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1 INTRODUCTION

Let H be a Hilbert space with the norm ‖ ⋅ ‖ and the inner product ⟨⋅, ⋅⟩, F (K) be the fixed point set of a mapping K . Recall
the mapping K ∶ H → H is said to be a strictly pseudo-contractive if there exists a constant � ∈ [0, 1) such that

‖Kz −Ky‖2 ≤ ‖z − y‖2 + �‖z −Kz − (y −Ky)‖2 , ∀z, y ∈ H ,

and is said to be a demicontractive if F (K) ≠ ∅, there exists a constant � ∈ (−∞, 1) such that

‖Kz − p‖2 ≤ ‖z − p‖2 + �‖Kz − z‖2 , ∀p ∈ F (K), z ∈ H ,

or equivalently
⟨z − p, z −Kz⟩ ≥ 1 − �

2
‖z −Kz‖2 , ∀p ∈ F (K), z ∈ H .

Obviously, the strongly pseudo-contractive mapping with F (K) ≠ ∅ is the demicontractive mapping. The opposite is contra-
dictory. Both the demicontractive mapping and the strongly pseudo-contractive mapping were studied by many authors.1,2,3,4
In addition, let H1 and H2 be Hilbert spaces, C and Q be two nonempty closed convex subsets of H1 and H2, respectively,
A ∶ H1 → H2 be a bounded linear operator. The split feasibility problem (Censor and Elfving5 introduced in 1994) is to find
z∗ ∈ C such that Az∗ ∈ Q. Further, let K ∶ H1 → H1 and S ∶ H2 → H2 be nonlinear mappings. The split common fixed
point problem (Censor and Segal6 introduced in 2009) is to find

z∗ ∈ F (K) such that Az∗ ∈ F (S) . (1)

If K = PC and S = PQ, where PC ∶ H1 → C and PQ ∶ H2 → Q are metric projection mappings, then the split common
fixed point problem is equivalent to the split feasibility problem. As we all know, z is a solution of problem (1) if and only if z
is a solution of the fixed point equation z = K(I − �AT(I − S)A)z. Furthermore, Censor and Segal6 proposed the following
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algorithm to solve problem (1) for two directed operators: zn+1 = K(I − �AT(I − S)A)zn, where � is a mild constant and AT
is the matrix transposition of A. And they proved the convergence of the sequence {zn} generated by this algorithm.
In the squel, the split feasibility problem and the split common fixed point problem have received widespread attention by

many authors, such as, Moudafi,7,8 Cui and Wang,9 Eslamian,10 Takahashi,11 Suparatulatorn et al,12 Vinh and Hoai,13 Liu,14
Zhou et al15 and so on. It turns out that some studies only guaranteed weak convergence of the sequence. To fill this gap, some
strong convergent results of the problem (1) were established by employing the Halpern algorithm and the viscosity algorithm,
for instance, Boikanyo,16 Kraikaew and Saejung,17 and Wang et al.18 Recently, Wang19 proposed the new iterative algorithm
to approximate the solution of the split common fixed point problem: zn+1 = zn−�n[(I −K) +A∗(I −S)A)]zn, ∀n ≥ 1, where
{�n} is a self-adaptive step-size sequence and A∗ is the adjoint operator of A. Meanwhile, the weak convergence and the strong
convergence were obtained under some mild conditions.
In addition, in 2003, Nakajo and Takahashi20 introduced the following hybrid projection method and guaranteed strong

convergence of the solution of the fixed point problem.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yn = �nzn + (1 − �n)Kzn,
Cn = {u ∈ C ∶ ‖yn − u‖ ⩽ ‖zn − u‖},
Qn = {u ∈ C ∶ ⟨zn − u, z1 − zn⟩ ⩾ 0},
zn+1 = PCn∩Qn

z1, n ≥ 1.

