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Abstract. An convenient numerical method for singularly perturbed prob-

lem with integral boundary conditions is proposed by using finite difference

method. Firstly, the evaluations of the exact solution are given. Then differ-
ence scheme is constructed in Shishkin mesh. Finally, the convergence analysis

of this method is done and obtained first order uniformly convergence with re-

spect to perturbation parameter in discrete maximum norm. Numerical results
are presented in support of the proposed method.

1. Introduction

We consider the following singularly perturbed semilinear boundary value prob-
lem with integral boundary conditions:

Lu := ε2u′′(x) + εa(x)u′(x)− f(x, u (x)) = 0, 0 < x < `, (1.1)

L0u := u (0)−
∫ `1

`0

g0 (x)u (x) dx = A, (1.2)

L1u := u (`)−
∫ `1

`0

g1 (x)u (x) dx = B, 0 ≤ `0 < `1 ≤ `, (1.3)

where 0 < ε << 1 is the perturbation parameter, A and B are given constants,
the functions a(x) > 0 and f(x, u) are sufficiently smooth on [0, `] and [0, `] × R,
respectively, and g0 (x) and g1 (x) are continuous functions on [`0, `1] , moreover

0 < β∗ ≤
∂f

∂u
≤ β∗ <∞.

The solution u generally has boundary layers near x = 0 and x = `.
Differential equations with a small ε multiplying the highest derivative terms are

said to be singularly perturbed problem. The solutions of such problems typically
contain layers which occur in narrow layer regions of the domain. Singular pertur-
bation problems arise very frequently in fluid mechanics, fluid dynamics, quantum
mechanics, elasticity, aerodynamics, meteorology, plasma dynamics, magneto hy-
drodynamics, rarefied gas dynamics, oceanography and other domains of the great
world of fluid motion [6− 10].

It is well known that these problems depend on a small positive parameter ε
in such a way that the solution exhibits a multiscale character, i.e., there are thin
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transition layers where the solutions varies very rapidly for small values of ε, while
away from layers it behaves regularly and varies slowly. Hence, the presence of
small parameter in singularly perturbed problems presents severe difficulties that
have to be addressed to ensure accurate numerical solutions [1− 6].

To solve these type of problems, mainly there are three approaches namely,
fitted finite difference methods, finite element methods using special elements such
as exponential elements, and fitted mesh methods which use a priori refined or
special piecewise uniform grids which condense in the boundary layers in a special
manner. One of the simplest ways to derive parameter-uniform methods consists of
using a class of special piecewise uniform meshes, such as Shishkin type meshes (see
[6− 15] for the motivation for this type of mesh), which are constructed a priori and
depend on the parameter ε, the problem data, and the number of corresponding
mesh points. For the past two decades extensive researches have been made on
numerical methods for solving singularly perturbed problems, see [7− 21] and the
references therein.

Differential equations with conditions which connect the values of the unknown
solution at the boundary with values in the interior are known as nonlocal boundary
value problems. Such problems arise in problems of semiconductors [20], in prob-
lems of hydromechanics [21], and some other physical phenomena. The problems
with integral nonlocal conditions can be met in studying heat transfer problems
[20, 21]. It have been studied extensively in the literature (see [13− 21] and the
references therein). Existence and uniqueness of the solutions of such problems can
be found in [22− 25]. A linear version of the problem (1.1)-(1.3) has been studied
in [26], where a finite difference scheme on an uniform mesh for solving singularly
perturbed problem with integral nonlocal condition has been presented. It is well
known that the difference schemes on a uniform mesh are not generally suitable
to nonlinear singularly perturbed problems as a special fine mesh is required in
boundary layer region and comparatively much coarser mesh elsewhere. Ideally,
the mesh should be adapted to the features of the exact solution using an adaptive
grid generation technique.

