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Abstract

We formulated a generic S-I-R-S (Susceptible-Infected-Recovered-Susceptible) epidemic
model of cholera that incorporate three key features: an Allee Effect on bacteria dynamic,
the loss of immunity of recovered individuals and infection force to cholera regulated by
the contact and logistic dose-reponse of bacteria. These assumptions are built into a simple
model which yields surprisingly rich dynamics. Having three different disease-free equilib-
riums Q0, Qρ and Qθ , the dynamic of the model is essentially characterized by a threshold
quantity R0

0 which represents the basic reproduction number of the disease-free equilib-
rium Q0. The model supports the possibility of bi-stability, backward bifurcation and for-
ward bifurcation. The sensibility analysis of the model and theoretical results supported
by numerical simulations suggest that an efficient control strategy would be to increase the
value of θ (Allee threshold bacterial population) which is equivalent to increasing unfavor-
able conditions for bacteria growth. These conditions are generally: regular environmental
consolidation measures, compliance with hygiene rules and unfavorable climatic factors.

Key words: Cholera, Effect Allee, Disease-free equilibrium, Basic reproduction number, bi-
stability.

1 Introduction

Limited access to safe water and sanitation resources is common in developing countries,
leaving them vulnerable to cholera outbreaks. Cholera is an intestinal infection caused by
ingesting food or water contaminated with the bacterium V. cholerae. If left untreated, an in-
fected individual may become severely dehydrated and die within several days. In addition to
prompt rehydration and medical treatment, proper sanitation facilities are needed to prevent
infected individuals from shedding the bacteria back into the environment further fuelling
the pathogen concentration and the persistence of the disease. According to the World Health
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Organization (WHO), researchers have estimated that there are 1.4 to 4.3 million cases, and
28 000 to 142 000 deaths worldwide due to cholera every year [1].

Numerous mathematical models have been published to analyse cholera outbreaks in an
effort to better understand the complex disease transmission and determine adequate pre-
vention and effective control strategies [2, 3, 4, 5, 6, 7, 8, 9, 10] and [11]. These studies have
certainly produced many useful results and have improved our understanding of cholera dy-
namics. One limitation of these models, however, is that most of them assumed that bacte-
ria have generally linear or logistic growth. From the mathematical point of view, linear or
logistic growth assumption has the advantage of simplifying the models and analysis, and
facilitating the use of some well-known theory in dynamical systems.

But recently biological results require to review the dynamic of these bacteria in the math-
ematical models of cholera. In fact, it has been discovered that environmental aquatic bacteria
such as V. Cholerae O1 and V. cholerae non-O1 have ability to survive to the stress caused by
the variation of some environmental factors, such as temperature, pH or the lack of nutri-
tional resources [12, 13]. The adaptation of these bacteria to their environment will lead to
metabolic and phenotypic changes that will condition their survival; what can be compared to
a phenomenon of dormancy. Cells are considered " viable but non-culturable " (VNC) because
the main effect of this change is the loss of the ability to be cultivated on a bacteriological
culture medium [14]. This dormancy state has been considered for many species of bacteria
as a survival strategy in the natural environment [15, 12, 13, 16, 17]. The state change to the
cultivable state is possible particularly if the factors causing stress become favorable to the
development and growth of the bacterial population. This phenomenon implies to reconsider
the thinking concerning the survival of pathogenic bacteria scattered into the environment
and its dynamics in the aquatic ecosystem. This cell viability (VNC) is considered as a pos-
sible hypothesis at the origin of " disappearance " of the bacteria of the aquatic ecosystem
during the colder months.

Such filed observations underline the limitation of some current mathematical cholera
models and imply that mathematical model of cholera must consider these environmental
factors which are responsible of resurgence and propagation of this epidemic. For these rea-
son, we recently suggested a mathematical model of cholera which investigate impacts of
environmental factors on the dynamical transmission of cholera within a human community.
This model incorporates the virulence of bacteria and the commensalism relationship between
bacteria and the aquatic reservoirs of the bacteria [9]. We found that the aquatic reservoirs
are playing a significant role among the factors explaining endemicity of these disease. But
the model had nine state variables with four state variables for bacteria population.

We suggest to simplify this model by keeping environmental factors. On mathematical
view, environmental factors can be considered like extinction force on population of bacteria.
This extinction force is able to eliminate a certain maximal value θ of population of bacteria.
This value θ , is also considered like the critical concentration bacteria under which population
of bacteria will go to the extinction and upper which population of bacteria will grow to the
saturation value ρ. A such dynamic is known on the name of "Allee Effect". The Allee effect,
is a biological phenomenon named after W. C. Allee, describes a positive relation between
population density and the per capita growth rate of species. In the presence of the Allee
effect, there is a decrease in population growth rate at low population densities. Species
under the Allee effect do not thrive at low population densities. However, the effect usually
saturates or disappears as populations get larger.