(2)

On the other hand, in 2001, Alvarez and Attouch21 proposed an inertial proximal algorithm to study the inclusion problem
of a maximal monotone operator:

zn+1 = J T�n(zn + �n(zn − zn−1)),∀n ≥ 1.
where the set-valued mapping T ∶ H → 2H is a maximal monotone operator and the function J T�n = (I+�nT )

−1 is the resolvent
of T . The extrapolation term �n(zn−zn−1) takes into account an inertial effect of this algorithm.Under somemild conditions, most
iterative algorithms by using this inertial effect have better convergence behavior for various problems, such as, the inclusion
problem,21,22, the variational inequality problem,23,24 the fixed point problem,25 and the references therein. Unfortunately, the
selection of parameters related to the iterative algorithm usually causes interference in the process of approximate solution.
Hence, the selection of parameters is also very meaningful in future research.
Based on the ideas of Wang,19 Nakajo and Takahashi,20 Alvarez and Attouch,21 we propose a new inertial hybrid projection

algorithm to approximate the solution of the problem (1) for demicontractive mappings by combining the inertial technique and
the hybrid projection method. Simultaneously, we introduce a new self-adaptive step-size sequence, which does not need prior
knowledge of operator norms. Under mild conditions, the corresponding strong convergence theorems are obtained in infinite
Hilbert spaces. It is worth noting that such a self-adaptive step-size sequence guarantees the stability of the proposed algorithm.
Finally, some numerical experiments in infinite Hilbert spaces are used to demonstrate the efficiency of our main results.

2 PRELIMINARIES

For the convenience in the rest of this article, let C be a nonempty closed convex subset of a Hilbert spaceH . !w(zn) denote the
set of all weak cluster points of a sequence {zn}, → and ⇀ represent strong convergence and weak convergence, respectively.
Let PC denote the metric projection fromH onto C , i.e., PCz = argminy∈C ‖z − y‖, ∀z ∈ H . The following property holds.

⟨PCz − z, PCz − y⟩ ≤ 0 ⇔ ‖y − PCz‖2 + ‖z − PCz‖2 ≤ ‖z − y‖2, ∀y ∈ C. (3)

In addition, for any z, y ∈ H ,

(I) ‖z + y‖2 = ‖z‖2 + ‖y‖2 + 2⟨z, y⟩ ≤ ‖z‖2 + 2⟨y, z + y⟩;

(II) ‖�z + (1 − �)y‖2 = �‖z‖2 + (1 − �)‖y‖2 − �(1 − �)‖z − y‖2, ∀� ∈ ℝ.

Definition 1. The mappingK ∶ H → H and F (K) ≠ ∅. I−T is demiclosed at zero, if and only if, for any sequence {zn} ⊂ H ,
satisfying zn ⇀ z and (I −K)zn → 0, then z ∈ F (K).

Definition 2. A Hilbert spaceH has Kadec-Klee property, that is, a sequence {zn} ⊂ H that satisfies xn ⇀ z and ‖zn‖ → ‖z‖,
then zn → z.
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Lemma 1 (Takahashi11). Let C be a closed convex subset of a Hilbert space H , and a mapping K ∶ C → H be a
demicontractive with � ∈ (−∞, 1). Then the fixed point set of K is closed and convex.

Lemma 2 (Zhou,26 Marino and Xu27). Let C be a nonempty closed convex subset of a Hilbert spaceH . Let K ∶ C → H be a
strictly pseudo-contractive mapping with coefficient � ∈ [0, 1). Then the fixed point set F (K) is closed and convex, and I −K
is demiclosed at 0.

3 MAIN RESULTS

In this section, a self-adaptive inertial hybrid projection algorithm is introduced to solve the split common fixed point problem
for demecontractive mappings. For this purpose, we assume that the following conditions hold.
Let H1 and H2 be two Hilbert spaces, A ∶ H1 → H2 be a bounded linear operator with the corresponding adjoint operator

A∗. Let K ∶ H1 → H1 and S ∶ H2 → H2 be demicontractive mappings with coefficients �1 ∈ (−∞, 1) and �2 ∈ (−∞, 1),
respectively. For any initial points z0, z1 ∈ H1, the sequence {zn} generated by the following iterative process.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wn = zn + #n(zn − zn−1),
un = wn − �n

[

(I −K)wn + A∗(I − S)Awn
]

,
Cn = {u ∈ H1 ∶ ‖un − u‖2 ≤ ‖wn − u‖2 − �n�n},
Qn = {u ∈ H1 ∶ ⟨zn − z1, zn − u⟩ ≤ 0},
zn+1 = PCn∩Qn

z1, n ≥ 1,

(4)

where
�n = (1 − �1 − 2�n)‖(I −K)wn‖

2 + (1 − �2)‖(I − S)Awn‖
2 − 2�n‖A∗(I − S)Awn‖

2.

Theorem 1. Assume that the solution set Ω = {z∗ ∶ z∗ ∈ F (K), Az∗ ∈ F (S)} ≠ ∅, I − K and I − S be demiclosed at 0. If
the following conditions hold.

