith

method when climatic data are missing, considering radiation, wind speed, and relative air

humidity as missing climatic data.
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We noted better results for ETo calculated with estimated relative humidity and wind speed.

Using average annual  wind speed showed excellent  results,  with an almost  perfect  linear

correlation and the lowest errors. The use of Tdew = Tmin proved to be a great alternative to

estimate ETo when RH data are missing, especially during the wet season.

ETo computed with solar radiation estimates performed worse than estimates when the other

variables are missing. Rn estimates could not compute negative values and G ≈ 0 may not be

appropriate for the campo sujo Cerrado conditions. ETo estimates are not suitable when solar

radiation  data  are  missing.  Hargreaves-Samani  method does not  show good results  when

compared to the other methods and overestimates ETo.

The results presented here can help us better understand which meteorological data have the

largest impact on ETo estimates of regions with similar characteristics to the study area. Since

the Cerrado is the main agricultural region in Brazil, our results could lead to new studies

regarding algorithms and alternatives to estimate solar and net radiation in similar weather

conditions.  Thus,  improvements  and  investments  in  solar  radiation  measurements  would

provide more adequate ETo estimates and a better understanding of crop water demands. We

also recommend such a study every five years in the same area, due to climate change and

human activities in the study area.
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Table 1 Summary of ETo calculations with missing climatic data

Table  2 Comparison between ETo computed from full data set and estimates of ETo with

missing climatic data
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Figure 1 Location of the study site (star) near Cuiabá, Mato Grosso, Brazil

Figure 2 Mean monthly micrometeorological measurements of: a) air temperature (black 

circles, left-hand axis) and surface soil temperature (white circles, right-hand axis); b) wind 

speed at 2 m-height (black circles, left-hand axis) and vapor-pressure deficit (white circles, 

right-hand axis); c) relative air humidity (black circles, left-hand axis) and surface soil 

moisture (white circles, right-hand axis); and d) net radiation (black circles, left-hand axis) 

and solar radiation (white circles, right-hand axis); e) soil heat flux; and f) total monthly 

precipitation. The whiskers indicate the range within the standard deviation. The shadowed 

area indicates the dry season

Figure 3 Boxplots showing daily ETo calculations for Fazenda Miranda site. Each box lies 

between the second and third quartile, the central line is the median, and the dotted line is the 

monthly mean. The whiskers indicate the range of data within the minimum and maximum 

values. The shadowed area indicates the dry season

Figure 4 ETo values estimated using estimates of: a) Rs-a; b) Rs-b; c) RH; d) WS; e) Rs-a 

and RH; f) Rs-b and RH; g) Rs-a and WS; h) Rs-b and WS; i) RH and WS; j) Rs-a, RH, and 

WS; k) Rs-b, RH, and WS; and l) HS, in comparison with ETo estimated with full data set 

(ETo FAO-PM). The central line represents a 1:1 correlation and the dashed line represents 

the linear regression through the origin

Figure 5 a) Root Mean Square Error (RMSE) and b)Mean Bias Error (MBE) of computed 

ETo using estimates of 1) Rs-a; 2) Rs-b; 3) RH; 4) WS; 5) Rs-a and RH; 6) Rs-b and RH; 7) 

Rs-a and WS; 8) Rs-b and WS; 9) RH and WS; 10) Rs-a, RH, and WS; 11) Rs-b, RH, and 

WS; and 12) HS
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Figure 6 Linear regressions of a) Rn estimates using calibrated parameters and real ea; b) Rn 

estimates using recommended parameters and real ea; c) Rn estimates using calibrated 

parameters and estimated ea; and d) Rn estimates using recommended parameters and 

estimated ea, in comparison with real values of Rn – G; and e) a.linear regression of 

estimated ea versus observed values. The central line represents a 1:1 correlation and the 

dashed line represents the linear regression through the origin

Figure 7 a) Root Mean Square Error (RMSE) and b) Mean Bias Error (MBE) of estimated ea

versus real ea; and c) Root Mean Square Error (RMSE) and d) Mean Bias Error (MBE) of 

estimated Rn.in comparison with measured Rn – G. The legend of colors and patterns are the 

same for both graphs c and d.
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