In this paper, we examined some important properties of the exact solution
of singularly perturbed semilinear nonlocal boundary value problem (1.1)-(1.2) in
section 2. Finite difference schemes on a piecewise uniform Shishkin type mesh for
problem (1.1)-(1.2) are obtained in section 3. Convergence properties of the scheme
are analyzed in section 4. Numerical results are presented in section 5.

Throughout the study, C denotes us a generic positive constant independent
of ε and the mesh parameter. For any continuous function v (x) defined on the
corresponding interval, we use the maximum norm ‖v‖∞ = max

[0,`]
|v (x)| .

2. Preliminaries

Here we will obtain bounds of solution itself and its derivatives. Because these
are needed in the next sections for the analysis of the proposed method.

Lemma 2.1. If u(x) the solution of the problem (1.1)-(1.3), a ∈ C1[0, l], γ =∫ `1
`0

(|g0 (x)|+ |g1 (x)|) dx < 1, ∂f/∂u− εa′ (x) ≥ β∗ and |∂f/∂x| 6 C for x∈ [0, `],

then the estimates

‖u‖∞ 6 C0, (2.1)
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∣∣∣ 6 C {1 +

1

ε

(
exp(−c0x

ε
) + exp(−c1 (`− x)

ε
)

)}
, 0 6 x 6 `, (2.2)

hold, where

C0 = (1− γ)
−1 (|A|+ |B|+ β−1 ‖F‖∞

)
,

F (x) = f (x, 0) , ‖u‖∞ = max
[0,`]
|u (x)| ,

c0 =
1

2

(√
a2 (0) + 4β∗ + a (0)

)
,

c1 =
1

2

(√
a2 (`) + 4β∗ − a (`)

)
.

Proof. We rearrange the problem (1.1)-(1.3) for the validity of (2.1) as follows

Lu := ε2u′′(x) + εa(x)u′(x)− b (x)u (x) = F (x) , 0 < x < ` (2.3)

L0u := u (0)−
∫ `1

`0

g0 (x)u (x) dx = A, (2.4)

L1u := u (`)−
∫ `1

`0

g1 (x)u (x) dx = B, (2.5)

where

b (x) =
∂f

∂u
(x, ξu (x)) , 0 < ξ < 1.

Using the maximum principle in (2.3), we obtain the inequality as

|u (x)| ≤ |u (0)|+ |u (`)|+ β−1 ‖F‖∞ , x ∈ [0, `] . (2.6)

Now, we prove the estimate (2.2) from the boundary conditions (2.4) and (2.5)

|u (0)| ≤ |A|+
∫ `1

`0

|g0 (x)| |u (x)| dx, (2.7)

|u (`)| ≤ |B|+
∫ `1

`0

|g1 (x)| |u (x)| dx. (2.8)

By setting the inequalities (2.7)and (2.8) in inequality (2.6), we obtain

|u (x)| ≤ |A|+ |B|+
∫ `1

`0

|g0 (x)| |u (x)| dx+

∫ `1

`0

|g1 (x)| |u (x)| dx+ β−1 ‖F‖∞

≤ |A|+ |B|+ max
[`0,`1]

|u (x)|
∫ `1

`0

|g0 (x)| dx+ max
[`0,`1]

|u (x)|
∫ `1

`0

|g1 (x)| dx

+β−1 ‖F‖∞

≤ |A|+ |B|+ ‖u‖∞
∫ `1

`0

|g0 (x)| dx+ ‖u‖∞
∫ `1

`0

|g1 (x)| dx+ β−1 ‖F‖∞ .

This completes the proof of (2.1). Also, the proof of (2.2) is almost similar to that
of [?]. �

3. Layer-Adapted Mesh and Discretization

In this part, we discretize problem (1.1)-(1.3) using a finite difference method on
Shishkin type.
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3.1. Mesh Selection Procedure. Shishkin mesh is a piecewise uniform mesh,
which is condensed in the boundary layer regions at x = 0 and x = `. For a divisible
by 4 positive integer N , we divide the interval [0, `] into the three subintervals
[0, σ1], [σ1, `− σ2] and [`− σ2, `] where transition points σ1 and σ2 are introduced
such that

σ1= min

{
`

4
, c−1

0 ε lnN

}
, σ2 = min

{
`

4
, c−1

1 ε lnN

}
,

where c0 and c1 are given in Lemma 2.1 and N is the number of discretization
points.

