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A few specific scenarios applied in examples of only fiveworks suggest that the solely
use of robust estimators for nonlinear dynamic data reconciliation is able to cope
with biased measurements. We present a counterexample to that belief on a dynamic
model of two CSTRs that gives rise to wrong transient behaviour. Motivated by this,
we introduce and examine an invariant approach to measurement bias. It is based on
the location invariance assured by a robust measure of scale used when detecting a
sequence of consecutive differences between measured and reconciled values of the
same sign. When applied to the counterexample, it can be seen that the procedure
has the correct behaviour and shows good results.
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1 INTRODUCTION

It can be considered that the use of robust statistics1,2 in data reconciliation problems is nowwell established for the straightforward
treatment of outliers (a sporadic atypical measurement).3 Recall that the presence of outliers precludes the exact knowledge of
the data distribution, which is fundamental for classical statistical approaches to produce reliable estimates.

Within the framework of robust data reconciliation and model-based methods, only a very small number of works addressed
so far the presence of a systematic error persistent in time, namely, measurement bias4,5,6,7,8 or complete sensor failure9,10,11 in
the context of nonlinear dynamic processes. (Note, however, that Prata, Pinto, and Lima4 consider three consecutive outliers of
the same size for representing measurement bias.) Despite the lack of theoretical understanding, the empirical results in these
papers suggest that the use of univariate robust estimators has the (desired) side effect of counteracting the detrimental effect of
biases or complete failure. Having said that, notice that these estimators, being univariate, have been developed to exploit the
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temporal redundancy arising from a sequence of observations, but not the spatial redundancy brought by the process model.
Consequently, it should be emphasised that these results are not comprehensive enough to provide a definitive picture.
Two reasons motivate the above studies regarding the problem of instrument bias. The first is that robust estimators avoid

the need to explicitly estimate the magnitude of the bias in order to compensate for its effects as is done in other methods, for
instance, the method developed by Abu-el-zeet, Becerra, and Roberts12 or the mixed integer non-linear approaches.13 The second
is that procedures for detection of bias or complete failure (apparently) are also not needed.

This last finding stands in contrast to Llanos, Sanchez, andMaronna14, which more recently conducted aMonte Carlo simulation
study using a steady state benchmark problem that assessed the simultaneous effect of biases and drifts on the performance of
different types of robust M-estimators. Measurements were contaminated with either outliers or a mixture with equal amounts of
biases and drifts. It was found that with respect to a baseline case without contamination, the mean square error (MSE) of the
reconciled values significantly deteriorates when measurements are contaminated by the mixture of biases and drifts compared
with almost no change when they are contaminated by outliers. From this, the authors concluded that the explicit detection of
systematic errors combined with corrective actions should be used for robust data reconciliation when they are present. It seems
reasonable to suppose that this is also valid for dynamic data reconciliation.
Also, our experience with minimising only a robust loss function under instrument bias for a particular case raises concerns

regarding this type of approach.
Bias is characterised by having a constant magnitude meaning that the shape and precision of the true measurements are

preserved in this abnormal measurement. It is therefore natural to choose a measure invariant under a shift in location in the
formulation of the data reconciliation problem. For unbiased measurements, the formulation changes to a MSE-based one.
Evidently, one should use robustified versions to cope with outliers. Another idea is to detect biases by a sequence of consecutive
differences between measured and reconciled values with the same sign.
Taken together, these two ideas form the basis of our proposed method capable of simultaneously handle instrument biases

and outliers, which is described in detail in the following section. Section 3 presents some aspects of the algorithm used for
computing the reconciled values. We tested the method on the example problem detailed in Section 4. In Section 5 we give a
counterexample to show that robust loss functions do not necessarily handle all cases of measurement bias. Then, the results of
the experiments are presented in Section 6. Concluding remarks are given in Section 7.
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2 DESCRIPTION OF THE METHOD

