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ABSTRACT: An efficient multiscale-like multigrid (MSLMG) method( is

presented to solve the two-dimensional (2D) convection-diffusion equations on

nonuniform grids, based on the transformation-free high order compact (HOC)

difference scheme. By providing appropriate initial solutions, the discretization

systems on the two finest grids are solved to obtain the MSLMG solutions with

discretization-level accuracy by performing few multigrid cycles, which imple-

mented with alternating line Gauss-Seidel smoother, interpolation and restriction

on nonuniform grids. Numerical experiments of two boundary layer and local sin-

gularity problems are conducted to demonstrate the proposed algorithm is efficient

and effective to decrease the computational cost.
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1 Introduction

High order compact (HOC) scheme is a commonly discretization method for solving the partial

differential equations. This approach on uniform grids demonstrate high accuracy for smooth so-

lutions while it fail to achieve theoretical accuracy order for computing some specialized practical

cases, such as boundary layers or local singularities problems, if there are no enough mesh nodes

in the local domain of steep solution gradients. Transformation-free HOC method[9, 11] is an effi-

cient scheme for various steep gradient solution cases, by placing more grid points inside the local

domain with boundary layers or local singularities, and placing comparably less grid points on the

smooth regions. This approach not only keeping the good features of ordinary HOC schemes, but

also has better scale resolution with smaller number of grid points, with resultant saving of memory.

Multigrid method (MG) [1] is an efficient iterative method for a wide class of partial differential

equations, such as Poisson equations[2, 5, 9, 12, 14, 17, 18], convection-diffusion equations[8, 10,

15, 19] and Helmholtz equations[6, 7]. Various strategies for combining interpolator and restriction

operators on uniform grids have been developed, such as multiscale multirid (MSMG)[3, 4, 13, 17]

and EXCMG accelerated multiscale multigrid (EXCMG-MSMG)[5] methods.

Recently, based on the transformation-free HOC schemes, Ge and Cao discussed the V-cycle

multigrid (VMG) methods on nonuniform grids, to solve the 2D convection-diffusion[8] and the 3D

Poisson problems[9]. Numerical experiments shown that the VMG algorithms have high efficiency

and robust for the discrete system on nonuniform grids. However, choosing an initial value to start

the process of VMG algorithms[8, 9] has a certain randomness, which lead to the total computational

cost maybe not optimal.

In this paper, through providing a suitable initial solution for the VMG[8], we aim to develop

a multiscale-like multigrid (MSLMG) method, to solve the 2D steady-state convection-diffusion

equation on nonuniform grids, based on the transformation-free HOC difference scheme [11]. In

this approach, appropriate initial vectors are provided for the multigrid method on the two finest

grids, respectively, which greatly reduces the number of V-cycles. Numerical experiments are con-

ducted to verify that our MSLMG algorithm can achieve comparable accuracy and keep less cost
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simultaneously.

The rest of the paper is organized as follows. Section 2 introduces the model problem and

a transformation-free HOC scheme. In Section 3 we introduce the restriction and interpolation

operators on nonuniform grids. In Section 4 we proposed a multiscale-like multigrid (MSLMG)

computation. Supporting numerical results are reported in Section 5. Concluding remarks are

provided in Section 6.

2 Model problem and computational strategies

Numerical solution of convection-diffusion equations plays an important role to describe many

processes in fields of fluid dynamics. In this article, we are interested in efficiently solving solution

with discretization-level accuracy of 2D convection-diffusion equation of the form

−
(
∂2u
∂x2 +

∂2u
∂y2

)
+ c(x, y)

∂u
∂x
+ d(x, y)

∂u
∂y
= f (x, y), (2.1)

with suitable Dirichlet boundary conditions. Here the given convection-velocity c(x, y), d(x, y), the

forcing term f (x, y) and the solution u(x, y) are assumed to be continuously differentiable and have

the necessary continuous partial derivatives up to certain orders on the domain Ω, The f (x, y) and

u(x, y) may have singularity in some region.

For simplicity of presentation, we assume the domain Ω is a rectangular [Da,Db] × [Dc,Dd],

and divide the intervals [Da,Db] and [Dc,Dd] into sub-intervals by the nodes

Da = x0 < x1 < · · · < xN−1 < xN = Db,

Dc = y0 < y1 < · · · < yN−1 < yN = Dd.

Where N represents the number of grid intervals in each coordinate direction.

