References
Akter, M., & Oue, H. (2018). Effect of Saline Irrigation on
Accumulation of Na+, K+, Ca2+, and Mg2+ Ions in Rice Plants.Agriculture-Basel, 8 (10). Retrieved from <Go to
ISI>://WOS:000448539000019
Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation
of Na+ and K+ homeostasis in plants: towards improved salt stress
tolerance in crop plants. Genetics and Molecular Biology, 40 (1
suppl 1), 326-345. doi:10.1590/1678-4685-GMB-2016-0106
Apse, M. P., Aharon, G. S., Snedden, W. A., & Blumwald, E. (1999). Salt
tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in
Arabidopsis. Science, 285 (5431), 1256-1258.
doi:10.1126/science.285.5431.1256
Arnon, D. I. (1949). Copper Enzymes in Isolated Chloroplasts.
Polyphenoloxidase in Beta Vulgaris. Plant Physiology, 24 (1),
1-15. doi:10.1104/pp.24.1.1
Berthomieu, P., Conejero, G., Nublat, A., Brackenbury, W. J., Lambert,
C., Savio, C., . . . Casse, F. (2003). Functional analysis of AtHKT1 in
Arabidopsis shows that Na(+) recirculation by the phloem is crucial for
salt tolerance. EMBO Journal, 22 (9), 2004-2014.
doi:10.1093/emboj/cdg207
Bi, Y. M., Kant, S., Clarke, J., Gidda, S., Ming, F., Xu, J., . . .
Rothstein, S. J. (2009). Increased nitrogen-use efficiency in transgenic
rice plants over-expressing a nitrogen-responsive early nodulin gene
identified from rice expression profiling. Plant Cell &
Environment, 32 (12), 1749-1760. doi:10.1111/j.1365-3040.2009.02032.x
Byrt, C. S., Platten, J. D., Spielmeyer, W., James, R. A., Lagudah, E.
S., Dennis, E. S., . . . Munns, R. (2007). HKT1;5-like cation
transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1.Plant Physiology, 143 (4), 1918-1928. doi:10.1104/pp.106.093476
Chen, Z. C., Yamaji, N., Horie, T., Che, J., Li, J., An, G., & Ma, J.
F. (2017). A Magnesium Transporter OsMGT1 Plays a Critical Role in Salt
Tolerance in Rice. Plant Physiology, 174 (3), 1837-1849.
doi:10.1104/pp.17.00532
Chen, Z. C., Yamaji, N., Motoyama, R., Nagamura, Y., & Ma, J. F.
(2012). Up-regulation of a magnesium transporter gene OsMGT1 is required
for conferring aluminum tolerance in rice. Plant Physiology,
159 (4), 1624-1633. doi:10.1104/pp.112.199778
Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and
improving salt tolerance in plants. Crop Science, 45 (2), 437-448.
doi:DOI 10.2135/cropsci2005.0437
Cho, H. Y., Park, S. J., Kim, D. S., & Jang, C. S. (2010). A TILLING
rice population induced by gamma-ray irradiation and its genetic
diversity. Korean Journal of Breeding Science, 42 (4), 365-373.
Cotsaftis, O., Plett, D., Shirley, N., Tester, M., & Hrmova, M. (2012).
A two-staged model of Na+ exclusion in rice explained by 3D modeling of
HKT transporters and alternative splicing. PLoS One, 7 (7),
e39865. doi:10.1371/journal.pone.0039865
Daudi, A., & O’Brien, J. A. (2012). Detection of Hydrogen Peroxide by
DAB Staining in Arabidopsis Leaves. Bio-Protocol, 2 (18), e263.
Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27390754
Davenport, R. J., & Tester, M. (2000). A weakly voltage-dependent,
nonselective cation channel mediates toxic sodium influx in wheat.Plant Physiology, 122 (3), 823-834. doi:10.1104/pp.122.3.823
Ding, L., & Zhu, J. K. (1997). Reduced Na+ uptake in the
NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant
Physiology, 113 (3), 795-799. doi:10.1104/pp.113.3.795
Fukuda, A., Nakamura, A., Hara, N., Toki, S., & Tanaka, Y. (2011).