It is assumed that process variables are directly measured. The presence of random noise or error, �i,j , the possible contamination
by outliers, Oi,j , and the potential occurrence of biases, Bi in measurements can be represented by the following model

yi,j = xi,j + �i,j + Oi,j +
{

Bi ∶ i ∈ I
}

, (1)

where the index i, j refers to the ith variable at sampling time j, I is the set of biased variables, yi,j represents the process
measurement, and xi,j stands for its true value. The measurement noise �i,j is typically modelled as zero-mean Gaussian with
homoscedastic variance �2�,i and the assumption of independence among different variables.
Define a moving data window of fixed lengthN advanced one time increment at a time. Then, the nonlinear programming

formulation of the dynamic data reconciliation problem is

x̂k = argmax
xk

D
{

(yi,j − xi,j) ∶

moving window
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
j = k−N+1,… , k
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k=N,N+1,N+2,…

,

i = 1,… , n
}

(2)

subject to

f
(

dx
dt
,x, t

)

= 0 (3a)

g(x) ≤ 0 (3b)
xL ≤ x ≤ xU (3c)

where D plays a role analogous to a loss function and will be simply referred as loss function, n is the number of measured
variables, k is the current time interval, f is the system model described as a set of differential algebraic equations, g is the set of
inequality constraints, x̂ is the vector of reconciled values for measured and unmeasured variables, and t denotes continuous time.
Let us remark that in the above formulation we assume that the solution to model (3a) is to be obtained by a numerical solver as
an inner loop of an optimisation algorithm.15

2.1 Bias detection

For simplicity of treatment and as a first step towards understanding and elucidating some aspects of the behaviour of the proposed
method, let us only consider the case of measurement bias of infinite duration (permanent bias). The test we consider is based on
the existence of a sequence (of the same length as the moving time window) of residuals ri,j = yi,j − x̂i,j with the same sign,
attributed to the effect of bias.
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FIGURE 1 Reconciled results solely using Hampel’s redescending �-function according to equation (22) for window length 40.
Filled grey and black circles depict the measured values and the measurement outliers, respectively; the full line refers to the
simulated true values; the open squares denote the reconciled values of the variables at the beginning of the moving window,
while open circles represent those at the end of the moving window.

Note that the presence of outliers affects the performance of the test. For example, a single outlier of magnitude greater and
opposite sign than those of the bias will increase the probability of a type II error. To cope with this, we disregard the outliers
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when evaluating the sign. An observation of variable i at time period j is classified as an outlier whenever

outli,j =
|ri,j − �(Ri)|

�(Ri)
> c, i = 1,… , n, (4)

with
Ri = {ri,k−N+1,… , ri,k}, (5)

where � and � are univariate robust location and dispersion or scale estimators, respectively, and the cutoff c = 2.5.16

Summing up, let Ji = {k−N+1 ≤ j ≤ k ∶ outli,j ≤ c} be the set of indexes j of inliers within the window. Formally we have

ri,j ≶ 0, ∀j ∈ Ji ⇒ i ∈ I, i = 1,… , n. (6)

2.2 Loss function

Because a univariate scale estimator is translation invariant, then, according to (1),

�(Ri) = �
{

�i,j + Oi,j) ∶ j = k−N+1,… , k
} (7)

for all i ∈ I . This makes it convenient to adopt a robust dispersion measure for the loss function for biased measurements, while
for the remaining measured variables we instead use a root mean square error based loss function

RMSE(Ri) =
√

�(Ri)2 + �(Ri)2 (8)

for all i ∉ I .
There remains the problem of combining both of them, which may be addressed using the desirability function approach.17

For each measured variable (i = 1,… , n), the desirability function d(vi) assigns a number between 0 (not acceptable) and 1