The forward and backward step lengths in the y-direction (1 ≤ j ≤ N − 1) are defined as (see
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Figure 1: Nonuniform high order compact stencil

Figure 1)

h f
y j = y j+1 − y j, hb

y j
= y j − y j−1.

Likewise for the x-direction (1 ≤ i ≤ N − 1), we have the step lengths

h f
xi = xi+1 − xi, hb

xi
= xi − xi−1.

Let Ui, j denote the approximate of u at mesh point (xi, y j). Set Gi, j = G(Ui, j, xi, y j) and γ =

hx/hy. Here, we introduce the nine-point transformation-free HOC scheme [11] on nonuniform

grids for the model problem (2.1) as below

[
−Ai jδ

2
x − Bi jδ

2
y +Ci jδx + Di jδy +Ci jδxδy − Hi jδxδ

2
y − Ki jδ

2
xδy − Li jδ

2
xδ

2
y

]
Φi j = Fi j. (2.2)

Here the coefficients Ai j, Bi j, Ci j, Di j, Gi j, Hi j, Ki j, Li j, Fi j and the difference operators δx, δy, δ2x,

δ2y , δxδy, δ2xδy, δxδ
2
y , δ2xδ

2
y are defined in Ref. [11].

The transformation-free HOC scheme has fourth-order accuracy on uniform grids (h f
xi = hb

xi
and

h f
y j = hb

y j
) and at least third-order on nonuniform grids (h f

xi , hb
xi

or h f
y j , hb

y j
) (see Ref. [11] for

details).

From the HOC scheme (2.2), the discretization linear system on nonuniform grids can be given
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Figure 2: Areas for restriction operator [8]

as below

Ahuh = Fh, (2.3)

where Ah is a sparse matrix, Fh is a right-hand vector, and uh is a unknown solution.

Similar to the above process, the domain Ω also can be further subdivided into a sequence of

refined grids Ω j( j = 1, 2, . . . , L) with the number of grid intervals N j = 2 j−1N. The corresponding

discretization difference equations on grid Ω j can be constructed as follow

A ju j = F j, j = 1, 2, . . . , L. (2.4)

3 Restriction and interpolation on nonuniform grids

Standard multigrid methods includes those steps: eliminating high frequency component errors

using a relaxation iterative method, projecting the residuals from the fine grid to the coarse grid by

a restriction operator, computing an approximate (or direct) solution of the smooth error equation

on the coarse grid, prolonging a correction vector back to the fine grid by a interpolation operator,

updating the previous approximation by adding the correction vector, smoothing the error again

using a relaxation algorithm.

Hence the restriction and interpolation operators are two important components of multigrid ap-
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Figure 3: Areas for interpolation operator [8]

proach. In this section, we will introduce the restriction and the interpolation operators on nonuni-

form grids, which has been discussed by Ge and Cao in Ref. [8].

We choose a rectangle domain [xi−1, xi+1] × [y j−1, y j+1] on the fine grid Ωh (see Figure 2) to

introduce the restriction operator [8]. The symbols S 0 is the area bounded by four dashed lines

around the reference mesh node (i, j) and S i(i = 1, . . . , 8) are the area bounded by the dashed lines

and the boundary lines around them. Let S is the total area of S i(i = 0, . . . , 8). Namely,

S 0 =
(xi+1 − xi−1)(y j+1 − y j−1)

16
, S 1 =

(xi+1 − xi)(y j+1 − y j−1)
4

,

S 2 =
(xi+1 − xi−1)(y j+1 − y j)

4
, S 3 =

(xi − xi−1)(y j+1 − y j)
4

,

S 4 =
(xi+1 − xi−1)(y j − y j−1)

4
, S 5 =

(xi+1 − xi)(y j+1 − y j)
4

,

S 6 =
(xi − xi−1)(y j+1 − y j)

4
, S 7 =

(xi − xi−1)(y j − y j−1)
4

,

S 8 =
(xi+1 − xi)(y j − y j−1)

4
, S =

8∑
i=0

S i = (xi+1 − xi−1)(y j+1 − y j−1).

Assume ri, j, r̄ic, jc are the residuals at the fine grid nodes (i, j) and at the coarse grid nodes

(ic, jc), respectively. The fine grid index (i, j) and the coarse grid index (ic, jc) satisfy that i = 2ic
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and j = 2 jc. Then, the restriction operator on nonuniform grids can be explicitly express as [8]

r̄ic, jc =
1
S

(S 0ri, j + S 1ri−1, j + S 2ri j−1 + S 3ri+1 j + S 4ri j+1+

S 5ri−1, j−1 + S 6ri+1, j−1 + S 7ri+1, j+1 + S 8ri−1, j+1). (3.5)

We now turn to introduce the interpolation operator [8] on the coarse grid cell [xic−1, xic] ×

[y jc−1, y jc] with a similar strategy.