(C1) The sequence {#n} is bounded in (−∞,∞);

(C2) If (I − S)Awn ≠ 0, the stepsize �n = �nmin{
1−�1
2
, (1−�2)‖(I−S)Awn‖

2

2‖A∗(I−S)Awn‖
2 } with �n ∈ (0, 1). Otherwise, �n = �n(1 − �1)∕2.

Then the iterative sequence {zn} generated by proposed algorithm (4) converges strongly to ẑ = PΩz1 ∈ Ω.

Proof. Step 1 Firstly, we show that Ω ⊂ Cn ∩Qn.
It is obvious that Cn∩Qn is closed convex set, that is, PCn∩Qn

z1 is well defined. Put any z ∈ Ω, i.e., z ∈ F (K) andAz ∈ F (S).
From the definition of �n,

�n = (1 − �1 − 2�n)‖(I −K)wn‖
2 + (1 − �2)‖(I − S)Awn‖

2 − 2�n‖A∗(I − S)Awn‖
2 ≥ 0 . (5)

By algorithm (4), we have
‖un − z‖2 = ‖wn − z‖2 − 2�n⟨(I −K)wn + A∗(I − S)Awn, wn − z⟩

+ �2n‖(I −K)wn + A∗(I − S)Awn‖
2

= ‖wn − z‖2 − 2�n⟨(I −K)wn, wn − z⟩ − 2�n⟨(I − S)Awn, Awn − Az⟩
+ �2n‖(I −K)wn + A∗(I − S)Awn‖

2

≤ ‖wn − z‖2 − �n(1 − �1)‖(I −K)wn‖
2 − �n(1 − �2)‖(I − S)Awn‖

2

+ 2�2n‖(I −K)wn‖
2 + 2�2n‖A

∗(I − S)Awn‖
2

= ‖wn − z‖2 − �n(1 − �1 − 2�n)‖(I −K)wn‖
2

− �n
[

(1 − �2)‖(I − S)Awn‖
2 − 2�n‖A∗(I − S)Awn‖

2]

= ‖wn − z‖2 − �n�n , n ≥ 1 .

(6)

This implies that Ω ⊂ Cn.
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On the other hand,
Q1 = {u ∈ H1 ∶ ⟨z1 − z1, z1 − u⟩ ≤ 0} = H1,

this means that Ω ⊂ Q1. Suppose Ω ⊂ Qm for some m ∈ ℕ, we have Ω ⊂ Cm ∩Qm. Using zm+1 = PCm∩Qm
z1 and the projection

property, we get that
⟨zm+1 − z1, zm+1 − u⟩ ≤ 0 , ∀u ∈ Cm ∩Qm,

and
⟨zm+1 − z1, zm+1 − z⟩ ≤ 0 , ∀z ∈ Ω.

This implies that Ω ⊂ Qm+1. By induction, we have Ω ⊂ Qn. Hence, Ω ⊂ Cn ∩Qn.
Step 2 We show that the sequence {zn} is bounded and lim

n→∞
‖zn − zn+1‖ = 0.

From Lemma 1, F (K) and F (S) are closed convex sets, which means thatΩ is a nonempty closed convex set. So, there exists
a point ẑ = PΩz1 ∈ Ω. By virtue of zn+1 = PCn∩Qn

z1, Ω ⊂ Cn ∩Qn and the formula (3), we have

‖z1 − zn+1‖ ≤ ‖z1 − ẑ‖.

Besides, we have that {‖z1 − zn‖} is bounded, i.e., the sequence {zn} is bounded. Using the definition of Qn and zn+1 =
PCn∩Qn

z1 ∈ Qn, we know that
zn = PQn

z1 and ‖z1 − zn‖ ≤ ‖z1 − zn+1‖,
which implies that {‖z1 − zn‖} is bounded and nondecreasing. Furthermore, lim

n→∞
‖z1 − zn‖ exists. In addition, it follows from

(3) that
‖zn − zn+1‖2 ≤ ‖z1 − zn+1‖2 − ‖z1 − zn‖2.

Thus, we have lim
n→∞

‖zn − zn+1‖ = 0.
Step 3 We show that the sequence {zn} converges strongly to ẑ = PΩz1.
From algorithm (4) and the condition (C1),

‖wn − zn‖ = #n‖zn − zn−1‖ → 0 as n→∞.