(completely desirable value) to the possible values of a statistic vi using

d(vi) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if vi < vL
vi − vU

vL − vU
if vL ≤ vi ≤ vU

0 if vi > tU
(9)

with vL being the smallest possible value and vU a convenient upper bound. Notice that smaller values of vi are more desirable.
Let Yi = {yi,k−N+1,… , yi,k} be the univariate sample for a measured variable i. Next we define

vi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(Ri)∕|�(Yi)| if i ∈ I

RMSE(Ri)∕|�(Yi)| otherwise.
(10)
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The values of vL = 0 and vU = 1 are seen to work well here. Finally, the overall desirability D is defined as the geometric mean
of the individual desirability values

D =
( n
∏

i=1
d(vi)

)1∕n

, (11)

which is precisely the loss function in (2).
We choose the robust univariate location and scale estimators described by Maronna and Zamar18 because computational

efficiency is of key importance. A brief description follows. Define the functions

Wc(x) =

⎧

⎪

⎨

⎪

⎩

(

1 −
(x
c

)2)2 if |x| ≤ c

0 if |x| > c
(12a)

and
�c(x) = min(x2, c2), (12b)

whereWc is Tukey’s redescending bisquare weight function and c > 0 is a tuning constant. Their estimators are defined as

�(Ri) =
∑

j wjri,j
∑

j wj
, (13)

�(Ri)2 =
�20
N

∑

j
�c2

(ri,j − �(Ri)
�0

)

, (14)
with

�0 = med(|Ri − med(Ri)|)

and
wj = Wc1

(ri,j − med(Ri)
�0

)

,

where med stands for median. The authors recommend the tuning parameters c1 = 4.5 and c2 = 3. To conclude, it should be
pointed out that minimising the scale (14) (equivalent to maximizing the corresponding desirability) is similar in spirit to other
robust estimators based on scale estimators such as those in the regression context (see for example Section 5.4 of Maronna,
Martin, Yohai, and Salibián-Barrera1).

2.3 Equivalent biases and regularization

Now we turn our attention to an unavoidable problem associated with measurement bias: besides the true set of bias locations
and values, several other alternative sets (of the same or different cardinality as the true set) may also lead to the same value
of (2) (see Chapter 6 of Bagajewicz19 and the earlier paper by Bagajewicz and Jiang20). The point is that the problem is ill-posed
because it is impossible to distinguish one set from another without some additional a priori information.
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FIGURE 2 Reconciled results using the new method without regularisation for window length 40. Filled grey and black circles
depict the measured values and the measurement outliers, respectively; the full line refers to the simulated true values; the open
squares denote the reconciled values of the variables at the beginning of the moving window, while open circles represent those
at the end of the moving window.

To tackle this problem,21 showed that the use of temporal redundancy accomplishes a better identification of the right set of
biases. Another way to mitigate this issue is to impose an upper bound on the number of biases �, regularizing the optimisation



8 CONCEIÇÃO

●
●

●

●●
●●

●

●

●

●●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●
●●●●

●

●●

●

●

●

●

●●
●
●●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●●

●

●●

●

●●

●
●●

●

●

●

●

●

●
●
●
●

●

●●

●

●
●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●
●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●●●●●

●

●

●●

●

●●●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●●

●
●
●
●

●

●

●●

●
●

●

●●●●●●●●●●●
●
●●●●

●●●
●
●
●
●
●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●

●

●

●

●●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●
●

●

●

●

●

●●

●●

●
●

●
●

●
●

●

●

●
●
●●

●

●●
●
●
●
●

●

●
●

●

●

●

●●
●
●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●
●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●
●
●