Use the big black and the small black dots to denote the grid points at coarse and fine grids

(see Figure 3), respectively. It is need to notice that the coarse grid points are simultaneously some

points on the fine grid.

Let S i (i = 1, . . . , 4) are the area bounded of fine grid cell (see Figure 3), respectively. S is the

area of coarse grid cell [xic−1, xic]× [y jc−1, y jc]. The marks L f
y and Lb

y correspond to the forward and

the backward step lengths of the fine grid in y direction. L f
x and Lb

x have a similar definitions in the

x direction.

Under this condition, the explicitly express of interpolation operator [8] on nonuniform grids

can be written as

ri, j = r̄ic, jc ,

ri−1, j =
1

Lb
x + L f

x

(L f
x r̄ic−1, jc + Lb

xr̄ic, jc),

ri, j−1 =
1

Lb
y + L f

y

(L f
y r̄ic, jc−1 + Lb

y r̄ic, jc),

ri−1, j−1 =
1
S

(S 1r̄ic−1, jc−1 + S 2r̄ic, jc−1 + S 3r̄ic, jc + S 4r̄ic−1, jc).

4 Multiscale-like multigrid computation

In this section, we shall develop a multiscale-like multigrid (MSLMG) computation with suit-

able initial solutions for the sparse linear system (2.3) on nonuniform grids. The main idea of the
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Figure 4: Illustration of the multiscale-like multigrid (MSLMG) method

algorithm is as follows, full interpolation operator is employed to construct more accurate initial

guesses on two finest grids ΩL−1 and ΩL. Then, with the provided initial solutions, the V-cycle

multigrid solver[8] is applied to complete the computation on the grids ΩL−1 and ΩL, successively.

The detail of proposed algorithm is stated in Algorithm 1, and the structure of MSLMG method is

shown in Figure 4.

It’s worth pointing that, the proposed MSLMG computation can be regarded as the extension

and application of Ref. [5, 17] on nonuniform grids.

Algorithm 1 Multiscale-like multigrid (MSLMG) computation

Step 1. Compute the solution u∗1 on the coarsest grid Ω1 by a direct solver.

Step 2. Construct an initial vector u0
L−1 on the grid ΩL−1 by using a full interpolator.

Step 3. Compute the solution u∗L−1 by using the V-cycle multigrid with an initial guess u0
L−1.

Step 4. Construct an initial vector u0
L on the grid ΩL by using a full interpolator.

Step 5. Compute the solution u∗L by using the V-cycle multigrid with an initial guess u0
L.

We now turn to estimate the computational cost of the MSLMG method in terms of work units

(WU)[1]. Roughly speaking, here “1 WU " denotes the computational cost of performing one re-

laxation sweep on the finest grid ΩL. For the sake of discussion, we neglect the amount of work
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required on the coarsest grid and the transfer operators (interpolation and restriction) between dif-

ferent nonuniform grids since it normally counts 10 − 20% of the total cost of the entire algorithm.

Assume that the m j is the number of V-cycles with v1 pre-smoothing and v2 post-smoothing,

required on the grid Ω j( j = L − 1, L) when the computed approximation satisfies a given stopping

criterion. Then the computational cost (WU) of MSLMG with L embedded grids can be estimated

as the form of

WUMS LMG
L ≈ (v1 + v2)[mL + (mL + mL−1)

L−1∑
j=2

2−2(L− j)]. (4.6)

5 Numerical experiments

In our numerical experiments, we tested the proposed MSLMG algorithm for computing t-

wo 2D convection-diffusion equations with vertical boundary layer or local singularity, and com-

pared the results with the current V-cycle multigrid (VMG) method [8]. Our codes are written in

Matlab and the programs are carried out on a desktop with Inter (R) Core(TM) i5-6200U CPU

(2.30GHZ,2.40GHZ) and 4GB RAM.

We chosen the alternating line Gauss-Seidel iterative method as smoother. The VMG method

with three pre-smoothing and three post-smoothing was used in our MSLMG approach or as the

compared algorithm. The iterative procedure of V-cycles was terminated when relative residuals

was reduced by 10−10. In our MSLMG method, the spline interpolator was used to provide initial

guesses on two finest grids ΩL−1 and ΩL, respectively. As for the compared VMG method, the

initial guess on the finest grid was the zeros vector.