By the boundedness of {zn}, there exists a subsequence {znj} of {zn} such that znj ⇀ p, for any p ∈ !w(zn). This implies that
wnj ⇀ p. In addition, A is a bounded linear operator, we have Awnj ⇀ Ap. Next,

‖un − zn+1‖2 ≤ ‖wn − zn+1‖2 − �n�n ≤ ‖wn − zn+1‖2,

and

‖un − zn‖ ≤ ‖un − zn+1‖ + ‖zn+1 − zn‖
≤ ‖wn − zn+1‖ + ‖zn+1 − zn‖
≤ ‖wn − zn‖ + 2‖zn+1 − zn‖ → 0, as n→∞.

These imply that {wn} and {un} are bounded. Besides, it follows from formulas (5) and (6) that

�n�n ≤ ‖wn − z‖2 − ‖un − z‖2

≤ (‖wn − z‖ − ‖un − z‖)(‖wn − z‖ + ‖un − z‖)
≤ ‖wn − un‖(‖wn − z‖ + ‖un − z‖)
≤ (‖wn − zn‖ + ‖zn − un‖)(‖wn − z‖ + ‖un − z‖)→ 0, n→∞.

When (I − S)Awn ≠ 0, it follows from the definition of �n that

lim
n→∞

‖(I −K)wn‖ = lim
n→∞

‖(I − S)Awn‖ = 0.

Since I − K and I − S are demiclosed at 0, we have that p ∈ F (K) and Ap ∈ F (S), i.e., p ∈ Ω. From zn = PQn
z1, ẑ = PΩz1

and the weak lower semicontinuity of the norm, we obtain

‖ẑ − z1‖ ≤ ‖p − z1‖ ≤ lim inf
j→∞

‖znj − z1‖ ≤ lim sup
j→∞

‖znj − z1‖ ≤ ‖ẑ − z1‖, ∀p ∈ !w(zn),

which implies that lim
j→∞

‖znj −z1‖ = ‖ẑ−z1‖ and p = ẑ. By means of the Kadec-Klee property of Hilbert spaces, we have {znj}
converges strongly to ẑ. Thus, the iterative sequence {zn} converges strongly to ẑ = PΩz1.
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In addition, if K and S are two strictly pseudo-contractive mappings with F (K) ≠ ∅ and F (S) ≠ ∅, respectively, we have
that K and S are demicontractive mappings. Further, it follows from Lemma 2 that the fixed point sets F (K), F (S) are closed
and convex, and I −K , I − S are demiclosed at 0. Therefore, we have the following corollary.

Corollary 1. LetH1 andH2 be two Hilbert spaces, A ∶ H1 → H2 be a bounded linear operator with the corresponding adjoint
operator A∗. Let K ∶ H1 → H1 and S ∶ H2 → H2 be strictly pseudo-contractive mappings with coefficients �1 ∈ [0, 1) and
�2 ∈ [0, 1), respectively. Assume that F (K) ≠ ∅ and F (S) ≠ ∅. For any initial points z0, z1 ∈ H1, the iterative sequence {zn}
is generated by the following algorithm.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wn = zn + #n(zn − zn−1),
un = wn − �n

[

(I −K)wn + A∗(I − S)Awn
]

,
Cn = {u ∈ H1 ∶ ‖un − u‖2 ≤ ‖wn − u‖2 − �n�n},
Qn = {u ∈ H1 ∶ ⟨zn − z1, zn − u⟩ ≤ 0},
zn+1 = PCn∩Qn

z1, n ≥ 1,

(7)

where
�n = (1 − �1 − 2�n)‖(I −K)wn‖

2 + (1 − �2)‖(I − S)Awn‖
2 − 2�n‖A∗(I − S)Awn‖

2.
If (I − S)Awn ≠ 0, the stepsize �n = �nmin{

1−�1
2
, (1−�2)‖(I−S)Awn‖

2

2‖A∗(I−S)Awn‖
2 } with �n ∈ (0, 1). Otherwise, �n = �n(1 − �1)∕2. The

sequence {#n} is bounded in (−∞,∞). Suppose that the solution setΩ = {z∗ ∶ z∗ ∈ F (K), Az∗ ∈ F (S)} ≠ ∅, then the iterative
sequence {zn} generated by algorithm (7) converges strongly to ẑ = PΩz1 ∈ Ω.

In particular, when the parameter {#n} is always equal to zero, we have the following corollary.