●

●

●
●

●

●●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●●●
●●
●
●●●●

●●
●
●
●
●
●
●●
●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●●

●

●

●●
●●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●●

●●
●●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●●●

●
●
●

●

●

●

●
●

●

●

●●

●

●
●
●

●●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●●

●
●

●

●

●
●●

●
●
●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●●

●
●

●

●
●
●

●
●

●●

●

●●

●●●●●

●●●●●●

●

●●
●●

●●●

●

●

●

●

●●●

●●●●●●●●●●●

●

●●●●●●●●
●●
●●
●●●

●●●
●●●●●

●●●●
●●

●●●

●

●

●

●●●●●

●●●●●●

●
●
●●●●●

●

●

●●●●●●●

●

●●

●

●

●●●●

●

●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●●

●●

●

●

●●●●●●●●●●●

●

●●●
●●
●●●●

●●

●●●

●●

●

●●●●●●●●

●●●

●●●●●

●●

●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●
●●

●

●
●

●
●●

●

●

●
●
●●

●●
●●

●

●

●

●

●●●

●
●

●

●

●
●
●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●
●
●●

●

●
●

●

●
●

●●●

●

●

●

●●

●●
●

●●

●

●

●●

●●
●
●
●

●

●

●
●

●
●●

●
●
●
●●

●●●
●

●

●

●

●

●●●

●

●
●

●

●●●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●●●

●
●

●

●●●

●

●

●●●

●
●●

●

●

●

●
●

●

●

●●

●

●

●
●
●
●
●●

●

●

●

●

●●

●
●●●

●●
●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●
●
●

●
●

●●●●●

●●●●●●

●

●●●●

●
●●

●

●

●

●

●●●

●●●●●●●●●
●●

●

●●●●
●●●●●●●●●●●●●●

●●●●●
●●●

●●●

●●●

●

●

●

●●●●●

●●●●●●

●●●●●●●

●

●

●●
●●●●●

●

●●

●

●

●●●●

●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●

●

●●●●

●●

●

●

●●●●●●●●●
●●

●

●●●
●●

●●●●
●●

●●●

●●

●

●●●
●●
●●●

●●●

●●●●
●

●●

●●

●
●

●

●●
●●

●

●

●

●●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●
●●●●

●

●●

●

●

●

●

●●
●
●●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●●

●

●●

●

●●

●
●●

●

●

●

●

●

●
●
●
●

●

●●

●

●
●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●
●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●●●●●

●

●

●●

●

●●●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●●

●
●
●
●

●

●

●●

●
●

●

●
●●●●

●●●●●
●●●●●●●

●●●●
●●●●●

●
●●
●●
●●●●●●

●

●
●●

●●
●
●
●
●

●

●
●●●●●●●

●●●●●●
●●●

●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●

●

●

●

●●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●
●

●

●

●

●

●●

●●

●
●

●
●

●
●

●

●

●
●
●●

●

●●
●
●
●
●

●

●
●

●

●

●

●●
●
●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●
●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●
●
●