Molecular and functional analyses of rice NHX-type Na+/H+ antiporter
genes. Planta, 233 (1), 175-188. doi:10.1007/s00425-010-1289-4
Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika,
H., & Tanaka, Y. (2004). Function, intracellular localization and the
importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from
rice. Plant & Cell Physiology, 45 (2), 146-159.
doi:10.1093/pcp/pch014
Gay, C., & Gebicki, J. M. (2000). A critical evaluation of the effect
of sorbitol on the ferric-xylenol orange hydroperoxide assay.Analytical Biochemistry, 284 (2), 217-220.
doi:10.1006/abio.2000.4696
Hacham, Y., Holland, N., Butterfield, C., Ubeda-Tomas, S., Bennett, M.
J., Chory, J., & Savaldi-Goldstein, S. (2011). Brassinosteroid
perception in the epidermis controls root meristem size.Development, 138 (5), 839-848. doi:10.1242/dev.061804
Hakim, M. A., Juraimi, A. S., Hanafi, M. M., Ismail, M. R., Rafii, M.
Y., Islam, M. M., & Selamat, A. (2014). The Effect of Salinity on
Growth, Ion Accumulation and Yield of Rice Varieties. Journal of
Animal and Plant Sciences, 24 (3), 874-885. Retrieved from <Go
to ISI>://WOS:000339234900030
Hermans, C., & Verbruggen, N. (2005). Physiological characterization of
Mg deficiency in Arabidopsis thaliana. Journal of Experimental
Botany, 56 (418), 2153-2161. Retrieved from <Go to
ISI>://WOS:000230513500017
Hermans, C., Vuylsteke, M., Coppens, F., Cristescu, S. M., Harren, F. J.
M., Inze, D., & Verbruggen, N. (2010). Systems analysis of the
responses to long-term magnesium deficiency and restoration in
Arabidopsis thaliana. New Phytologist, 187 (1), 132-144. Retrieved
from <Go to ISI>://WOS:000278395100014
Horie, T., Brodsky, D. E., Costa, A., Kaneko, T., Lo Schiavo, F.,
Katsuhara, M., & Schroeder, J. I. (2011). K+ Transport by the OsHKT2;4
Transporter from Rice with Atypical Na+ Transport Properties and
Competition in Permeation of K+ over Mg2+ and Ca2+ Ions. Plant
Physiology, 156 (3), 1493-1507. doi:10.1104/pp.110.168047
Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H. Y., .
. . Schroeder, J. I. (2007). Rice OsHKT2;1 transporter mediates large
Na+ influx component into K+-starved roots for growth. EMBO
Journal, 26 (12), 3003-3014. doi:10.1038/sj.emboj.7601732
Huang, S. B., Spielmeyer, W., Lagudah, E. S., James, R. A., Platten, J.
D., Dennis, E. S., & Munns, R. (2006). A sodium transporter (HKT7) is a
candidate for Nax1, a gene for salt tolerance in durum wheat.Plant Physiology, 142 (4), 1718-1727. doi:10.1104/pp.106.088864
Hwang, S. G., Hwang, J. G., Kim, D. S., & Jang, C. S. (2014).
Genome-wide DNA polymorphism and transcriptome analysis of an
early-maturing rice mutant. Genetica, 142 (1), 73-85.
doi:10.1007/s10709-013-9755-0
Islam, F., Farooq, M. A., Gill, R. A., Wang, J., Yang, C., Ali, B., . .
. Zhou, W. (2017). 2,4-D attenuates salinity-induced toxicity by
mediating anatomical changes, antioxidant capacity and cation
transporters in the roots of rice cultivars. Sci Rep, 7 (1),
10443. doi:10.1038/s41598-017-09708-x
Jabnoune, M., Espeout, S., Mieulet, D., Fizames, C., Verdeil, J. L.,
Conejero, G., . . . Very, A. A. (2009). Diversity in expression patterns
and functional properties in the rice HKT transporter family.Plant Physiology, 150 (4), 1955-1971. doi:10.1104/pp.109.138008
Knoop, V., Groth-Malonek, M., Gebert, M., Eifler, K., & Weyand, K.
