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Abstract

We show that the inverse function of the scale factor a(t) can be represented
as an elliptic integral with a parameter. Using algebraic dependencies between
cosmological parameters and the obtained inverse function formula, we compute in
a uniform way some special events in the universe’s evolution.
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1 Introduction

Our first aim is to infer some useful forms of Friedmann equations, in particular the in-
verse function of the scale factor, and employ them to discuss asymptotics of cosmological
parameters under various assumptions on ΛCDM model. We also show that there are
some interesting algebraic dependencies between the parameters. We use those depen-
dencies in order to find the exact times at which some particular events in the universe’s
evolution occurred, such as the transition points between the epochs in the timeline of
the universe’s evolution.

Friedmann equations, see [1], with the cosmological constant Λ term, are usually
stated as a system consisting of the first and second order differential equations:(
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We remind the well known fact that there are dependencies in this system. Namely,
fluid equation follows from Friedmann equation and acceleration equation, while the
acceleration equation follows from the other two equations. Functions appearing in
these equations are the scale expansion factor a(t), energy density parameter ρ(t) and
the pressure p(t) of the material in the universe. Here k is the universe’s curvature. By
a ΛCDM model we mean any solution of Friedmann equations with the Λ term.

2 Various forms of Friedmann equations

In general relativity, the form of the Friedmann equation, see [2], is

H(t)2 ≡

(
Ṙ(t)

R(t)

)2

=
8πG

3
ρ(t)− kc2

R(t)2
+

Λc2

3
, (2)

where R = R(t) is the curvature radius at time t and k is the curvature index in the
FLRW metric, k is equal to 0, 1, or −1. Also, ρ(t) is the mass density, often replaced
by the total energy density ϵ(t)/c2, which includes rest mass energy and other forms of
energy (e.g., energy of photons, or thermal energy of atoms). In most texts, this total
energy density is just written as ρ(t) and understood to include all contributions, not
just rest mass. Furthermore

a(t) = R(t)/R(t0), H(t) = Ṙ(t)/R(t) = ȧ(t)/a(t), (3)

where R0 = R(t0) is the value of R at some time moment t0 (usually t0 is the present
time), H = H(t) is the Hubble parameter and a = a(t) is the scale factor. Observe that
a(t0) = 1. Then the equation (2) can be written in terms of a, i.e. as

H(t)2 ≡
(
ȧ(t)

a(t)

)2

=
8πG

3
ρ(t)− κ0c

2

a(t)2
+

Λc2

3
, (4)

where κ0 = k/R2
0 is the curvature at time t0. In general,

κ(t) = k/R(t). (5)

From (5) is obvious that k and κ are not the same. However, in most texts with k
are denoted both curvature and curvature index, while its meaning is depending on the
context, see [3]. Having that in mind, from now on we will write k in both cases.

Let ρm denotes the rest mass (dark matter + baryonic) density and ρr the radiation
density. Then ρ can be split into ρm and ρr. Obviously ρm = ρm0a

−3 and, due to the
adiabatic nature of cosmic expansion, ρr = ρr0a

−4 as well, ρi0 = ρi(t0). Hence

ρ = ρm + ρr, and so ρ = ρm0a
−3 + ρr0a

−4. (6)
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Density parameters are defined as follows, see [4]:

ΩΛ(t) =
Λc2

3H(t)2
, cosmological constant density,

Ωk(t) = − kc2

R(t)2H(t)2
= − κ0c

2

a(t)2H(t)2
, curvature density,

Ω(t) =
8πG

3H(t)2
ρ(t), mass density,

Ωm(t) =
8πG

3H(t)2
ρm(t), rest mass density,

Ωr(t) =
8πG

3H(t)2
ρr(t), radiation density.

(7)

Let Ωi denote any of the parameters ΩΛ, Ωk, Ωm, Ωr. By (7), (6) and dividing equation
(2) by H2

0 , as well as taking Ωi0 = Ωi(t0), we obtain a well known and rather useful form
of Friedmann equation

H(t)2

H(t0)2
= ΩΛ(t0) + Ωk(t0)a(t)

−2 +Ωm(t0)a(t)
−3 +Ωr(t0)a(t)

−4,

a(t) = R(t)/R(t0), H(t) = ȧ(t)/a(t).