●

●

●
●

●

●●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●●●
●
●●●●

●●
●●
●●

●●●●●
●

●

●
●●
●●●●●●

●

●

●●

●●

●

●

●

●

●

●●●

●

●●●●●●
●●●●

●

●●

●

●

●●

●●●●●●●●●●●●●●
●

●●●
●
●●●●●●●●●●●●●●●●●

●
●
●●●

●●
●●●●

●●●●
●●
●●●●●●●●●●●●●

●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●

●●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●●

●

●

●●
●●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●●

●●
●●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●●●

●
●
●

●

●

●

●
●

●

●

●●

●

●
●
●

●●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●●

●
●

●

●

●
●●

●
●
●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●●

●
●

●

●
●
●

●
●

●●

●

●●

●

●

●

●
●●

●

●
●●

●
●●●●

●●

●

●
●
●
●●●

●
●

●

●

●

●
●

●●●

●●●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●●●

●

●●
●●
●
●

●

●
●

●

●

●

●

●
●

●

●

●●●●
●

●●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●
●●

●

●

●

●
●

●●
●
●●●

●

●

●

●
●

●

●

●
●
●●

●

●●●●
●

●

●●

●●

●●●
●
●

●

●

●
●
●
●
●

●

●
●
●
●

●

●

●

●
●
●●

●●

●

●●

●
●

●

●

●●

●

●

●
●

●●

●

●
●

●
●

●

●●

●
●●●●●

●
●

●●●●

●

●●

●
●●●

●
●●●●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●
●●

●

●
●

●
●●

●

●

●
●
●●

●●
●●

●

●

●

●

●●●

●
●

●

●

●
●
●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●
●
●●

●

●
●

●

●
●

●●●

●

●

●

●●

●●
●

●●

●

●

●●

●●
●
●
●

●

●

●
●

●
●●

●
●
●
●●

●●●
●

●

●

●

●

●●●

●

●
●

●

●●●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●●●

●
●

●

●●●

●

●

●●●

●
●●

●

●

●

●
●

●

●

●●

●

●

●
●
●
●
●●

●

●

●

●

●●

●
●●●

●●
●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●
●
●

●
●

●

●

●

●
●●

●

●
●●

●
●●●●●●

●

●
●
●
●●●

●
●

●

●

●

●
●

●●●

●
●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●●
●

●

●●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●
●●

●

●

●

●
●

●●
●
●●●

●

●

●
●
●

●

●

●
●
●●

●

●●●●
●

●

●●
●●

●●●
●
●

●

●
●
●
●●

●

●

●
●●
●

●
●

●

●
●
●●

●●

●

●●

●
●
●

●

●●

●

●

●●

●●

●

●
●

●

●

●

●●

●●●●●●

●
●

●●●
●

●

●●

●
●
●●

●
●●●●

●●

●

●

maximum number of biases is 2 number of biases is free

c
A

1
c

A
2

c
B

1
c

B
2

0 50 100 150 200 250 0 50 100 150 200 250

0.040

0.045

0.050

0.055

0.060

0.065

0.032

0.036

0.040

0.044

0.045

0.050

0.055

0.060

0.065

0.070

0.05

0.06

0.07

0.08

time (min)

co
nc

en
tr

at
io

n 
(k

m
ol

m
3 )

FIGURE 3 Reconciled results using the new method with (left panels) and without (right panels) regularisation for window
length 30. Filled grey and black circles depict the measured values and the measurement outliers, respectively; the full line refers
to the simulated true values; the open circles denote the reconciled values of the variables at the end of the moving window.

problem in the following form22

x̂k = argmax
xk

D (15a)
subject to

#I ≤ � (15b)

where # denotes the cardinal of a set.
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3 SOLUTION TECHNIQUE

We start by assuming the case when there are no inequality constraints (3b). Given the complexity of the proposed loss function
owing to the logical structure of (10), the nonconvexity of (12a) and (12b), and points {−c, c} of non-differentiability in (12b),
the estimates x̂ are obtained by means of a global optimisation heuristic. (The same type of problem occurs in the desirability
function, but this has been overcome in the modified form by Castillo, Montgomery, and McCarville.23) More specifically, we
adopt with some minor modifications a variant24 of the original Differential Evolution (DE) algorithm,25 which we will now
succinctly describe.

The DE algorithm evolves a population ofNp potential solutions P = {x1,x2,… ,xNp} consisting of vectors of real numbers
with p elements each xi = (xi,1, xi,2,… , xi,p), which are created through a random initialisation.

In each iteration t, for eachxi ∈ P amutant vectormi is generated from the individuals inP bymeans of theDE/current-to-best/1
mutation strategy as

mi = xi + F (xbest − xi)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

bi

+F (xr1 − xr2), (16)

with
r1, r2 ∈ {1, 2,… , Np}, r2 ≠ r1 ≠ i,

where r1 and r2 are randomly chosen population indices, xbest is the solution with the best objective function value in the current
population P , and F is a control parameter called the scale factor.
Then, each element of the mutant vector mi is randomly exchanged with the corresponding element of the parent xi and the