All reported errors ∥EL∥∞ were the L∞-norm errors between the exact solution u and the nu-

merical solution u∗L obtained by VMG or MSLMG methods. The symbols Time and Iter denotes

the computational time in seconds and the number of V-cycles (for MSLMG method on the ΩL and

the ΩL−1 ) required, respectively. Besides, we also reported the order of solution accuracy, which is

defined by

Rate =
log(∥EH∥∞/∥Eh∥∞)

log(H/h)
,
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Figure 5: Exact solutions

where EH and Eh are the errors of numerical solutions with the meshsizes H and h, respectively.

Example 5.1 [8, 16] Consider the steady-state convection-diffusion equation

− uxx(x, y) − uyy(x, y) +
100

(1 + y)
uy(x, y) = f (x, y), (5.7)

with suitable Dirichlet boundary conditions and the forcing term f (x, y), such that the exact solution

is

u(x, y) = exp(y − x) +
(1 + y)101

2100 . (5.8)

Example 5.2 [19] Consider the following differential equation

− uxx(x, y) − uyy(x, y)) + c(x, y)ux(x, y) + d(x, y)uy(x, y) = f (x, y), (5.9)

with coefficients

c(x, y) = 100x(x − 1)(1 − 2y), d(x, y) = 100y(y − 1)(1 − 2x).

Where the Dirichlet boundary conditions and the forcing term f (x, y) are satisfy the analytic solution

u(x, y) = exp(−100(x − 0.5)2 − y2). (5.10)
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(a) Example 5.1, λx = 0, λy = 0.5 (b) Example 5.1, λx = 0, λy = 0.9

(c) Example 5.2 , λx = 0.5, λy = 0 (d) Example 5.2 , λx = 0.9, λy = 0

Figure 6: Nonuniform grid (32 × 32) with different stretching parameters λx and λy

The exact solution of Example 5.1 has a vertical boundary layer attached to the line y = 1 (see

Figure 5 (a)). To obtain an appropriate discrete grid for this case, we used a nonuniform grid along

the y direction with clustering near y = 1 and a uniform grid along the x direction, which were

defined by the following grid stretching function [8]

xi =
i

imax
(λx = 0) , y j =

j
jmax
+
λy

π
sin

(
π j
jmax

)
.

Here, stretching parameters λx and λy were used to control the density of grid nodes in the x and the

y direction, respectively. For instance, the grids 32 × 32 with different mesh stretching parameters

(λy = 0.5, 0.9) were shown in Figure 6 (a) and (b).

As for Example 5.2, the exact solution has a local singularity along x = 0.5 (see Figure 5 (b)).

Therefore, we chosen a nonuniform grid along the x direction with clustering near x = 0.5 and a
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uniform grid along the y direction, with the following stretching function [8]

xi =
i

imax
+
λx

2π
sin

(
2πi
imax

)
, y j =

j
jmax

(
λy = 0

)
.

Those grids 32 × 32 with different mesh stretching parameters ( λx = 0.5, 0.9) were given in Figure

6 (c) and (d).

Table 1: Numerical results of Example 5.1

λy NL
VMG [8] MSLMG

∥EL∥∞ Rate Iter WU Time ∥EL∥∞ Rate Iter WU Time

0.1
128 9.82(-5) – 5 39.4 8.91 9.82(-5) – 3, 4 31.1 7.05
256 6.16(-6) 4.00 5 39.4 40.2 6.17(-6) 3.99 2, 4 23.3 29.7
512 3.85(-7) 4.00 5 39.4 179 3.85(-7) 4.00 2, 3 21.4 108

0.3
128 3.46(-5) – 5 39.4 9.02 3.46(-5) – 3, 4 31.1 6.92
256 2.17(-6) 4.00 5 39.4 37.8 2.17(-6) 4.00 2, 3 21.4 25.3
512 1.35(-7) 4.00 5 39.4 168 1.35(-7) 4.00 2, 3 21.4 106

0.5
128 7.28(-6) – 5 39.4 8.89 7.28(-6) – 2, 3 21.4 5.84
256 4.56(-7) 4.00 5 39.4 37.9 4.56(-7) 4.00 2, 3 21.4 25.5
512 2.85(-8) 4.00 5 39.4 182 2.87(-8) 3.99 1, 2 11.6 88.9