Environmental factors greatly influence the growth of vibrio in nature. They are generally
responsible of resurgence, of propagation and disappearance of cholera epidemic. Reason why
we will consider a bacterial dynamics with Allee effect coupled with a S-I-R-S model. To
identify degree of influence for each model parameters we will make sensibility analysis of
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model. We will compute the different disease-free equilibrium points of system. The local
stability conditions and attraction domain of these fixed points will be determined. We will
analyze the basic reproduction number R0

0 and R0(Qρ) of the disease-free equilibrium point Q0

and Qρ respectively. This analysis will permit us to deduce that the phenomena of backward
bifurcation and forward bifurcation could be realized at R0

0 = 1 at the neighborhood of Q0. But
at the neighborhood of Qρ only forward bifurcation is realized at R0

0 = 1
The rest of the paper is organized as follows. After the formulation of the model in Section

2, we present its quantitative and qualitative analysis supported by numerical simulations
in Section 3. The last section is devoted to concluding remarks on how our work fits in the
literature and on possible extensions.

2 The model

2.1 Model construction

The proposed model classifies the human population according to their disease status,
namely: susceptible individuals S, individuals infected with cholera I and recovered individu-
als R. Thus, the total human population at time t, N(t) is given by N(t) = S(t)+ I(t)+R(t). The
population of bacteria is denoted by B. Susceptible individuals are recruited through birth
and immigration at rate Λ. Infection is regulated by the contact rate β and depends on the
number of bacteria through the logistic dose-response B

K+B , where K is the concentration of
bacteria that yields 50% chance for a susceptible individual to catch cholera [3]. The source of
infection is through oral ingestion of faecal contaminated water or food.

Once infected, individuals can recover from the disease at rate α. As suggested by many
studies [18, 19], recovered individuals may only have partial immunity. Then, recovered hu-
man can loss their immunity and will return to the class of susceptible individuals at rate γ.
The parameters µ and d are the natural human mortality and cholera induced death rate of
infected humans respectively. Infected individuals contribute to the concentration of vibrios
at rate δ . For the population of bacteria, we assume that the reproduction from mixing among
bacteria that includes the Allee effect, limited resources and natural mortality is:

f (B) = −rB3 + r(ρ +θ)B2− rρθB,

= rB(B−θ)(ρ−B),
(1)

where r(ρ + θ)B2 is the reproduction of bacteria, the term −rB3 is intra-specific competition
due to limited resource; and the term −rρθB is the mortality of bacteria.

The structure of the model is depicted in Fig. 1. The dashed arrow from I to B indicates
contamination of the environment by humans and the second dashed arrow indicates influ-
ence of contaminated environment on infection force.

The dynamics of cholera epidemic can be described by the following system of non au-
tonomous differential equations with the Allee effect:

Ṡ = Λ− (λ +µ)S+ γR,

İ = λS− (µ +d +α)I,

Ṙ = αI− (µ + γ)R,

Ḃ = rB(B−θ)(ρ−B)+δ I,

(2)
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Figure 1: Graphical Representation

where 0 < θ < ρ and

λ = β
B

K +B
, (3)

In all the next, one notes parameter ω = µ +d +α. The parameter values used for numerical
simulation are given in Tab. 1.

Definition Symbole Estimated Source
Recruitment rate Λ 10 day−1 Assumed
Bacteria ingestion rate β 0.0001 person−1day−1 Assumed
Human population death rate µ 0.0104 day−1 [20]
Bacteria shedding rate δ 70 cells/(ml day) [21]
Half saturation constant K 107cell/ml Assumed
Cholera related death d 0,6 year−1 [22]
Loss of immunity rate γ 0.01 day−1 [23]
Recovery rate α 0.045 day−1 [24]
Growth rate of Vibrios r 1e-18 day−1 Assumed
Carrying capacity bacterial population ρ 1e+8 Assumed
Allee threshold bacterial population θ 1e+6 Assumed

Table 1: Numerical values for the parameters of model system (2)

2.2 Sensibility analysis

We carried out the sensitivity analysis to determine the model’s robustness to parameter
values. That is to help us identifying the parameters that are most influential in determin-
ing disease dynamics [25]. A Latin Hypercute Sampling (LHS) scheme [26, 27] samples 1000
values for each input parameter using a uniform distribution over the range of biologically
realistic values, listed in Tab. 1 with descriptions and references. Using model system (2)
and a time period of 7000 day, 1000 model simulations are performed by randomly pairing
sampled values for all LHS parameters. Four outcome measures are calculated for each run:
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the maximum and total size of state variable over the model’s time span, Partial Rank Corre-
lation Coefficients (PRCC) and corresponding p-values are computed. An output is assumed
sensitive to an input if the corresponding PRCC is less than −0.50 or greater than +0.50, and
the corresponding p-value is less than 5%.