(8)

A natural question is how (8) relates to Friedmann equations (1), for example, is it
equivalent to them. Before answering it, we find a relation between the pressure p and
ρr.

Proposition 2.1 Fluid equation and (6) imply p = 1
3c

2ρr.

Proof. By Fluid equation, H = ȧ/a and (6) we have

−H
3ρm0 + 4ρr0a

−1

ρm0 + ρr0a−1
+ 3H

(
1 +

p

c2ρ

)
= 0,

and so

3
p

c2ρ
=

ρr0a
−1

ρm0 + ρr0a−1
. (9)

As ρ = ρm0a
−3 + ρr0a

−4 we get p = 1
3c

2ρr. �
The method we used in this proof is somewhat formalistic. Namely, we delivered the

relation between p and ρr relying on the defining relations (6), not entering into their
physical meaning. Such approach is justified given the following proposition.

Theorem 2.2 Assuming the defining identities (6), the system of Friedmann equations
(1) is equivalent to the system

H2/H2
0 = ΩΛ0 +Ωk0a

−2 +Ωm0a
−3 +Ωr0a

−4, p =
1

3
c2ρr. (10)
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To see that p = 1
3c

2ρr and (6) imply fluid equation, it is enough to follow the line of
proof of Theorem 2.1 from the bottom to the top. On the other hand, taking t = t0 in
(10), we get

ΩΛ0 +Ωk0 +Ωm0 +Ωr0 = 1, (11)

for arbitrary t0, since the value of the constant t0 is not specified. But from this identity
Friedmann equations (1) follow immediately.

The form (8) of Friedmann equations is a source of many identities referring to
cosmological parameters and a good starting point for their analysis. To see that, let us
introduce a polynomial

S(a) = Ωr0 +Ωm0a+Ωk0a
2 +ΩΛ0a

4. (12)

Then
H0dt =

a√
S(a)

da, a(0) = 0 and a(t0) = 1. (13)

Integrating the last identity in respect to t on the interval (0, t0) and substituting the
integration variable t by s = a(t), we obtain the following integral identity, whenever
the integral on the righthand side exists:

H(t0)t0 =

∫ 1

0

s√
S(s)

ds =

∫ 1

0

s ds√
Ωr0 +Ωm0s+Ωk0s2 +ΩΛ0s4

. (14)

This integral, let us denote it by I, is an elliptic integral. Hence, it is not possible
in general to find I in the closed form, but assuming some particular values for Ωi0,
it is. For example, if two of the constants Ωi0 are equal to 0, what is often done in
the approximative analysis, then I reduces to the binomial integral for which it can be
effectively decided if I can be analytically computed. Even these particular solutions of
Friedmann equation are of an interest, as the following examples shows.

Case Ωr0 = 0 and Ωk0 = 0. These values of Ωr0 and Ωk0 correspond to pressureless
flat universe with cosmological constant. Then

I =

∫ 1

0

s√
Ωm0s+ΩΛ0s4

ds

=
− ln(Ωm0ΩΛ0) + 2 ln(ΩΛ0 +

√
ΩΛ0

√
Ωm0 +ΩΛ0)

3
√
ΩΛ0

.

Taking Ωm0 = Ω0 and by (11) we have Ω0 + ΩΛ0 = 1, and so we obtain a well known
Carroll-Press-Turner formula [5]:

H0t0 =
2

3

1√
1− Ω0

ln

(
1 +

√
1− Ω0√
Ω0

)
. (15)
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Case Ωr0 = 0 and ΩΛ0 = 0. These values of Ωr0 and ΩΛ0 correspond to pressureless
open universe without cosmological constant. Then

I =

∫ 1

0

s√
Ωm0s+Ωk0s2

ds

=
2
√
Ωk0

√
Ωm0 +Ωk0 +Ωm0(ln(Ωm0Ωk0)− 2 ln(Ωk0 +

√
Ωk0

√
Ωm0 +Ωk0))

2Ωk0
3/2

.