(2005). Transport of magnesium and other divalent cations: evolution of
the 2-TM-GxN proteins in the MIT superfamily. Molecular Genetics
and Genomics, 274 (3), 205-216. doi:10.1007/s00438-005-0011-x
Kolisek, M., Zsurka, G., Samaj, J., Weghuber, J., Schweyen, R. J., &
Schweigel, M. (2003). Mrs2p is an essential component of the major
electrophoretic Mg2+ influx system in mitochondria. EMBO Journal,
22 (6), 1235-1244. doi:10.1093/emboj/cdg122
Krishnamurthy, P., Ranathunge, K., Nayak, S., Schreiber, L., & Mathew,
M. K. (2011). Root apoplastic barriers block Na+ transport to shoots in
rice (Oryza sativa L.). Journal of Experimental Botany, 62 (12),
4215-4228. doi:10.1093/jxb/err135
Lalonde, S., Stone, O. A., Lessard, S., Lavertu, A., Desjardins, J.,
Beaudoin, M., . . . Lettre, G. (2017). Frameshift indels introduced by
genome editing can lead to in-frame exon skipping. PLoS One,
12 (6), e0178700. doi:10.1371/journal.pone.0178700
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics, 25 (14),
1754-1760. doi:10.1093/bioinformatics/btp324
Li, L., Tutone, A. F., Drummond, R. S., Gardner, R. C., & Luan, S.
(2001). A novel family of magnesium transport genes in Arabidopsis.Plant Cell, 13 (12), 2761-2775. doi:10.1105/tpc.010352
Lim, S. D., Kim, S. H., Gilroy, S., Cushman, J. C., & Choi, W. G.
(2019). Quantitative ROS bioreporters: A robust toolkit for studying
biological roles of ROS in response to abiotic and biotic stresses.Physiologia Plantarum, 165 (2), 356-368. doi:10.1111/ppl.12866
Lim, S. D., Lee, C., & Jang, C. S. (2014). The rice RING E3 ligase,
OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1,
and its overexpression confers drought tolerance in Arabidopsis.Plant Cell & Environment, 37 (5), 1097-1113.
doi:10.1111/pce.12219
Lim, S. D., Yim, W. C., Liu, D., Hu, R., Yang, X., & Cushman, J. C.
(2018). A Vitis vinifera basic helix-loop-helix transcription factor
enhances plant cell size, vegetative biomass and reproductive yield.Plant Biotechnology Journal, 16 , 1595-1615. doi:10.1111/pbi.12898
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene
expression data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) Method. Methods, 25 (4), 402-408. doi:10.1006/meth.2001.1262
Ma, J. F., Goto, S., Tamai, K., & Ichii, M. (2001). Role of root hairs
and lateral roots in silicon uptake by rice. Plant Physiology,
127 (4), 1773-1780. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/11743120
Martinez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.
K., Pardo, J. M., & Quintero, F. J. (2007). Conservation of the salt
overly sensitive pathway in rice. Plant Physiology, 143 (2),
1001-1012. doi:10.1104/pp.106.092635
Maser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K.,
. . . Uozumi, N. (2002). Glycine residues in potassium channel-like
selectivity filters determine potassium selectivity in
four-loop-per-subunit HKT transporters from plants. Proc Natl Acad
Sci U S A, 99 (9), 6428-6433. doi:10.1073/pnas.082123799
Meier, S. D., Kovalchuk, Y., & Rose, C. R. (2006). Properties of the
new fluorescent Na+ indicator CoroNa Green: comparison with SBFI and
confocal Na+ imaging. Journal of Neuroscience Methods, 155 (2),
251-259. doi:10.1016/j.jneumeth.2006.01.009
Mekawy, A. M., Assaha, D. V., Yahagi, H., Tada, Y., Ueda, A., &
Saneoka, H. (2015). Growth, physiological adaptation, and gene
expression analysis of two Egyptian rice cultivars under salt stress.Plant Physiology and Biochemistry, 87 , 17-25.