trial vector oi is generated

oi,j = mi,j for j = jrand, (17a)
and

oi,j =

⎧

⎪

⎨

⎪

⎩

mi,j if U (0, 1) ≤ Cr

xi,j otherwise
∀j ∈ {1, 2,… , p} ⧵ jrand, (17b)

where jrand is a discrete uniform random variable over {1, 2,… , p}, U (0, 1) is a uniform random number within the range [0, 1],
and the so-called crossover rate control parameter Cr is obtained for each individual i = 1, 2,…Np, and for every iteration t as
a realisation of a normally distributed variableN(0.5, 0.152).26 Condition (17a) avoids the trivial case where oi = xi. This is
known as binomial (bin) crossover.
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The resulting trial vector oi is compared one-to-one with its respective parent xi, keeping the better of them for the next iteration

xt+1i =

⎧

⎪

⎨

⎪

⎩

oti if D(oti) > D(xti)

xti otherwise.
(18)

Selection is implemented by immediately replacing a losing parent vector xti in P .27

Lee, Han, and Chang24 added what can be seen as a simple local search to the scale factor F during the generation of every
new trial vector oi. The algorithm, given a value Fb of the scale factor as a starting point, is thus

1. Set F ← Fb.

2. For k = 0, 1, 2,… :

(a) Compute mi,k in (16) and then oi,k in (17a)-(17b).

(b) Update F ← F�.

3. Stop when D(oi,k+1) ≤ D(oi,k).

4. Put oti ← oi,k in (18).

Our experiments showed that the choice Fb = 0.2 performed well. Instead of using a fixed value for the step factor �, a
uniformly selected random real number from [1.3, 1.7] is generated for each individual i = 1,…Np, and for every iteration t.
Our experiments showed that the choice Fb = 0.2 performed well.
Bound constraints (3c) are enforced explicitly by modifying only those coordinate values which violate bounds:28

bi,j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

bi,j if xLj ≤ bi,j ≤ xUj

(xLj + xi,j)∕2 if bi,j < xLj
(xi,j + xUj )∕2 if bi,j > xUj

(19a)

and

oi,j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

oi,j if xLj ≤ oi,j ≤ xUj

(xLj + bi,j)∕2 if oi,j < xLj
(bi,j + xUj )∕2 if oi,j > xUj

(19b)

for all j = 1, 2,… , p.
We now tackle the problem of handling the regularization constraint #I(x) ≤ �. This is done by applying the superiority of

feasible solutions approach proposed by Deb,29 which modifies the selection rule (18). More precisely, the trial vector oti will be
selected if
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FIGURE 4 Reconciled results using the new method with (left panels) and without (right panels) regularisation for window
length 60. Filled grey and black circles depict the measured values and the measurement outliers, respectively; the full line refers
to the simulated true values; the open circles denote the reconciled values of the variables at the end of the moving window.

• given two feasible solutions oti and xti, it provides the better value for D

#I(oti) ≤ � ∧ #I(xti) ≤ � ∧D(oti) > D(xti), or

• it is a feasible solution and xti is infeasible

#I(oti) ≤ � ∧ #I(xti) > �, or

• both oti and xti are infeasible, but it presents a lower or equal constraint violation

#I(oti) > � ∧ #I(xti) > � ∧ #I(oti) ≤ #I(xti).
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4 ILLUSTRATIVE EXAMPLE

To illustrate the use of the proposed method, we apply it to the case of an reversible exothermic autocatalytic reaction between
species A and B

A + B kf
kr 2B (20)

that takes place in two isothermal continuous stirred tank reactors arranged in series where 50% of the product stream is recycled
back into the first reactor as described by Abu-el-zeet, Becerra, and Roberts.12