Taking Ωm0 = Ω0 and by (11) we have Ω0 + Ωk0 = 1, and so we obtain a variant of a
well known the second Carroll-Press-Turner formula [5]:

H0t0 =
1

1− Ω0
− Ω0

(1− Ω0)3/2
sinh−1

(√
−1 + Ω−1

0

)
. (16)

If there is no a closed form of I(t), then some approximative formulas are devised,
see [6].

Now we shall see that the formula (8) is useful in finding exact time for specific events
in the universe’s evolution. It will also enable us to solve Friedmann equations in terms
of the inverse function of the scale factor a(t).

First we note that the indeterminate t0 in (8) may represent in fact any other time
moment τ . Hence, for some function b(t) we also have

H(t)2

H(τ)2
= ΩΛ(τ) + Ωk(τ)b(t)

−2 +Ωm(τ)b(t)−3 +Ωr(τ)b(t)
−4,

b(t) = R(t)/R(τ), H(t) = ḃ(t)/b(t).

(17)

If τ ̸= t0, we see that the functions a(t) and b(t) differ, as a(t0) = 1 and b(τ) = 1, while
in general a(τ) ̸= a(t0) and b(t0) ̸= b(τ). The Hubble parameter H(t) does not depend
on the choice of t0 (or τ), as ȧ(t)/a(t) = ḃ(t)/b(t). Hence, the function H(t) in (17) is
identical to that one in (8), so (17) is correctly written. Further,

b(t)/a(t) = R(t0)/R(τ) = b(t0) = 1/a(τ). (18)

Let us write R0 = R(t0), Rτ = R(τ), H0 = H(t0), Hτ = H(τ), Ωiτ = Ωi(τ) and
Ωi0 = Ωi(t0). By definitions (7), we have

ΩΛτ

ΩΛ0
=

H2
0

H2
τ

,
Ωkτ

Ωk0
=

R2
0

R2
τ

· H
2
0

H2
τ

,
Ωmτ

Ωm0
=

R3
0

R3
τ

· H
2
0

H2
τ

,
Ωrτ

Ωr0
=

R4
0

R4
τ

· H
2
0

H2
τ

. (19)

For easier handling of these identities, we introduce new variables x and y satisfying

x = R0/Rτ = 1/a(τ) and y = H2
0/H

2
τ . (20)

Then we have the following algebraic relations between the cosmological parameters.

a(τ) = 1/x, Rτ = R0/x, Hτ = H0/
√
y,

ΩΛτ = ΩΛ0y, Ωkτ = Ωk0x
2y, Ωmτ = Ωm0x

3y, Ωrτ = Ωr0x
4y,

y =
1

ΩΛ0 +Ωk0x2 +Ωm0x3 +Ωr0x4
.

(21)
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Cosmological parameters are considered mostly as functions of time. In the contrast to
the obtained algebraic correlations, dependence of cosmological parameters on time in
general is transcendental, or even cannot be presented in the closed form by elementary
functions, particularly in the presence of the cosmological constant Λ. However, we can
compute time τ if it is known the value at τ of at least one basic parameter. This
task can be solved by use of (21) and the following integral. So let R(t) be a solution of
Friedmann equation (2). Further, assume that the values of H(t0) and Ωi(t0) are known,
for example they are measured at t0.

By (21) a(τ), Rτ = R(τ), Hτ = H(τ) and Ωiτ = Ωi(τ) are algebraically parameter-
ized in respect to the variable x. Hence, given a value of x, we can compute using (21)
in the straightforward manner all the parameters, except the time τ . Further, by (17)
we infer ∫ τ

0
Hτdt =

∫ τ

0

ḃ(t) dt

b(t)
√

ΩΛτ +Ωkτ b(t)−2 +Ωmτ b(t)−3 +Ωrτ b(t)−4
. (22)

Taking the new integration variable s = b(t), ds = ḃ(t)dt, and as b(τ) = 1, we obtain a
parametric integral in the parameter x with respect to (21)

τ =
1

Hτ

∫ 1

0

s ds√
Ωrτ +Ωmτs+Ωkτs2 +ΩΛτs4

. (23)

We give some simple examples to illustrate the proposed procedure. For t0 we take the
present time and for values of the parameters at t0 we take a set of mean currently
measured values [7]:

a0 = 1, H0 = 67.4 (km/s)/Mpc = 2.1843 · 10−18s−1,

ΩΛ0 = 0.685, Ωk0 = 0.0007, Ωm0 = 0.3164, Ωr0 = 0.0000538.
(24)