Each of the subinterval are divided as [0, σ1] and [`− σ2, `] into N
4 equidistant

subinterval, while we divide the subinterval [σ1, `− σ2] into N
2 equidistant subin-

terval. In practice, one usually has σi << `, (i = 1, 2) , so the mesh is fine on [0, σ1],
[`− σ2, `] and coarse on [σ1, `− σ2] . We introduce the following notation for the
three step-sizes:

h(1) =
4σ1

N
, h(2) =

2 (`− σ2 − σ1)

N
, h(3) =

4σ2

N
,

h(2)+
1

2

(
h(1) + h(3)

)
=

2`

N
, h(k) ≤ `N−1, k = 1, 3, `N−1 ≤ h(2) ≤ 2`N−1.

We assign a set of mesh points ω̄N = {xi}Ni=0 ,

xi =


ih(1), for i = 0, 1, 2, ..., N4 ;

σ1 +
(
i− N

4

)
h(2), for i = N

4 + 1, ..., 3N
4 ;

`− σ2 +
(
i− 3N

4

)
h(3), for i = 3N

4 + 1, ..., N.

3.2. Construction of the Difference Scheme. Let’s start composing the differ-
ence scheme with nonuniform mesh on the interval [0, `] in the form

ωN = {0 < x1 < x2 < ... < xN−1 < `} ,

and

ω̄N = ωN ∪ {x0 = 0, xN = `} .

Before describing our numerical method, we introduce some notations for the
mesh functions. Let vi = v(xi) given on ω̄N be for any mesh function. Finite
difference operators also are given as

vi = v(xi), vx̄,i =
vi − vi−1

hi
, vx,i =

vi+1 − vi
hi+1

, v0
x,i

=
vx,i + vx̄,i

2
,

vx̂,i =
vi+1 − vi

~i
, vx̄x̂,i =

vx,i − vx̄,i
~i

, ~i =
hi + hi+1

2
,

‖v‖∞ ≡ ‖v‖∞,ω̄N
:= max

06i6N
|vi| , hi = xi − xi−1, i = 1, 2, ..., N.

The discretization for (1.1) begins with the identity

χ−1
i ~−1

i

xi+1∫
xi−1

Lu(x)ϕi(x)dx = 0, 1 6 i 6 N − 1, (3.1)
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with the basis functions {ϕi(x)}N−1
i=1 having the from

ϕi(x) =


ϕ

(1)
i (x), xi−1 < x < xi,

ϕ
(2)
i (x), xi < x < xi+1,

0, otherwise.

where the functions ϕ
(1)
i (x) and ϕ

(2)
i (x), respectively, are the solutions of the fol-

lowing problems:

εϕ
′′
− aiϕ

′
= 0, xi−1 < x < xi,

ϕ (xi−1) = 0, ϕ (xi) = 1,

εϕ
′′
− aiϕ

′
= 0, xi < x < xi+1,

ϕ (xi) = 1, ϕ (xi+1) = 0.

The functions ϕ
(1)
i (x) and ϕ

(2)
i (x) can be explicitly expressed as following:

ϕ
(1)
i (x) =

e
ai(x−xi−1)

ε − 1

e
aihi

ε − 1
, ϕ

(2)
i (x) =

1− e−
ai(xi+1−x)

ε

1− e−
aihi+1

ε

for ai 6= 0,

ϕ
(1)
i (x) =

x− xi−1

hi
, ϕ

(2)
i (x) =

xi+1 − x
hi+1

for ai = 0.

