Acknowledgements

The authors gratefully acknowledge the funding of this research by the Vienna Business Agency (Wirtschaftsagentur Wien) [grant number 1898413] and the TU Wien Bibliothek for financial support through its Open Access Funding Program.
References
Arneborg, N., Salskov-Iversen, A., & Mathiasen, T. (1993). The effect of growth rate and other growth conditions on the lipid composition ofEscherichia coli . Applied Microbiology and Biotechnology, 39 (3), 353-357. doi:10.1007/bf00192091
Bäcklund, E., Reeks, D., Markland, K., Weir, N., Bowering, L., & Larsson, G. (2008). Fedbatch design for periplasmic product retention inEscherichia coli . Journal of Biotechnology, 135 (4), 358-365. doi:10.1016/j.jbiotec.2008.05.002
Balasundaram, B., Harrison, S., & Bracewell, D. G. (2009). Advances in product release strategies and impact on bioprocess design. Trends in Biotechnology, 27 (8), 477-485. doi:10.1016/j.tibtech.2009.04.004
Bentley, W. E., Mirjalili, N., Andersen, D. C., Davis, R. H., & Kompala, D. S. (1990). Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria.Biotechnology and Bioengineering, 35 (7), 668-681. doi:10.1002/bit.260350704
Bienick, M. S., Young, K. W., Klesmith, J. R., Detwiler, E. E., Tomek, K. J., & Whitehead, T. A. (2014). The interrelationship between promoter strength, gene expression, and growth rate. PLoS ONE, 9 (10). doi:10.1371/journal.pone.0109105
Bower, D. M., & Prather, K. L. J. (2009). Engineering of bacterial strains and vectors for the production of plasmid DNA. Applied Microbiology and Biotechnology, 82 (5), 805-813. doi:10.1007/s00253-009-1889-8
Chatel, A., Hoare, M., Kumpalume, P., Molek, J. R., Reck, J. M., & Weber, A. D. (2014). International Publication No. WO2014118220A1 . Geneva, Switzerland: World Intellectual Property Organization,.
Chen, C., Wong, H. E., & Goudar, C. T. (2018). Upstream process intensification and continuous manufacturing. Current Opinion in Chemical Engineering, 22 , 191-198. doi:10.1016/j.coche.2018.10.006
Chen, Z. Y., Cao, J., Xie, L., Li, X. F., Yu, Z. H., & Tong, W. Y. (2014). Construction of leaky strains and extracellular production of exogenous proteins in recombinant Escherichia coli .Microbial Biotechnology, 7 (4), 360-370. doi:10.1111/1751-7915.12127
Cheng, J., Wu, D., Chen, S., Chen, J., & Wu, J. (2011). High-level extracellular production of α-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21 (DE3). Journal of Agricultural and Food Chemistry, 59 (8), 3797-3802. doi:10.1021/jf200033m
de Marco, A. (2009). Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli .Microbial Cell Factories, 8 (26). doi:10.1186/1475-2859-8-26
DeLisa, M. P., Li, J., Rao, G., Weigand, W. A., & Bentley, W. E. (1999). Monitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. Biotechnology and Bioengineering, 65 (1), 54-64. doi:10.1002/(sici)1097-0290(19991005)65:1<54::Aid-bit7>3.0.Co;2-r
Farewell, A., & Neidhardt, F. C. (1998). Effect of temperature on in vivo protein synthetic capacity in Escherichia coli .Journal of Bacteriology, 180 (17), 4704-4710.
Hoffmann, F., & Rinas, U. (2001). Plasmid amplification inEscherichia coli after temperature upshift is impaired by induction of recombinant protein synthesis. Biotechnology Letters, 23 (22), 1819-1825. doi:10.1023/A:1012718200638
Jia, B., & Jeon, C. O. (2016). High-throughput recombinant protein expression in Escherichia coli : current status and future perspectives. Open Biology, 6 (8), 160196-160196. doi:10.1098/rsob.160196
Kateja, N., Agarwal, H., Hebbi, V., & Rathore, A. S. (2017). Integrated continuous processing of proteins expressed as inclusion bodies: GCSF as a case study. Biotechnology Progress, 33 (4), 998-1009. doi:10.1002/btpr.2413
Klein, T., Heinzel, N., Kroll, P., Brunner, M., Herwig, C., & Neutsch, L. (2015). Quantification of cell lysis during CHO bioprocesses: Impact on cell count, growth kinetics and productivity. Journal of Biotechnology, 207 , 67-76. doi:10.1016/j.jbiotec.2015.04.021
Kleiner-Grote, G. R. M., Risse, J. M., & Friehs, K. (2018). Secretion of recombinant proteins from E. coli . Engineering in Life Sciences, 18 (8), 532-550. doi:10.1002/elsc.201700200
Lemmerer, M., Mairhofer, J., Lepak, A., Longus, K., Hahn, R., & Nidetzky, B. (2019). Decoupling of recombinant protein production fromEscherichia coli cell growth enhances functional expression of plant Leloir glycosyltransferases. Biotechnology and Bioengineering, 116 (6), 1259-1268. doi:10.1002/bit.26934
Liu, Y., & Huang, H. (2018). Expression of single-domain antibody in different systems. Applied Microbiology and Biotechnology, 102 (2), 539-551. doi:10.1007/s00253-017-8644-3
Mairhofer, J., Scharl, T., Marisch, K., Cserjan-Puschmann, M., & Striedner, G. (2013). Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions. Applied and Environmental Microbiology, 79 (12), 3802-3812. doi:10.1128/AEM.00365-13
Mairhofer, J., Striedner, G., Grabherr, R., & Wilde, M. (2016).European Patent No. EP3289088B1 . Munich, Germany: European Patent Office,.