We take Ωm = Ωb+Ωc +Ων , where Ωb, Ωc and Ων are densities respectively of baryonic
mass, cold dark matter and neutrinos.
Example 1. In this example we take τ = t0, i.e. we compute the age of the Universe.
Hence x = 1 and we compute

t0 =
1

H0

∫ 1

0

s ds√
Ωr0 +Ωm0s+Ωk0s2 +ΩΛ0s4

= 13.7815Gyr. (25)

Example 2. In this example we compute time τ when the universe will double its expan-
sion, i.e. aτ = 2. Then x = 0.5, so using (21) we obtain

yτ = 1.3828, Hτ = 1.8575 · 10−18s−1,

ΩΛτ = 0.9452, Ωkτ = 0, Ωmτ = 0.05457, Ωrτ = 4.6397 · 10−6,
(26)

while the time for this event is computed as

τ =
1

Hτ

∫ 1

0

s ds√
Ωrτ +Ωmτs+Ωkτs2 +ΩΛτs4

= 24.944Gyr. (27)
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3 Inverse function of a(t)

A closer look at (23) shows that this integral gives a procedure for computing the inverse
function of the scale factor a(t). Namely, this integral enables us that for a given value
a = a(τ) at a certain, but unknown time-moment τ , we can find the value of τ . To see
this, observe that by (21), Hτ , ΩΛτ , Ωkτ , Ωmτ and Ωrτ are functions of x. As x = a−1

τ ,
they are functions of aτ , as well. If S(a) is a polynomial defined by (12), from (21) we
infer parametrization of all so far introduced parameters in respect to the scale factor a

x = a−1, y = a4/S(a), Rτ = R0a, Hτ = H0

√
S(a)/a2,

ΩΛτ =
ΩΛ0a

4

S(a)
, Ωkτ =

Ωk0a
2

S(a)
, Ωmτ =

Ωm0a

S(a)
, Ωrτ =

Ωr0

S(a)
.

(28)

Substituting these formulas in (23), we obtain

τ =
a2

H0

∫ 1

0

s ds√
Ωr0 +Ωm0as+Ωk0a2s2 +ΩΛ0a4s4

. (29)

Applying substitution a·s → s, we finally obtain the parametrization of time τ in respect
to a

τ ≡ J (a) =
1

H0

∫ a

0

s ds√
Ωr0 +Ωm0s+Ωk0s2 +ΩΛ0s4

. (30)

Hence, J (a) is the inverse function of the scale factor a(t). It means, J (aτ ) = τ if and
only if a(τ) = aτ . Therefore, given a value aτ of the scale factor, we can find time τ
at which a(τ) = aτ . Note that both integrals (23) and (30) are integral solutions of
Friedmann equation, but in respect to the inverse function of a(t), given initial values
a(t0) = 1 and Ωi0.

If in (30) we consider a as a function of τ and differentiate this equation in respect
to τ , we get

1 =
aȧ

H0

√
S(a)

, (31)

wherefrom we obtain that the function a = a(τ), satisfying J (a) = τ , is a solution of
the Friedmann equation (8).

The parametrization τ ≡ J (a) of time together with formulas (28) is convenient
for studying the scale factor a(t), but also for constructing graphs of a(t) and of other
cosmological parameters over some time interval. For example, in order to construct the
graph of a(t), let J = [a1, a2], a1 < a2, be a real interval and P = {(a,J (a)) : a ∈ J}
the set of pairs. As J (a) is an increasing function, the set T = {J (a) : a ∈ J} will be a
time interval [t1, t2], where ti = J (ai), and so G = P−1 = {(J (a), a) : a ∈ I} will be the
graph of a(t) over the time interval T .

At Figure 1, the evolution of the scale factor a(t) is depicted. The graphs are con-
structed with resolution of 2 × 108 years from the table of the values of the inverse
function J (a), which is generated using the integral (30).
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Figure 1: Scale factor: 0 – 40 Gyr for various values of Hubble constant.
Graph generated using the integral (30).