Corollary 2. Let H1 and H2 be two Hilbert spaces, A ∶ H1 → H2 be a bounded linear operator with the corresponding
adjoint operator A∗. Let K ∶ H1 → H1 and S ∶ H2 → H2 be demicontractive mappings with coefficients �1 ∈ (−∞, 1) and
�2 ∈ (−∞, 1), respectively. Assume that F (K) ≠ ∅ and F (S) ≠ ∅. For any initial points z1 ∈ H1, the iterative sequence {zn} is
generated by the following algorithm.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

un = zn − �n
[

(I −K)zn + A∗(I − S)Azn
]

,
Cn = {u ∈ H1 ∶ ‖un − u‖2 ≤ ‖zn − u‖2 − �n�n},
Qn = {u ∈ H1 ∶ ⟨zn − z1, zn − u⟩ ≤ 0},
zn+1 = PCn∩Qn

z1, n ≥ 1,

(8)

where
�n = (1 − �1 − 2�n)‖(I −K)zn‖2 + (1 − �2)‖(I − S)Azn‖2 − 2�n‖A∗(I − S)Azn‖2.

If (I −S)Azn ≠ 0, the stepsize �n = �nmin{
1−�1
2
, (1−�2)‖(I−S)Azn‖

2

2‖A∗(I−S)Azn‖2
} with �n ∈ (0, 1). Otherwise, �n = �n(1 − �1)∕2. Suppose

that the solution set Ω = {z∗ ∶ z∗ ∈ F (K), Az∗ ∈ F (S)} ≠ ∅, I −K and I −S be demiclosed at 0. Then the iterative sequence
{zn} generated by algorithm (8) converges strongly to ẑ = PΩz1 ∈ Ω.

4 NUMERICAL EXAMPLES

In this section, all codes were written inMatlab R2018b, and ran on a Lenovo ideapad 720S with 1.6 GHz Intel Core i5 processor
and 8GB of RAM. Firstly, some numerical examples in infinite Hilbert spaces are proposed to demonstrate the effectiveness
and realization of convergence behavior of Algorithm 4. In addition, we introduce the following exists results and use them to
compare the results in Algorithm 4.

Theorem 2 (Boikanyo16). Let H1 and H2 be Hilbert spaces. Let K ∶ H1 → H1 and S ∶ H2 → H2 be two demicontractive
mappings with coefficients k1 ∈ (−∞, 1) and k2 ∈ (−∞, 1), respectively. Let I − K and I − S be demiclosed at 0. Let
A ∶ H1 → H2 be a bounded linear operator with the adjoint operator A∗. The iterative sequence {zn} of the split common fixed
point problem (1) is generated by the following iterative scheme.

{

un = zn − �nA∗(I − S)Azn,
zn+1 = �nu + (1 − �n)((1 − !)un + !Kun), ∀n ≥ 1,

(9)
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where �n =
(1−k2)‖(I−S)Azn‖2

2‖A∗(I−S)Azn‖2
withAzn ≠ SAzn, otherwise, �n = 0. Meanwhile,! ∈ (0, 1−k1) and �n ∈ (0, 1)with

∑∞
n=1 �n = ∞

and �n → 0 as n→∞. If the solution set Ω is nonempty, the iterative sequence {zn} converges strongly to a point ẑ ∈ Ω.

Example 4.1. LetH1 = H2 = R3.
C = {(z1, z2, z3) ∈ H1, z

2
2 + z

2
3 − 1 ≤ 0}

and
Q = {(y1, y2, y3) ∈ H2, y

2
1 − y2 + 5 ≤ 0}.

Let K = PC ∶ H1 → C and S = PQ ∶ H2 → Q be two metric projection mappings. Let the bounded nonlinear operator

A ∶ H1 → H2 defined by
[
√

5 0 0
0 5 0
0 0 1

]

. Then z∗ = (0, 1, 0) is a unique solution of split common fixed point problem (1).
Next we give the relevant parameters in the iterative algorithms. In our algorithm (4), set #n = 0.5 and �n = 0.5. In algorithm

(9), set �n =
1
n+1

, u = z0 and ! = 0.5. The error of the iterative algorithms is denoted by En = ‖zn − z∗‖2. Take different initial
points z0, z1 are generated randomly in MATLAB and maximum iteration 1000 as the stopping criterion. Our numerical results
are shown in Figure 1 .