doi:10.1016/j.plaphy.2014.12.007
Mian, A., Oomen, R. J., Isayenkov, S., Sentenac, H., Maathuis, F. J., &
Very, A. A. (2011). Over-expression of an Na+-and K+-permeable HKT
transporter in barley improves salt tolerance. Plant Journal,
68 (3), 468-479. doi:10.1111/j.1365-313X.2011.04701.x
Munns, R. (2005). Genes and salt tolerance: bringing them together.New Phytologist, 167 (3), 645-663.
doi:10.1111/j.1469-8137.2005.01487.x
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance.Annual Review of Plant Biology, 59 , 651-681.
doi:10.1146/annurev.arplant.59.032607.092911
Nakagawa, T., Suzuki, T., Murata, S., Nakamura, S., Hino, T., Maeo, K.,
. . . Ishiguro, S. (2007). Improved Gateway binary vectors:
high-performance vectors for creation of fusion constructs in transgenic
analysis of plants. Biosci Biotechnol Biochem, 71 (8), 2095-2100.
doi:10.1271/bbb.70216
Nelson, B. K., Cai, X., & Nebenfuhr, A. (2007). A multicolored set of
in vivo organelle markers for co-localization studies in Arabidopsis and
other plants. Plant Journal, 51 (6), 1126-1136.
doi:10.1111/j.1365-313X.2007.03212.x
Nyiko, T., Auber, A., Szabadkai, L., Benkovics, A., Auth, M., Merai, Z.,
. . . Silhavy, D. (2017). Expression of the eRF1 translation termination
factor is controlled by an autoregulatory circuit involving readthrough
and nonsense-mediated decay in plants. Nucleic Acids Research,
45 (7), 4174-4188. doi:10.1093/nar/gkw1303
Park, M., Lee, H., Lee, J. S., Byun, M. O., & Kim, B. G. (2009). In
Planta Measurements of Na+ Using Fluorescent Dye CoroNa Green.Journal of Plant Biology, 52 (4), 298-302.
doi:10.1007/s12374-009-9036-8
Patel, R. K., & Jain, M. (2012). NGS QC Toolkit: a toolkit for quality
control of next generation sequencing data. PLoS One, 7 (2),
e30619. doi:10.1371/journal.pone.0030619
Platten, J. D., Cotsaftis, O., Berthomieu, P., Bohnert, H., Davenport,
R. J., Fairbairn, D. J., . . . Tester, M. (2006). Nomenclature for HKT
transporters, key determinants of plant salinity tolerance. Trends
in Plant Science, 11 (8), 372-374. doi:10.1016/j.tplants.2006.06.001
Ren, Z. H., Gao, J. P., Li, L. G., Cai, X. L., Huang, W., Chao, D. Y., .
. . Lin, H. X. (2005). A rice quantitative trait locus for salt
tolerance encodes a sodium transporter. Nature Genetics, 37 (10),
1141-1146. doi:10.1038/ng1643
Saito, T., Kobayashi, N. I., Tanoi, K., Iwata, N., Suzuki, H., Iwata,
R., & Nakanishi, T. M. (2013). Expression and functional analysis of
the CorA-MRS2-ALR-type magnesium transporter family in rice. Plant
& Cell Physiology, 54 (10), 1673-1683. doi:10.1093/pcp/pct112
Schachtman, D. P., & Schroeder, J. I. (1994). Structure and transport
mechanism of a high-affinity potassium uptake transporter from higher
plants. Nature, 370 (6491), 655-658. doi:10.1038/370655a0
Schock, I., Gregan, J., Steinhauser, S., Schweyen, R., Brennicke, A., &
Knoop, V. (2000). A member of a novel Arabidopsis thaliana gene family
of candidate Mg2+ ion transporters complements a yeast mitochondrial
group II intron-splicing mutant. Plant Journal, 24 (4), 489-501.
doi:10.1046/j.1365-313x.2000.00895.x
Shaul, O. (2002). Magnesium transport and function in plants: the tip of
the iceberg. BioMetals, 15 (3), 309-323.