However, if some particular points at the time scale should be computed, then the
formula (23) is usually more appropriate. An additional reason for the preference of the
presented method is the simplicity in finding the values of most cosmological parameters,
based on the straightforward and easy use of the system of equations (21). We shall meet
this situation in the next section.

4 Transition points

In this section we compute special points – events in the timeline of the universe, includ-
ing moments at which the universe’s evolution transits from one epoch to the another.
For this purpose, we use the procedure for obtaining the integral (23). The method
is based on a solution of the system of equations (21). This system consists of eight
equations with nine unknowns x, y, a(τ), Rτ , Hτ and Ωiτ . Hence, it suffices to find a
ninth equation that is characteristic to the selected event, what eventually will lead to
a solution of the system.

In our computation, we took into account the so called Hubble tension, arising in the
contemporary measurements of the Hubble constant and their concentrations around
two values, H ′

0 = 67.7 (km/s)/Mpc and H ′′
0 = 73.0 (km/s)/Mpc. However, these obser-

vations have been based on two very different approaches, see [8]. The first method is
based on the measurement of a relic phenomena of the universe, the cosmic microwave
background, formed just after the Big Bang birth, see [9]. The second one has focused
on the ”local measurements”, see [10], [9], i. e. the behavior of galaxies near our own
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galaxy, just how fast they are speeding away from each other. Both types of data have
been surveyed with increasing precision, but the resulting measurements converge to the
above values making the difference in each group to disappear, what produces the still
unresolved discrepancy.

For each event, we computed the related time for two groups of data measured today,
corresponding to H ′

0 and H ′′
0 . Values of Ωi0 are calculated assuming H ′

0, and they are
taken today as the true values of these parameters for our Universe, see [7]. Hence, we
used these values also for computing data in respect to H ′′

0 for a selected event.
Each group consists of three types of data, minimal, mean and maximal values. The

function J (a) is monotonously increasing and the positive constants (with one exception)
Ωi0 appear in the denominator of the subintegral function, hence the values τ = J (a)
will be in the reverse order (maximal, mean and minimal). We see at Figure 1 that
all three graphs in each group almost coincide and are geometrically and topologically
similar, but the groups themselves diverge from each other. Computed values of the
selected events are displayed at Table 2 and Table 3.

We should note that from (21) and (23) it is easy to realize that different values of
Hubble constant only affect on value of Hubble parameter Hτ and consequently on time
τ , while aτ , as well as Ωiτ , remain the same. Because of that, in Table 2 are presented
calculated values of aτ , Ωiτ and time τ , while in Table 3 are depicted only calculated
values of time τ .

There is a dozen of sources for these values, but we rely mostly on [7] and [11]. The
techniques used to calculate the universe’s expansion rate from the early cosmos, give
for H0 the value H ′

0 = 67.4 ± 0.5 (km/s)/Mpc. Several methods of the second kind
combined, yield an average Hubble constant value H ′′

0 = 73± 1.0 (km/s)/Mpc. We also
take

Ωm0 = Ωc0 +Ωb0 +Ων0, (32)

where Ωc0 = 0.265±0.007 is the density of the cold dark matter, Ωb0 = 0.0493±0.0006 is
the density of baryonic particles and Ων0 = 0.0021±0.0009 is the neutrino density today.
For Ωr0 we take the radiation density Ωγ0 of CMB. Initial data for our computation are
displayed in the Table 1.

Present values of cosmological parameters

H ′
0 H ′′

0 ΩΛ0 Ωk0 Ωm0 Ωr0 Ων0

min 66.9 72.0 0.678 -0.0012 0.3079 5.23 · 10−5 0.0012
mean 67.4 73.0 0.685 0.0007 0.3164 5.38 · 10−5 0.0021
max 67.9 74.0 0.692 0.0026 0.3249 5.53 · 10−5 0.0030

Table 1: Values are generated using data from [7] and [11].