The model is given by the following differential equations
dcA1
dt

= 0.5
�1

(cA0 + cA2) −
cA1
�1

− (kf1cA1cB1 − k
r
1c

2
B1) (21a)

dcB1
dt

= 0.5
�1
cB2 −

cB1
�1

+ (kf1cA1cB1 − k
r
1c

2
B1) (21b)

dcA2
dt

=
cA1
�2

−
cA2
�2

− (kf2cA2cB2 − k
r
2c

2
B2) (21c)

dcB2
dt

=
cB1
�2

−
cB2
�2

+ (kf2cA2cB2 − k
r
2c

2
B2) (21d)

with

k = A exp
(

−
Ea
RT

)

,

where the subscripts 0, 1, and 2 refer to the feed stream, exit stream from the first reactor, and product stream, respectively, the
superscripts f and r refer to the forward and reverse reaction, respectively, c denotes concentration (kmolm−3), � represents
residence time, k and A are the rate constant and pre-exponential factor (m3 kmol−1 s−1), Ea is the activation energy, R is the gas
constant, and T denotes temperature (K).
For all the simulation cases the following values were used

�1 = 30min �2 = 25min

Ef
a∕R = 17 786K Er

a∕R = 23 523K

Af = 9.73 × 1022 m3

kmol s
Ar = 3.1 × 1030 m3

kmol s

T1 = 307K T2 = 302K

cA0 = 0.1 kmolm−3.

Starting from steady-state operation, transients are introduced by a step change in the first reactor temperature T1 from 307K to
310K at t = 75min.
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4.1 Implementation and simulation settings

All the simulations reported here have been done with the free software R.30 The model differential equations are integrated numer-
ically using the LSODA31 solver available through the package deSolve.32 The package robustbase33 contains scaleTau2,
which is an implementation for the univariate estimators (13) and (14).

The population size used in DE wasNp = 40, and the algorithm was stopped after 400 iterations.
We experimented with the moving window lengthsN = 30min, 40min, 50min and 60min.
Measurement noise �i,j is simulated by sampling from a Gaussian distribution using the package mvtnorm34,35 with standard

deviation ��,i 2.5% of the nominal value of the outlet concentration at steady state

cA1 = 0.048 35 kmolm−3 cA2 = 0.041 36 kmolm−3

cB1 = 0.051 65 kmolm−3 cB2 = 0.058 64 kmolm−3.

The magnitude and sign of the biases is fixed at Bi = Kb��,i with the constant Kb = 5 for both cA1 and cB2. One-sided outliers
are generated for all exit concentrations with probability 0.1 and magnitude and sign Oi,j = Ko��,i with the constant Ko being 5
(outliers on the same side as bias with respect to the true values) or −7 (outliers and bias lie on opposite sides of the true values).
Also, we should not forget that the Gaussian distribution may generate outliers by itself. We will consider any point satisfying
|(yi,j − xi,j)|∕��,i ≥ 2.5 as an outlier.
Lastly, the search space is defined by the interval vector (0.03, 0.03, 0.04, 0.04) ≤ (cA1, cA2, cB1, cB2)∕kmolm−3 ≤

(0.06, 0.06, 0.08, 0.08) for Ko = 5, with the lower bound of cA2 changing to 0.025 kmolm−3 when using Ko = −7.

5 A COUNTEREXAMPLE

We give a specific counter-example for the redescending estimator of Hampel with tuning parameters a = 1, b = 2, c = 6 as in
Nicholson, López-Negrete, and Biegler5

�(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2
x2 if 0 ≤ |x| ≤ a

a|x| − a2

2
if a < |x| ≤ b

ab − a2

2
+
a(c − b)

2

[

1 −
(c − |x|
c − b

)2] if b < |x| ≤ c

ab − a2

2
+
a(c − b)

2
if |x| > c

showing the inability of robust loss functions to cope with measurement bias. (According to these authors, tuning of the estimator
parameters is not critical to obtain good performance.)
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FIGURE 5 Reconciled results using the new method with (left panels) and without (right panels) regularisation for window
length 60 and in the case of bias and outliers located on opposite sides of the true values. Filled grey and black circles depict the
measured values and the measurement outliers, respectively; the full line refers to the simulated true values; the open circles
denote the reconciled values of the variables at the end of the moving window.