0.7
128 1.43(-6) – 5 39.4 8.91 1.43(-6) – 2, 3 21.4 5.83
256 8.95(-8) 4.00 5 39.4 24.6 8.92(-8) 4.01 1, 2 11.6 14.4
512 5.59(-9) 4.00 5 39.4 177 5.59(-9) 4.00 1, 2 11.6 89.2

0.9
128 5.18(-6) – 4 31.5 7.05 5.06(-6) – 1, 3 13.5 5.08
256 3.23(-7) 4.00 4 31.5 23.1 3.15(-7) 4.00 1, 2 11.6 13.5
512 2.09(-8) 3.95 4 31.5 171 1.99(-8) 3.98 1, 1 9.75 78.9

The numerical results of the above two examples obtained by VMG [8] and MSLMG methods

with different stretching parameters (λx, λy) were listed in Tables 1 and 2.

It is easy to see that MSLMG method is fourth-order accurate, as also is the VMG method.

As for efficiency, the proposed MSLMG method is much faster than the VMG method, particu-

larly for large scale cases (i.e., N ≥ 256). The reason is that, decreasing number of iterations on the

finest grid will effectively reduce the total computational cost. Compared with the VMG method,

fewer number of V-cycles are required on the finest grid for our MSLMG method (see the tenth

column of Tables 1 and 2 for details). The difference in number of V-cycles became more apparent

(decreases to one or two V-cycles) When N ≥ 256. Meanwhile, the cost (WU) in Tables 1 and
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Table 2: Numerical results of Example 5.2

λx NL
VMG [8] MSLMG

∥EL∥∞ Rate Iter WU Time ∥EL∥∞ Rate Iter WU Time

0.1
128 2.04(-6) – 5 39.4 9.05 2.04(-6) – 3, 4 31.1 7.21
256 1.27(-7) 4.00 5 39.4 38.7 1.27(-7) 4.00 2, 4 23.3 29.1
512 7.96(-9) 4.00 5 39.4 189 8.36(-9) 3.93 1, 3 13.5 103

0.3
128 1.18(-6) – 5 39.4 8.87 1.18(-6) – 3, 4 31.1 7.29
256 7.38(-8) 4.00 5 39.4 38.6 7.37(-8) 4.00 2, 3 21.4 25.5
512 4.61(-9) 4.00 5 39.4 183 4.80(-9) 3.94 1, 3 13.5 109

0.5
128 1.97(-6) – 5 39.4 9.20 1.97(-6) – 3, 4 31.1 7.01
256 1.23(-7) 4.00 5 39.4 37.8 1.23(-7) 4.00 2, 3 21.4 25.2
512 7.71(-9) 4.00 5 39.4 194 7.93(-9) 3.96 1, 3 13.5 102

0.7
128 3.35(-6) – 5 39.4 8.85 3.35(-6) – 3, 4 31.1 6.95
256 2.10(-7) 4.00 5 39.4 39.9 2.09(-7) 4.00 2, 4 23.3 27.1
512 1.31(-8) 4.00 5 39.4 207 1.35(-8) 3.95 1, 3 13.5 104

0.9
128 5.27(-6) – 6 47.3 10.7 5.27(-6) – 3, 5 33.0 7.34
256 3.31(-7) 4.00 5 39.4 40.1 3.29(-7) 4.00 2, 4 23.3 27.1
512 2.07(-8) 4.00 6 47.3 213 2.08(-8) 3.99 1, 3 13.5 101

2 demonstrate that the proposed spent less cost than VMG method to compute a certain accurate

solution. Furthermore, when a larger scale grid is required, the superiority of the proposed method

on efficiency is more obvious (see the sixth and the eleventh column of Tables 1 and 2 for details).

As for numerical stability, the proposed algorithm as well as the VMG method, can effectively

solve the algebraic systems (2.3) with different grid stretching (λx, λy).

Hence, MSLMG method is a cost-effective method.

6 Conclusion

We present an efficient multiscale-like multigrid (MSLMG) computation to solve a two dimen-

sional (2D) convection-diffusion equations on nonuniform grids, based on a transformation-free

HOC compact difference scheme. The main highlight of this algorithm is that the appropriate ini-

tial solutions are provided on the second finest and the finest grids, which has reduce the total

computational cost for solving the discrete systems on nonuniform grids. Numerical experiments
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demonstrate that the superiority of the present method performs to solve the 2D convection-diffusion

problem on nonuniform grids, comparison of the computational cost with current multigrid method.

It is worth pointing out that we can extend the proposed method to solving other partial differ-

ential equation with little modifications, such as the 3D case, the variable coefficient case and more

general linear case. The research on these aspects will be reported in our future work.
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