The coefficient χi in (3.1) is given by

χi = ~−1
i

xi+1∫
xi−1

ϕi(x)dx =

 ~−1
i

(
hi

1−e
aihi

ε

+ hi+1

1−e−
aihi+1

ε

)
, ai 6= 0,

1, ai = 0.

We rearrange (3.1), it takes the form

−ε2χ−1
i ~−1

i

xi+1∫
xi−1

ϕ
′

i(x)u
′
(x) dx+εaiχ

−1
i ~−1

i

xi+1∫
xi−1

ϕi(x)u
′
(x) dx

−f (xi, ui) +Ri = 0, i = 1, 2, ..., N − 1, (3.2)

with

Ri = εχ−1
i ~−1

i

xi+1∫
xi−1

[a (x)− a (xi)]ϕi(x)u
′
(x) dx

−χ−1
i ~−1

i

xi+1∫
xi−1

dxϕi(x)

xi+1∫
xi−1

d

dx
f(ξ, u (ξ) )K

∗
0,i (x, ξ) dξ, (3.3)

K∗0,i (x, ξ) = T0 (x− ξ)− T0 (xi − ξ) , i = 1, 2, ..., N − 1,

T0(λ) = 1, λ > 0; T0(λ) = 0, λ < 0.

If we use the interpolating quadrature rules (2.1) and (2.2) from [?] with weight
functions ϕi(x) on subintervals (xi−1, xi+1) from (3.2), we obtain that
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−ε2χ−1
i ~−1

i

xi+1∫
xi−1

ϕ
′

i(x)u
′
(x) dx+εaiχ

−1
i ~−1

i

xi+1∫
xi−1

ϕi(x)u
′
(x) dx

= ε2
{
χ−1
i

(
1 + 0.5ε−1~iai (χ2,i − χ1,i)

)}
ux̄x̂,i + εaiu0

x,i
,

where

χ1,i = ~−1
i

xi∫
xi−1

ϕ
(1)
i (x)dx =

 ~−1
i

(
ε
ai

+ hi

1−e
aihi

ε

)
, ai 6= 0,

~−1
i hi

2 , ai = 0,

χ2,i = ~−1
i

xi+1∫
xi

ϕ
(2)
i (x)dx =

 ~−1
i

(
hi+1

1−e
aihi+1

ε

− ε
ai

)
, ai 6= 0,

~−1
i hi+1

2 , ai = 0.

It then follows from above equalities that

lui +Ri := εθiux̄x̂,i + εaiu0
x,i
−f (xi, ui) +Ri = 0, 1 6 i 6 N − 1, (3.4)

where

θi = χ−1
i

(
1 + 0.5ε−1~iai (χ2,i − χ1,i)

)
. (3.5)

After some computation of (3.5), we obtain

θi =


ai~i

2ε

hi+1

(
e
aihi

ε −1

)
+hi

(
1−e−

aihi+1
ε

)
hi+1

(
e
aihi

ε −1

)
−hi

(
1−e−

aihi+1
ε

)
 , ai 6= 0,

1, ai = 0.

(3.6)

Next, it is necessary to determine approximation for the first and second boundary
conditions. Let xN0

and xN1
be the mesh points nearest to `0 and `1, respectively.∫ `1

`0

g0 (x)u (x) dx =

∫ xN0

`0

g0 (x)u (x) dx+

∫ xN1

xN0

g0 (x)u (x) dx

+

∫ `1

xN1

g0 (x)u (x) dx,

and ∫ xN1

xN0

g0 (x)u (x) dx =

N1∑
i=N0

(∫ xi

xi−1

g0 (x) dx

)
u (xi) + r̄i

= S0 (u) + r̄i, (3.7)

where

S0 (u) =

N1∑
i=N0

(∫ xi

xi−1

g0 (x) dx

)
u (xi) , (3.8)

r̄i =

N1∑
i=N0

∫ xi

xi−1

dxg0 (x)