The identity (11) must be satisfied in ΛCDM model. Since some Ωi0 are measured
independently, it often happens that this identity is violated, i.e

∑
iΩi0 ̸= 1. The

sum SΩ =
∑

iΩi0 differs from 1 usually for a small value, so it is more appropriate to
normalize Ωi0 taking Ω′

i0 = Ωi0/SΩ. Anyway, in all cases we have Ωimin < Ω′
i0 < Ωimax.
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We should mention that all data from Table 2 and Table 3 are calculated for both
normalized and non-normalized values of Ωi0. Since the difference between the results
obtained using both types of data is smaller than the range of minimal and maximal
input values of parameters, we decided to present in Table 2 and Table 3 only results
obtained using normalized values of data.

4.1 Transition from radiation to matter dominated era

Radiation dominated epoch covers the period when the expansion of the universe was
dominated by radiation. It is usually taken that it started after inflation and lasted until
the equalization of matter and radiation. This second event is characterized by

Ωmτ = Ωrτ , τ is the equalization time moment. (33)

This give us the ninth equation that supplements the system (21). In the radiation era,
neutrinos were relativistic particles [12], in fact until the recombination which happened
far beyond τ , see [13]. Hence we have to relocate the summand Ωντ from Ωmτ to Ωrτ .
Therefore, to compute matter density at time τ , instead of (32) we take Ω′

m0 = Ωc0+Ωb0

and Ω′
mτ = Ω′

m0x
3y in (21), where Ω′

mτ = Ωcτ +Ωbτ . Also, as neutrinos at time τ add to
the radiation we take Ω′

rτ = Ωγτ +Ωντ , where Ωγτ is the photon density. Hence, instead
of the equation (33) we take Ω′

mτ = Ω′
rτ .

Density of neutrinos Ωνt at time τ is computed by, see [13], [14]:

Ωντ = λΩγτ , where λ = Neff · 7
8
·
(

4

11

) 4
3

. (34)

Here, Neff = 3.046 is a slightly greater than Nν = 3, the number of neutrino families [14].
Hence, Ω′

rτ = (1 + λ)Ωγτ = (1 + λ)Ωγ0x
4y. Obviously, we took Ωr0 = Ωγ0, as present

neutrinos are non-relativistic, hence they do not add to the radiation. As Ω′
mτ = Ω′

rτ ,
we get Ω′

m0x
3y = (1 + λ)Ωγ0x

4y, so

x =
1

1 + λ
· Ω

′
m0

Ωγ0
=

Ωc0 +Ωb0

(1 + λ)Ωγ0
=

Ωm0 − Ων0

(1 + λ)Ωγ0
. (35)

As the values of upper and lower bounds and the mean values of the constants Ωc0, Ωb0,
Ωγ0 and Ων0 are known, see the enclosed table, we can solve the system (21) for H ′

0 and
H ′′

0 . Using the integral (23), or J (a), we can compute the corresponding times τ , as
well. The computed values are displayed at Table 2 and Table 3. We see that τ ≈ 50 000
Yrs, which is approximately the same as in [6].

4.2 Domination of dark energy over radiation

Dark energy density has a small, but constant value. On the other hand, radiation had
a large value in the early epoch of the existence of the Universe, but it was decreasing
in time due to the universe’s expansion. Its value was tending rapidly to zero due to
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the fourth degree power low that it obay, so its graph intersected the curve of change of
dark energy density parameter at some relatively early time τ . The intersection of these
two graphs is characterized by

ΩΛτ = Ωrτ . (36)

By the identities (21), it follows ΩΛ0y = Ωr0x
4y, so

x = (ΩΛ0/Ωr0)
1
4 , hence a(τ) = (Ωr0/ΩΛ0)

1
4 . (37)

Using other formulas in (21), we can compute the values of other parameters at τ . The
integral (23), or J (a), gives us the value of τ . The results of computations are displayed
at Table 2 and Table 3. We see that τ ≈ 5× 108 Yrs.