0 200 400 600 800 1000

Number of iterations

10-2

10-1

100

(a) Case I

0 200 400 600 800 1000

Number of iterations

10-2

10-1

100

(b) Case II

0 200 400 600 800 1000

Number of iterations

10-2

10-1

100

(c) Case III

0 200 400 600 800 1000

Number of iterations

10-2

10-1

100

(d) Case IV

FIGURE 1 Numerical results for Example 4.1
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Example 4.2. LetH1 = H2 = L2([0, 2�]) with the inner product ⟨z, y⟩ ∶= ∫ 2�
0 z(t)y(t)dt and with the norm which defined by

‖z‖2 ∶=
(

∫ 2�
0 |z(t)|2dt

)
1
2 , ∀z, y ∈ L2([0, 2�]). Further, we consider the following half-space

C =

⎧

⎪

⎨

⎪

⎩

z ∈ L2([0, 2�])|

2�

∫
0

z(t)dt ≤ 1
⎫

⎪

⎬

⎪

⎭

and Q =

⎧

⎪

⎨

⎪

⎩

y ∈ L2([0, 2�])|

2�

∫
0

|y(t) − sin(t)|2 dt ≤ 16
⎫

⎪

⎬

⎪

⎭

.

In addition, a linear continuous operator A ∶ L2([0, 2�]) → L2([0, 2�]), where (Az)(t) ∶= z(t). Then (A∗z) (t) = z(t) and
‖A‖ = 1. We can also write the projections onto C and the projections onto Q as follows.

PC (z) =

{

1−∫ 2�0 z(t)dt
4�2

+ z, ∫ 2�
0 z(t)dt > 1,

z, ∫ 2�
0 z(t)dt ≤ 1.

PQ(y) =

⎧

⎪

⎨

⎪

⎩

sin + 4
√

∫ 2�0 |y(t)−sin(t)|2dt
(y − sin), ∫ 2�

0 |y(t) − sin(t)|2dt > 16,

y, ∫ 2�
0 |y(t) − sin(t)|2dt ≤ 16.

Now, we solve the problem (1) where K = PC and S = PQ. Choose different initial values z0 and z1. The error of the iterative
algorithms is denoted by

En =
1
2
‖

‖

‖

PC
(

zn
)

− zn
‖

‖

‖

2

2
+ 1
2
‖

‖

‖

PQ
(

A
(

zn
))

− A
(

zn
)

‖

‖

‖

2

2
.

All parameters are the same as in Example 4.1. We take the error En < 10−3 or maximum iteration 200 as the stopping
criterion. All numerical results are shown in Table 1 and Figure 2 . In Table 1 , Iter. and Times(s) denote the number of
iterations and the CPU time in seconds, respectively.

TABLE 1 Numerical results for Example 4.2

our algorithm (4) with #n = 0.5 our algorithm (8) Boikanyo’s algorithm (9)

Cases Initial values Iter. Time(s) Iter. Time(s) Iter. Time(s)

I z0 = sin(t), z1 =
t2

5
57 93.1586 76 119.7086 200 50.4863

II z0 = t2, z1 =
et

20
40 110.9755 48 77.8733 200 61.2474

III z0 = t2, z1 =
2t

2
73 241.0647 109 225.5353 200 55.4393

IV z0 = 2t2, z1 =
t3

10
73 110.7121 80 145.8766 200 50.3234

Remark 1. (i) As show in Examples 4.1 and 4.2, we see that our algorithm (4) with the inertial term outperforms algorithm
(8) and Boikanyo’s algorithm (9) in the number of iterations. However, our algorithm (4) has no advantage in CPU time,
because each time we need to calculate the projection onto Cn and Qn.

(ii) Our proposed algorithm is consistent in the sense that the choice of initial points does not affect the required number of
iterations needed to achieve desired results.

5 CONCLUSION

The important conclusion is that we give an algorithm (i.e., algorithm (4)) to approximate the solution of the split common
fixed point problem for demicontractive mappings by the inertial technique and the hybrid projection method in Section 3. For
better convergence results, we introduce a new self-adaptive step-size sequence which does not need prior knowledge of operator
norms. Furthermore, the corresponding strong convergence theorem (i.e., Theorem 1) is proven by such a self-adaptive step-size
sequence. In addition, as we can see in Figures 1 and 2 , our results are effective in practice and improve the existing results.
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FIGURE 2 Convergence behavior of iteration error {En} with different initial values for Example 4.2

References

1. Takahahsi W, Yao JC. The split common fixed point problem for two finite families of nonlinear mappings in Hilbert spaces.
J Nonlinear Convex Anal. 2019;20(2):173–195.