∫ xi

xi−1

u′ (ξ) (T0 (x− ξ)− 1) dξ,

T0(λ) = 1, λ > 0; T0(λ) = 0, λ < 0.
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So we find the following approximation for the first boundary condition:

l0u := u (0)− S0 (u) = A+ r0, (3.9)

where

r0 =

∫ xN0

`0

g0 (x)u (x) dx+

∫ `1

xN1

g0 (x)u (x) dx+ r̄i. (3.10)

We take the following approximation similar to the first condition for the second
boundary condition:

l1u := u (`)− S1 (u) = B + r1, (3.11)

where

S1 (u) =

N1∑
i=N0

(∫ xi

xi−1

g1 (x) dx

)
u (xi) , (3.12)

r1 =

∫ xN0

`0

g1 (x)u (x) dx+

∫ `1

xN1

g1 (x)u (x) dx+ r̃i, (3.13)

r̃i =

N1∑
i=N0

∫ xi

xi−1

dxg1 (x)

∫ xi

xi−1

u′ (ξ) (T0 (x− ξ)− 1) dξ.

The error functions Ri, r0 and r1 in (3.3), (3.10) and (3.13) are negletted, we
have the following finite difference scheme for the problem (1.1)-(1.3):

lyi := ε2θiyx̄x̂,i + εaiy0
x,i
−f (xi, yi) = 0, 1 6 i 6 N − 1, (3.14)

l0y := y (0)− S0 (y) = A, (3.15)

l1y := y (`)− S1 (y) = B, (3.16)

where θi, S0 (y) and S1 (y) are given by (3.5), (3.8) and (3.12), respectively.

4. Analysis of Stability

Here we present to show stability case of the method with Lemma 4.1. And
then, we give the estimate of error functions Ri, r0 and r1 with Lemma 4.2.

Let us take error function z as z = y − u, which is the solution of the discrete
problem (4.1)-(4.3).

ε2θizx̄x̂,i + εaiz0
x,i
− [f (xi, yi)− f (xi, ui)] = Ri, 1 < i < N, (4.1)

z0 − S0 (z) = r0, (4.2)

zN − S1 (z) = r1, (4.3)

where Ri, r0 and r1 are defined by (3.3), (3.10) and (3.13), respectively.

Lemma 4.1. Let zi be the solution (4.1)-(4.3) and

γ̄ =

N∑
i=N0

∫ xi

xi−1

(|g0(x)|+ |g1(x)|) dx < 1.

Then the estimate

‖z‖∞,ω̄N
≤ C

(
‖R‖∞,ωN

+ |r0|+ |r1|
)
, (4.4)

holds.
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Proof. We rewrite the problem (4.1)-(4.3) in the form

lzi := ε2θizx̄x̂,i + εaiz0
x,i
−bizi= Ri, 1 < i < N, (4.5)

l0z := z0 − S0 (z) = r0, (4.6)

l1z := zN − S1 (z) = r1, (4.7)

where

bi =
∂f

∂u
(xi, ỹi) ,

and ỹi is intermediate point. According to the maximum principle in (4.5), it is
easy to obtain

‖z‖∞,ω̄N
≤ |z0|+ |zN |+ β−1 ‖R‖∞,ωN

. (4.8)

Using boundary conditions (4.6) and (4.7), we find (4.9) and (4.10)

|z0| ≤ |r0|+
N1∑
i=N0

(∫ xi

xi−1

|g0 (x)| dx

)
|zi| , (4.9)

|zN | ≤ |r1|+
N1∑
i=N0

(∫ xi

xi−1

|g1 (x)| dx

)
|zi| . (4.10)