4.3 Transition from matter to dark energy era

Observations of Type Ia supernovae at the end of XX century, see [15], [16], proved that
the expansion of the Universe is accelerating. The explanation was that the dark energy
prevailed the dominance of matter at some time in the past. So these probes gave a
definite proof of the existence of dark energy. It meant that the cosmological constant
Λ, appearing in Einstein field equations, is nonzero. Density term of dark energy ΩΛ is
constant in time. In other words, its value is independent of the universe’s evolution.
Therefore it has to surpass any cosmological parameter tending to zero. In the previous
subsection, we have computed time at which the dark energy exceeded radiation. As Ωm

converges to zero in time too, dark energy transcended the matter at some time-moment
τ . There are two completely different methods for computing τ . The first one is to
consider the equation

ΩΛτ = Ωmτ , (38)

while the second one identifies this moment with an inflection point of a(τ), i.e. looks
for a solution of the equation ä(τ) = 0. Here we shall compute the transition time τ
from matter dominated epoch to dark energy dominated era using (38). Hence, by (21)
we immediately have ΩΛ0y = Ωm0x

3y, so

x = (ΩΛ0/Ωm0)
1
3 , hence a(τ) = (Ωm0/ΩΛ0)

1
3 . (39)

Using other formulas in (21), we can compute the values of other parameters at τ . The
integral (23), or J (a), gives us the value of τ . The results of computations are displayed
at Table 2 and Table 3. We see that τ ≈ 5× 1010 Yrs, which is approximately the same
as in [7] and [6].

4.4 Recombination

Recombination denotes the epoch at which charged electrons and protons first became
bound to form hydrogen atoms. Namely, as the universe expanded, it also cooled.
Eventually, the universe cooled to the point that the formation of neutral hydrogen
was energetically favored and involved electrons binding to protons to form neutral
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hydrogen atoms. This event is accompanied with photon decoupling, a process of photon
production during the transition of hydrogen atoms in a high energy state, to their
low energy state. In that way released photons are measured today as relic photons,
which form CMB radiation with the current temperature T0 = 2.728 K. The process of
recombination happened at about the temperature T = 3000 K. Due to the adiabatic
nature of the universe’s expansion, temperatures T and T0 are bounded by T = (1+z)T0,
where z is the redshift of the recombination time τ . As 1+ z = a(τ)−1, we got the ninth
equation which supplements the system (21)

T = xT0, hence x = 3000/2.728. (40)

Using other formulas in (21), we can compute the values of other parameters at τ . The
integral (23), or J (a), gives us the value of τ . The results of computations are displayed
at Table 2 and Table 3. We see that τ ≈ 400 000 Yrs, which is approximately the same
as in [17].

4.5 Inflection point of the scale factor

By visual inspection of the six curves at Figure 1, that present the scale factor a(t),
we see that in all cases a(t) has an inflection point M = (τ, a(τ)) between 5 · 109 and
1010 years. We also see that for t < τ the function a(t) is concave, so ä(t) < 0, while
for t > τ the function a(t) is convex, i.e. ä(t) > 0, see [18]. Hence the deceleration
parameter q(t) = −ä(t)a(t)/ȧ(t)2 is positive for t < τ and so the universe’s expansion
decelerate in that period, while for t > τ we have q(t) < 0, so the Universe accelerates
its expansion since the time moment τ , which is consistent with [12] and [19]. Then the
natural interpretation would be that Λ dominates for t > τ , i.e that the dark energy era
started at τ . We can find τ , if we put ä(τ) = 0 in the acceleration equation in (1):

−4πG

3

(
ρτ +

3pτ
c2

)
+

Λc2

3
= 0. (41)

Here ρ = ρτ denotes the total energy density, hence ρτ = ρmτ + ρrτ . Further, by
Proposition 2.1, pτ = 1

3c
2ρrτ . If we make substitution in (41) using these formulas and

divide it by H2
τ , we get

Ωrτ +
1

2
· Ωmτ − ΩΛτ = 0, (42)

the ninth equation that supplements the system (21). Using the appropriate identities
from (21), we can reduce (42) to the forth degree algebraic equation in respect to the
indeterminate x:

Ωr0x
4 +

1

2
· Ωm0x

3 − ΩΛ0 = 0. (43)

It is easy to see that this equation has only one real positive solution in x. This solution
corresponds to the inflection point of a(t). Solving this equation and using other formulas
in (21), we can compute the values of other parameters at τ . The integral (23), or J (a),
gives us the value of τ . The results of computations are displayed in Table 2 and Table
3. We see that τ ≈ 7.7 · 109 Yrs, which is the same as in [7].
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This time and time obtained in subsection (4.3) differ more than 2 ·1010 years, even if
they should refer to the same event, a transition point from matter dominated to a dark
energy dominated universe. Moreover, computation shows, see Table 2, that Ωmτ ≈
0.67, while ΩΛτ ≈ 0.33. These results show that the Universe started its expansion
acceleration much before the dark energy prevailed the matter domination. Obviously
some explanation for this discrepancy is needed.