2. Qin X, Yao JC. A viscosity iterativemethod for a split feasibility problem. J Nonlinear Convex Anal. 2019;20(8):1497–1506.

3. Cho SY, Kang SM. Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math
Sci. 2012;32(4):1607–1618.

4. Wang Y, LiuW, Song Y, Fang X. Mixed iterative algorithms for the multiple-set split equality common fixed-point problem
of demicontractive mappings. J Nonlinear Convex Anal. 2018;19(11):1921–1932.

5. Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space. Numer Algorithms.
1994;8:221–239.

6. Censor Y, Segal A. The split common fixed point problem for directed operators. J Convex Anal. 2009;16:587–600.

7. Moudafi A. A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal.
2011;74(12):4083–4087.

8. Moudafi A. The split common fixed-point problem for demicontractive mappings. Inverse Problems. 2010;26. DOI:10.
1088/0266-5611/26/5/055007.

DOI:10.1088/0266-5611/26/5/055007
DOI:10.1088/0266-5611/26/5/055007


Zheng Zhou ET AL. 9

9. Cui H, Wang F. Iterative methods for the split common fixed point problem in Hilbert space. Fixed Point Theory Appl.
2014;78(2014). DOI:10.1186/1687-1812-2014-78.

10. Eslamian M. Split common fixed point and common null point problem. Math Meth Appl Sci. 2017;40:7410– 7424.

11. Takahashi W. The split common fixed point problem and the shrinking projection method in Banach spaces. J Convex Anal.
2017;24(3):1015–1028.

12. Suparatulatorn R, Charoensawan P, Poochinapan K. Inertial self-adaptive algorithm for solving split feasible problems with
applications to image restoration. Math Meth Appl Sci. 2019;42:7268 – 7284.

13. Vinh NT, Hoai PT. Some subgradient extragradient type algorithms for solving split feasibility and fixed point problems.
Math Meth Appl Sci. 2016;39(13):3808-3823.

14. Liu L. A hybrid steepest descent method for solving split feasibility problems involving nonexpansivemappings. J Nonlinear
Convex Anal. 2019;20(3):471–488.

15. Zhou Z, Tan B, Li S. An inertial shrinking projection algorithm for split common fixed point problems. J Appl Anal Comput.
2020;. in press.

16. Boikanyo OA. A strongly convergent algorithm for the split common fixed point problem. Appl Math Comput.
2015;265:844–853.

17. Kraikaew R, Saejung S. On split common fixed point problems. J Math Anal Appl. 2014;415(2):513–524.

18. Wang Y, Fang X, Kim TH. Viscosity methods and split common fixed point problems for demicontractive mappings.
Mathematics. 2019;7(9):844.

19. Wang F. A new iterative method for the split common fixed point problem in Hilbert spaces. Optimization. 2017;66(3):407–
415.

20. Nakajo K, Takahashi W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J Math
Anal Appl. 2003;279(2):372–379.

21. Alvarez F, Attouch H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear
oscillator with damping. Set-Valued Anal. 2001;9:3–11.

22. Boţ RI, Csetnek ER, Hendrich C. Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl Math Comput.
2015;256:472–487.

23. Fan J, Liu L, Qin X. A subgradient extragradient algorithm with inertial effects for solving strongly pseudomonotone
variational inequalities. Optimization. 2019;. DOI:10.1080/02331934.2019.1625355.

24. Tan B, Xu S, Li S. Inertial shrinking projection algorithms for solving hierarchical variational inequality problems. J
Nonlinear Convex Anal. 2020;. in press.

25. Tan B, Zhou Z, Qin X. Strong convergence of modified inertial Mann algorithms for nonexpansive mappings. Mathematics.
2020;8:462.

26. Zhou H. Convergence theorems of fixed points for �-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal.
2008;69(2):456–462.

27. Marino G, Xu HK. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J Math Anal
Appl. 2007;329(1):336–346.

DOI:10.1186/1687-1812-2014-78
DOI: 10.1080/02331934.2019.1625355

	An accelerated hybrid projection method with a self-adaptive step-size sequence for solving split common fixed point problems
	Abstract
	Introduction
	Preliminaries
	Main results
	Numerical examples
	Conclusion
	References