By setting the inequalities (4.9) and (4.10) in (4.8), we obtain

‖z‖∞,ω̄N
≤ β−1 ‖R‖∞,ωN

+ |r0|+
N1∑
i=N0

(∫ xi

xi−1

|g0 (x)| dx

)
|zi|

+ |r1|+
N1∑
i=N0

(∫ xi

xi−1

|g1 (x)| dx

)
|zi|

≤ β−1 ‖R‖∞,ωN
+ |r0|+ max

N0≤i≤N1

|zi|
N1∑
i=N0

∫ xi

xi−1

|g0 (x)| dx

+ |r1|+ max
N0≤i≤N1

|zi|
N1∑
i=N0

∫ xi

xi−1

|g1 (x)| dx

≤ β−1 ‖R‖∞,ωN
+ |r0|+ |r0|+

+ ‖z‖∞,ω̄N

(∫ `1

`0

|g0 (x)| dx+

∫ `1

`0

|g1 (x)| dx

)
. (4.11)

From here we have

‖z‖∞,ω̄N
≤ (1− γ̄)

−1
(
‖R‖∞,ωN

+ |r0|+ |r1|
)
,

where, since γ̄ < 1, the proof of (4.4) is completed. �

Lemma 4.2. According to the assumptions of section 1 and Lemma 2.1, the fol-
lowing estimates hold for the error functions Ri, r0 and r1 :

‖R‖∞,ωN
≤ CN−1 lnN, (4.12)

|r0| ≤ CN−1 lnN, (4.13)

|r1| ≤ CN−1 lnN, (4.14)
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where Ri, r0 and r1 are known by (3.3), (3.10) and (3.13), respectively.

Proof. We have from the expression (3.3) for Ri on an arbitrary mesh as follows

|Ri| ≤ C

hi + hi+1 +

xi+1∫
xi−1

(1 + |u′ (ξ)|) dξ

 , 1 ≤ i ≤ N.

This inequality, together with (2.2), enables us to write (4.15)

|Ri| ≤ C

hi + hi+1 +
1

ε

xi+1∫
xi−1

(
e−

c0x
ε + e−

c1(`−x)
ε

)
dx

 . (4.15)

Firstly, we consider that c−1
0 ε lnN ≥ `

4 and c−1
1 ε lnN ≥ `

4 , and the mesh is uniform

with h(1) = h(2) = h(3) = h = `N−1 for 1 ≤ i ≤ N. So, from (4.15) we get

|Ri| ≤ C
{
N−1 + ε−1h

}
≤ C

{
N−1 + 4c−1

0 N−1 lnN
}

≤ CN−1 lnN, 1 ≤ i ≤ N.

Secondly, we consider case c−1
0 ε lnN < `

4 and c−1
1 ε lnN < `

4 , and the mesh is

piecewise uniform with the mesh spacing 4σ1

N and 4σ2

N in the subintervals [0, σ1]

and[`− σ2, `] , respectively, and 2(`−σ1−σ2)
N in the subinterval [σ1, `− σ2] . We es-

timate Ri on the subintervals [0, σ1] , [σ1, `− σ2] , and [`− σ2, `] separately. In
the layer region [0, σ1] the inequality (4.15) reduces to

|Ri| ≤ C
(
1 + ε−1

)
h(1) ≤ C

(
1 + ε−1

) 4c−1
0 ε lnN

N
, 1 ≤ i ≤ N

4
− 1.

Hence

|Ri| ≤ CN−1 lnN, 1 ≤ i ≤ N

4
− 1.

The same estimate is obtained in the layer region [`− σ2, `] in a similar way. We
now have to estimate Ri for N

4 + 1 ≤ i ≤ 3N
4 −1. In this case we are able to rewrite

(4.15) as

|Ri| ≤ C
{
h(2) + c−1

0

(
exp

(
−c0xi−1

ε

)
− exp

(
−c0xi+1

ε

))
+c−1

1

(
exp

(
−c1 (`− xi+1)

ε

)
− exp

(
−c1 (`− xi−1)

ε

))}
, (4.16)

N

4
+ 1 ≤ i ≤ 3N

4
− 1.