5 Conclusion

Inverse function J (a) of the scale factor a(t) for ΛCDM model is determined. Also a
set (S) of eight algebraic equations on nine cosmological parameters is proposed. A
uniform and a simple method, based on J (a) and (S), for computing times of particular
events in the time-line of the universe is proposed. To apply the method one has to find
the ninth equation, characteristic to the event, which supplements (S). The method is
exact, in contrast to the approximative solutions usually applied in the literature. Also,
it is equally well applied for flat and open universe.

We applied the method for computing the graph of a(t) and the principal events in
the evolution of the Universe for two values of the Hubble constant, clustering around
H0 = 67.4 (km/s)/Mpc and H0 = 73 (km/s)/Mpc, for mean and extreme (minimum
and maximum) values of cosmological parameters measured recently in cosmological
probes. In all cases, we found that there is only negligible difference in the morphological
(geometrical, topological and analytical) properties of a(t), as well as in the values of
computed times for the discussed events. Numerical results are presented in Table 2 and
Table 3.

Note. All computations are done using the Wolfram Mathematica package and pro-
gramming language. Programs can be obtained on request from the authors.
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H0 = 67.4 (km/s)/Mpc

min mean max

Ωm = Ωr

aτ 0.000288472 0.000289591 0.000290686

ΩΛτ 3.327 · 10−11 3.31274 · 10−11 3.29954 · 10−11

Ωkτ −7.07616 · 10−7 4.03668 · 10−7 1.46714 · 10−6

Ωmτ 0.629395 0.630054 0.630702

Ωrτ 0.370606 0.369946 0.369297

τ 58035.8 57701.0 57374.2

Ωr = ΩΛ

aτ 0.0937169 0.0941397 0.0945485

ΩΛτ 0.00180659 0.00179935 0.00179239

Ωkτ -0.000364063 0.000207481 0.000753339

Ωmτ 0.996751 0.996194 0.995662

Ωrτ 0.00180659 0.00179935 0.00179239

τ 4.98567 · 108 4.95727 · 108 4.92912 · 108

Ωm = ΩΛ

aτ 0.768647 0.773004 0.777227

ΩΛτ 0.500695 0.499518 0.498395

Ωkτ -0.00149993 0.000854269 0.00309989

Ωmτ 0.500695 0.499518 0.498395

Ωrτ 0.000110647 0.000109879 0.000109144

τ 1.03534 · 1010 1.03037 · 1010 1.02542 · 1010

Recombination

aτ 0.000909333 0.000909333 0.000909333

ΩΛτ 1.39513 · 10−9 1.37143 · 10−9 1.34899 · 10−9

Ωkτ −2.98621 · 10−6 1.69487 · 10−6 6.12955 · 10−6

Ωmτ 0.842607 0.842464 0.842329

Ωrτ 0.157396 0.157534 0.157665

τ 403237.0 398251.0 393434.0

ä = 0

aτ 0.610188 0.613647 0.616999

ΩΛτ 0.333924 0.333094 0.332301

Ωkτ -0.00158735 0.000903932 0.00327967

Ωmτ 0.667477 0.665818 0.664236

Ωrτ 0.000185808 0.000184494 0.000183237

τ 7.73592 · 109 7.6994 · 109 7.66302 · 109

Table 2: Numerical results for H0 = 67.4 (km/s)/Mpc.
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H0 = 73 (km/s)/Mpc

min mean max

Ωm = Ωr

τ 53925.0 53274.6 52644.7

Ωr = ΩΛ

τ 4.63252 · 108 4.57699 · 108 4.5228 · 108

Ωm = ΩΛ

τ 9.62001 · 109 9.51327 · 109 9.40896 · 109

Recombination

τ 374675.0 367700.0 361002.0

ä = 0

τ 7.18796 · 109 7.10876 · 109 7.03134 · 109

Table 3: Numerical results for H0 = 73 (km/s)/Mpc.
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