Mergulhão, F. J. M., & Monteiro, G. A. (2007). Periplasmic Targeting of Recombinant Proteins in Escherichia coli . In (pp. 47-61). Totowa, NJ: Humana Press.
Mergulhão, F. J. M., Summers, D. K., & Monteiro, G. A. (2005). Recombinant protein secretion in Escherichia coli .Biotechnology Advances, 23 (3), 177-202. doi:10.1016/j.biotechadv.2004.11.003
Müller, J. M., Wetzel, D., Flaschel, E., Friehs, K., & Risse, J. M. (2016). Constitutive production and efficient secretion of soluble full-length streptavidin by an Escherichia coli ’leaky mutant’.Journal of Biotechnology, 221 , 91-100. doi:10.1016/j.jbiotec.2016.01.032
Neidhardt, F. C., & Umbarger, H. E. (1996). Chemical Composition ofEscherichia coli . In F. C. Neidhardt (Ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology . Washington, D.C.: ASM Press.
Orr, V., Scharer, J., Moo-Young, M., Honeyman, C. H., Fenner, D., Crossley, L., . . . Chou, C. P. (2012). Integrated development of an effective bioprocess for extracellular production of penicillin G acylase in Escherichia coli and its subsequent one-step purification. Journal of Biotechnology, 161 (1), 19-26. doi:10.1016/j.jbiotec.2012.05.013
Rinas, U., & Hoffmann, F. (2004). Selective leakage of host-cell proteins during high-cell-density cultivation of recombinant and non-recombinant Escherichia coli . Biotechnology Progress, 20 (3), 679-687. doi:10.1021/bp034348k
Rodríguez-Carmona, E., Cano-Garrido, O., Dragosits, M., Maurer, M., Mader, A., Kunert, R., . . . Vázquez, F. (2012). Recombinant Fab expression and secretion in Escherichia coli continuous culture at medium cell densities: Influence of temperature. Process Biochemistry, 47 (3), 446-452. doi:10.1016/j.procbio.2011.11.024
Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli : Advances and challenges.Frontiers in Microbiology, 5 (APR), 1-17. doi:10.3389/fmicb.2014.00172
Rosano, G. L., Morales, E. S., & Ceccarelli, E. A. (2019). New tools for recombinant protein production in Escherichia coli : A 5‐year update. Protein Science, 28 (8), 1412-1422. doi:10.1002/pro.3668
Shin, C. S., Hong, M. S., Bae, C. S., & Lee, J. (1997). Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2].Biotechnology Progress, 13 (3), 249-257. doi:10.1021/bp970018m
Shin, H. D., & Chen, R. R. (2008). Extracellular recombinant protein production from an Escherichia coli lpp deletion mutant.Biotechnology and Bioengineering, 101 (6), 1288-1296. doi:10.1002/bit.22013
Shokri, A., Sanden, A. M., & Larsson, G. (2002). Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Applied Microbiology and Biotechnology, 58 (3), 386-392. doi:10.1007/s00253-001-0889-0
Stargardt, P., Feuchtenhofer, L., Cserjan-Puschmann, M., Striedner, G., & Mairhofer, J. (2020). Bacteriophage inspired growth-decoupled recombinant protein production in Escherichia coli . ACS Synthetic Biology . doi:10.1021/acssynbio.0c00028
Ukkonen, K., Veijola, J., Vasala, A., & Neubauer, P. (2013). Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. colicultures. Microbial Cell Factories, 12 , 73. doi:10.1186/1475-2859-12-73
Vind, J., Sorensen, M. A., Rasmussen, M. D., & Pedersen, S. (1993). Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes. Expression from reporter genes does not always reflect functional mRNA levels. Journal of Molecular Biology, 231 (3), 678-688. doi:10.1006/jmbi.1993.1319
Voulgaris, I., Finka, G., Uden, M., & Hoare, M. (2015). Enhancing the selective extracellular location of a recombinant Escherichia coli domain antibody by management of fermentation conditions.Applied Microbiology and Biotechnology, 99 (20), 8441-8453. doi:10.1007/s00253-015-6799-3
Wang, L., Chen, S., & Wu, J. (2018). Cyclodextrin enhanced the soluble expression of Bacillus clarkii γ-CGTase in Escherichia coli . BMC Biotechnology, 18 (1), 72. doi:10.1186/s12896-018-0480-8
Wurm, D. J., Marschall, L., Sagmeister, P., Herwig, C., & Spadiut, O. (2017). Simple monitoring of cell leakiness and viability inEscherichia coli bioprocesses—A case study. Engineering in Life Sciences, 17 (6), 598-604. doi:10.1002/elsc.201600204
Wurm, D. J., Slouka, C., Bosilj, T., Herwig, C., & Spadiut, O. (2017). How to trigger periplasmic release in recombinant Escherichia coli : A comparative analysis. Engineering in Life Sciences, 17 (2), 215-222. doi:10.1002/elsc.201600168
Yoon, S. H., Kim, S. K., & Kim, J. F. (2010). Secretory Production of Recombinant Proteins in Escherichia coli . Recent Patents on Biotechnology, 4 (1), 23-29. doi:10.2174/187220810790069550
Zhou, Y., Lu, Z., Wang, X., Selvaraj, J. N., & Zhang, G. (2018). Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli . Applied Microbiology and Biotechnology, 102 (4), 1545-1556. doi:10.1007/s00253-017-8700-z
List of Figures
Figure 1 Biomass yield in cultivations of X-press (A) and BL21(DE3) (B) producing SpA.
Figure 2 Intra- and extracellular soluble SpA titer in cultivations of X-press (A) and BL21(DE3) (B). Annotations above the columns represent leakiness in percent.
Figure 3 Cell lysis in cultivations of the X-press strain producing SpA.