Since

xi = c−1
0 ε lnN +

(
i− N

4

)
h(2),

it then follows that

exp
(
−c0xi−1

ε

)
− exp

(
−c0xi+1

ε

)
=

1

N
exp

(
−
c0
(
i− 1− N

4

)
h(2)

ε

)(
1− exp

(
−2c0h

(2)

ε

))
< N−1.
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Also, if we rewrite the mesh points in the form xi = ` − σ2 −
(

3N
4 − i

)
h(2), we

deduce

exp

(
−c1 (`− xi+1)

ε

)
− exp

(
−c1 (`− xi−1)

ε

)
=

1

N
exp

(
−
c1
(

3N
4 − i− 1

)
h(2)

ε

)(
1− exp

(
−2c1h

(2)

ε

))
< N−1.

The last two inequalities together with (4.16) give the following bound

|Ri| ≤ CN−1.

Finally, we estimate Ri for the mesh points xN
4

and x 3N
4
. For the mesh point xN

4
,

inequality (4.15) reduces to

∣∣∣RN
4

∣∣∣ ≤ C

(
1 + ε−1

)
h(1) + h(2) +

1

ε

xN
4

+1∫
xN

4

(
e−

c0x
ε + e−

c1(`−x)
ε

)
dx

 .

Since

exp

(
−
c0xN

4

ε

)
− exp

(
−
c0xN

4 +1

ε

)
=

1

N

(
1− exp

(
−c0h

(2)

ε

))
< N−1,

and

exp

−c1
(
`− xN

4 +1

)
ε

− exp

−c1
(
`− xN

4

)
ε


=

1

N
exp

(
−c1h

(1)

ε

)(
1− exp

(
−c1h

(1)

ε

))
< N−1,

it then follows that∣∣∣RN
4

∣∣∣ ≤ CN−1 lnN.

The same estimate is obtained for the mesh point x 3N
4

in a similar manner. This

estimate is valid when only one of the values of σ1 and σ2 is equal to `
4 . Thus the

proof of the estimate (4.12) is completed.
Now, we evaluate (4.13) using the expression (3.10) for r0 as

|r0| ≤
N1∑
i=N0

∫ xi

xi−1

dx |g0 (x)|
∫ xi

xi−1

|u′ (ξ)| |T0 (x− ξ)− 1| dξ

+

∫ xN0

`0

|g0 (x)| |u (x)| dx+

∫ `1

xN1

|g0 (x)| |u (x)| dx

≤ hi max
[xi−1, xi]

|g0 (x)|
N1∑
i=N0

∫ xi

xi−1

|u′ (ξ)| |T0 (x− ξ)− 1| dξ +O (hi)

≤ 2hi max
[xi−1, xi]

|g0 (x)|
∫ `

0

|u′ (x)| dx+O (hi)

≤ Chi. (4.17)
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When [xN0
, xN1

] is inside the interval [σ1, `− σ2] , we obtain from the inequality
(4.17)

|r0| ≤ CN−1.

When [xN0
, xN1

] is inside the interval [0, σ1] , we have from the inequality (4.17)
that

|r0| ≤ Ch(1) ≤ C 4c−1
0 ε lnN

N
≤ CN−1 lnN.

In a similar way, the same estimate is obtained for the interval [`− σ2, `]. The
proof of (4.14) is similar to the proof of the inequality (4.13).

All these complete the proof of Lemma 4.2. �

Finally, If we mix Lemma 4.1 and 4.2, the following theorem gives us convergence
result of the proposed method.

Theorem 4.3. Assume that a, f ∈ C1 [0, `] . Let u be the solution of (1.1)-(1.3)
and y be the solution of (3.14)-(3.16). Then, the following ε− uniform estimate
satisfies

‖y − u‖∞,ω̄N
≤ CN−1 lnN.