In this case, equation (2) becomes
x̂k = argmin

xk

k
∑

j=k−N+1

n
∑

i=1
�
(yi,j − xi,j

��,i

)

, (22)

and we fixed the denominator ��,i at its true value to isolate the effect of the �-function.
The simulation results are shown in Figure 1 for a horizon size ofN = 40 when outliers and biases have the same (positive)

sign. For other sizes, namely 30, 50 and 60, we get rather similar results. Two behaviours can be observed: one for species A
and one for species B. For species A, the reconciled values at the end of the moving window are quite close to the true values
meaning that the bias in cA1 was correctly identified. That is not the case with the reconciled values at the beginning of the
moving window, which are shifted vertically with respect to those at the end. For species B, the reconciled values follow the
lower and upper boundaries of the main bulk of the measurements, ignoring completely the existence of bias in cB2.
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The preceding results cast considerable doubt on the suitability of (22) for coping with measurement bias.

6 RESULTS OF THE NUMERICAL EXPERIMENTS

First let us look at the behaviour of the new method in the least favourable condition without regularisation (Figure 2) when
applied to the same case used in the counterexample. Compared to it, the distinction between the reconciled values at the
beginning of the moving window and those at the end now disappears. Moreover, the bias in cB2 is now detected. This is exactly
what should be expected on general grounds. Finally, we observe a large difference in precision results between species A (high)
and B (low). Indeed, when regularisation is not used, some of the reconciled values for cB1 are so far away from the bulk of the
data as to cause an incorrect classification as a biased point.
To examine the effect of regularisation, the true value of � = 2 was chosen for the upper bound on the number of biased

measurements which is shown in the left panels of Figure 3, while leaving � unbounded in the right panels for a window length
ofN = 30. Two important results are worth noticing when using regularisation. First, when the “right” � is given, it leads to
solutions of high quality, especially for species B (which exhibits high precision, contrary to the case without regularisation).
Second, it reveals that there are two equivalent sets of biased measurements: {cA1, cB2} and {cA1, cB1}. (It is important to recall
that the criterion for the detection of measurement bias by definition ignores outliers.) The optimisation algorithm cycles through
the two in a seemingly random manner, but note that {cA1, cB2} is preponderant over {cA1, cB1}.
Larger window sizes N improve monotonically the performance of the proposed approach, as can be seen in Figure 4 for

N = 60. All but two points will correctly identify the measurement bias in cB2 with regularisation (left panels), whereas the
precision of the reconciled measurements for species B is considerably improved when not using regularisation (right panels).

Finally, we consider an edge case in which the biased measurements and outliers are located on opposite sides of the simulated
true values. It is seen from Figure 5 (N = 60) that the proposed method is also able to cope with this type of problem.

7 CONCLUDING REMARKS

Herein we solely focused on an initial characterisation of the behaviour of this method to assess if further development is of interest.
One important and attractive feature is the fact that it does not require a priori knowledge on the variance of the measurement error.

Our approach was tested using two challenging scenarios with small biases and small outliers when compared to other works,
with very encouraging preliminary results. This leads us to believe that it provides a sound basis for dynamic data reconciliation
subject to measurement bias.

Besides the choice of the horizon sizeN (long horizons are desirable), we would argue that there are three kinds of challenges
to accomplish a practical implementation as follows: (1) one needs a method for selecting the exact number of biased measured
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variables (regularization parameter),22,36 (2) further, the ability to simultaneously locate multiple optima (multimodal optimisation)
such as the one offered by evolutionary algorithms,37 (3) and finally, to figure out how to integrate process-specific knowledge into
a hybrid model.38 Of course, the appropriate choice should be balanced by taking into account some prespecified computational
budget.
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