doi:10.1023/a:1016091118585
Shi, H., Ishitani, M., Kim, C., & Zhu, J. K. (2000). The Arabidopsis
thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.Proc Natl Acad Sci U S A, 97 (12), 6896-6901.
doi:10.1073/pnas.120170197
Shi, H., Quintero, F. J., Pardo, J. M., & Zhu, J. K. (2002). The
putative plasma membrane Na(+)/H(+) antiporter SOS1 controls
long-distance Na(+) transport in plants. Plant Cell, 14 (2),
465-477. doi:10.1105/tpc.010371
Sontia, B., & Touyz, R. M. (2007). Magnesium transport in hypertension.Pathophysiology, 14 (3-4), 205-211.
doi:10.1016/j.pathophys.2007.09.005
Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., . . .
Uozumi, N. (2005). Enhanced salt tolerance mediated by AtHKT1
transporter-induced Na unloading from xylem vessels to xylem parenchyma
cells. Plant Journal, 44 (6), 928-938.
doi:10.1111/j.1365-313X.2005.02595.x
Talei, D., Kadir, M. A., Yusop, M. K., Valdiani, A., & Abdullah, M. P.
(2012). Salinity effects on macro and micronutrients uptake in medicinal
plant King of Bitters (Andrographis paniculata Nees.). Plant
Omics, 5 (3), 271-278. Retrieved from <Go to
ISI>://WOS:000310985300011
Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A. M., Zeng, L.,
. . . Close, T. J. (2005). Comparative transcriptional profiling of two
contrasting rice genotypes under salinity stress during the vegetative
growth stage. Plant Physiology, 139 (2), 822-835.
doi:10.1104/pp.105.065961
Wang, P., Li, Z., Wei, J., Zhao, Z., Sun, D., & Cui, S. (2012). A
Na+/Ca2+ exchanger-like protein (AtNCL) involved in salt stress in
Arabidopsis. Journal of Biological Chemistry, 287 (53),
44062-44070. doi:10.1074/jbc.M112.351643
Winston, F., Dollard, C., & Ricupero-Hovasse, S. L. (1995).
Construction of a set of convenient Saccharomyces cerevisiae strains
that are isogenic to S288C. Yeast, 11 (1), 53-55.
doi:10.1002/yea.320110107
Worlock, A. J., & Smith, R. L. (2002). ZntB is a novel Zn2+ transporter
in Salmonella enterica serovar Typhimurium. Journal of
Bacteriology, 184 (16), 4369-4373. doi:10.1128/jb.184.16.4369-4373.2002
Xia, Y., Lundback, A. K., Sahaf, N., Nordlund, G., Brzezinski, P., &
Eshaghi, S. (2011). Co2+ selectivity of Thermotoga maritima CorA and its
inability to regulate Mg2+ homeostasis present a new class of CorA
proteins. Journal of Biological Chemistry, 286 (18), 16525-16532.
doi:10.1074/jbc.M111.222166
Yao, X., Horie, T., Xue, S., Leung, H. Y., Katsuhara, M., Brodsky, D.
E., . . . Schroeder, J. I. (2010). Differential sodium and potassium
transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters
in plant cells. Plant Physiology, 152 (1), 341-355.
doi:10.1104/pp.109.145722
Yildirim, E., Karlidag, H., & Turan, M. (2009). Mitigation of salt
stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant
Soil and Environment, 55 (5), 213-221. Retrieved from <Go to
ISI>://WOS:000267192300006
Zhang, Q., Lin, F., Mao, T., Nie, J., Yan, M., Yuan, M., & Zhang, W.
(2012). Phosphatidic acid regulates microtubule organization by
interacting with MAP65-1 in response to salt stress in Arabidopsis.Plant Cell, 24 (11), 4555-4576. doi:10.1105/tpc.112.104182
Zhou, Q. Y., Wang, L., Cai, X., Wang, D., Hua, X. J., Qu, L. Q., . . .
Chen, T. (2011). Net sodium fluxes change significantly at anatomically
distinct root zones of rice (Oryza sativa L.) seedlings. Journal
of Plant Physiology, 168 (11), 1249-1255.
doi:10.1016/j.jplph.2011.01.017