Proof. This follows immediately by combining previous lemmas. �

5. Numerical Illustrations

Here we will test the difference scheme on the problem.
We solve the nonlinear problem (3.14)-(3.16) using the following quasilineariza-

tion technique:

ε2θiy
(n)
x̄x̂,i + εaiy

(n)
0
x,i
−f
(
xi, y

(n−1)
i

)
− ∂f

∂y

(
xi, y

(n−1)
i

)(
y

(n)
i − y(n−1)

i

)
= 0,

(5.1)

y
(n)
0 =

N1∑
i=N0

hig0,iy
(n−1)
i +A, (5.2)

y
(n)
N =

N1∑
i=N0

hig1,iy
(n−1)
i +B, (5.3)

for n ≥ 1 and y
(0)
i given for 1 ≤ i ≤ N.

Example 1. Our test problem is as follows:

ε2u′′ + ε (1 + x)u′ − 2u+ arctan (x+ u) = 0, 0 < x < 1,

u (0) =

∫ 1

0.5

cos (πx)u (x) dx+ 2, u (1) =

∫ 1

0.5

sin(πx)u (x) dx+ 3.

The exact solution is not available. So, we benefit the double-mesh principle to esti-
mate the errors and compute solutions, that is, we compare the computed solution
with the solution on a mesh that is twice as fine (see[7, 9]).

eNε = max
i

∣∣∣yε,Ni − ỹε,2Ni

∣∣∣ ,
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where ỹε,2Ni is the approximate solution of the respective method on the mesh

ω̃2N =
{
x i

2
: i = 0, 1, 2, ..., 2N

}
,

with

xi+ 1
2

=
xi + xi+1

2
for i = 0, 1, 2, ..., N − 1.

The rates of convergence are defined as

PNε =
ln
(
eNε /e

2N
ε

)
ln 2

.

The ε−uniform errors eN are estimated from

eN = max
ε
eNε .

The corresponding ε−uniform the rates of convergence are computed using the
formula

PN =
ln
(
eN/e2N

)
ln 2

.

The rates of uniform convergence PNε for different values of ε and N are presented
in Table 1. These are monotonically increasing towards one. It is attention from the
results that numerical experiment is in agreement with the theoretical results. In
Figure 1 as N values decrease, the graph approaches more towards the coordinate
axes in the boundary layer regions around x = 0 and x = `.

Table 1. Approximate errors eNε and the computed rates of con-
vergence pNε on ωN for various values of ε and N of Example 1.

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
2−1 0.031014 0.013994 0.007271 0.003768 0.001918 0.000967

1.14 0.94 0.94 0.97 0.98

2−3 0.030219 0.013762 0.007052 0.003610 0.001803 0.000901

0.98 0.96 0.96 1.00 1.00

2−5 0.029118 0.012752 0.006502 0.003300 0.001610 0.000801

1.04 0.97 0.97 1.03 1.00

2−7 0.027211 0.013210 0.006400 0.003190 0.001580 0.000745

1.04 1.04 1.00 1.01 1.08

2−9 0.269247 0.135345 0.063003 0.030510 0.015121 0.007531

0.99 1.10 1.04 1.01 1.00

2−11 0.269246 0.135345 0.063002 0.030510 0.015120 0.007530

0.99 1.10 1.04 1.01 1.00

2−13 0.269245 0.135346 0.063004 0.030510 0.015121 0.007530

0.99 1.10 1.04 1.01 1.00

...

eN 0.031014 0.013994 0.007271 0.003768 0.001918 0.000967

pN 0.98 0.94 0.94 0.97 0.98
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Figure 1. Approximate solution curves of test problem for ε =
2−5, N = 16, N = 32, N = 64, N = 128, N = 256.

6. Conclusion

We have studied the finite difference method on the piecewise uniform mesh for
solving singularly perturbed semilinear boundary value problem with two integral
boundary condition. We have applied the present method on a test problem. As
a result, the method is ε− uniform convergence with respect to the perturbation
parameter in the discrete maximum norm and also it has the advantage that the
scheme can be effectively applied also in the case when the original problem has a
solution with certain singularities. The main lines for the analysis of the uniform
convergence carried out here can be proposed for the study of more complicated
linear differential problems as well as nonlinear differential problems with mixed
nonlocal boundary conditions.
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