PRCCs and significance
Parameters Range S I R B
Λ [1−300] 0.8970** 0.0968* 0.0171 -0.0332
β [0.001−0.999] -0.9580* -0.2359** 0.1221** -0.1702**
δ [1−1000] -0.8934** -0.0545 0.0885 -0.1173*
µ [0.001−0.999] -0.0718 -0.0255 0.0270 -0.0818
d [0.001−0.999] 0.0290 0.0432 -0.0676 -0.0462
r [0.001−0.999] -0.0282 -0.0180 0.0395 0.0291
γ [0.001−0.999] -0.0388 0.0147 0.0577 -0.0106
α [0.001−0.999] 0.1010 0.0680 0.0530 0.0948
K

[
104−1017

]
0.0050 0.0335 0.0092 -0.0213

ρ
[
105−1020

]
-0.0723 -0.1149* 0.0561 0.6220**

θ
[
103−1015

]
0.0210 0.0628 0.0473 0.5029*

*: p-value < 0.01,**: p-value < 0.001

Table 2: Table of parameters PRCCs with model’s variables

The results are presented in Tab. 2. Each row in the table contains the coefficients for the
corresponding parameter against the variables in columns. A positive PRCC value indicates
a parameter whose increase causes an increase in the corresponding output variable, while
on the contrary, a negative PRCC value indicates a parameter whose increase leads to a
decrease in the corresponding output variable.nAccording to the result obtained in Tab.2, the
parameters Λ, β , δ , θ and ρ should significantly affect state variables of (2). The parameters
Λ is not related to transmission of disease. Influence of β suggest to sensitize population
to avoid getting in touch with bacteria. Influence θ and ρ suggest to intensify sanitation
campaigns of risk areas and reservoirs of V. Cholera.

3 Mathematical analysis

3.1 Basic properties

Herein, we study the basic properties of the solutions of model system (2). These basic
properties concern generally existence, positivity and boundary of solutions. They are useful
to show that model system (2) is well posed mathematically and epidemiologically. They are
also very useful in the proofs of stability results.

3.1.1 Positivity and boundedness of solutions

Obviously, model system (2) which is a C∞ differential system, admits a unique maximal
solution for any associated Cauchy problem.

Theorem 3.1 : The region Ω defined by:

Ω = ΩH ×ΩB, (4)

where

ΩH =

{
(S, I,R) ∈ R3

+, N(t)≤ Λ

µ

}
and ΩB =

{
B ∈ R+, B(t)≤ rρ2µ(ρ−θ)+δΛ

rρµ(ρ−θ)

}
,
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is positively invariant and attracting for model system (2).

Proof: The proof is provided in two steps.

Step 1 We show that for any initial condition (t0 = 0, X0 = (S(0), I(0),R(0),B(0)) ∈ (R∗+)4), max-
imal solution ([0,T [, X = (S(t), I(t),R(t),B(t))) of the Cauchy problem associated to system
(2) is non negative.

Let T̃ = sup
{

t̃ ∈ [0;T [, (S(t), I(t), R(t), B(t)) ∈ (R∗+)4
}

. Now we are going to show that T̃ =
T . Suppose that T̃ < T . At least one of the following conditions is satisfy S(T̃ ) = 0,
I(T̃ ) = 0, R(T̃ ) = 0 and B(T̃ ) = 0. Suppose S(T̃ ) = 0, then from the first equation of model
system (2), one has

d
dt

(
Se
∫ t

0(λ (r)+µ)dr
)
= (Λ+ γR)e

∫ t
0(λ (r)+µ)dr, ∀t ∈ [0; T̃ [ (5)

This implies that
d
dt

(
Se
∫ t

0(λ (r)+µ)dr
)
> 0, ∀t ∈ [0; T̃ [ (6)

Integrating Eq. (6) from 0 to T̃ yields:

S(T̃ )≥ S(0)e−
∫ T̃

0 (λ (r)+µ)dr > 0 (7)

Similarly, one can show that I(T̃ ) > 0, R(T̃ ) > 0, and B(T̃ ) > 0. This is a contradiction.
Then, T̃ = T and consequently the maximal solution (S(t), I(t),R(t),B(t)) of the Cauchy
problem associated to model system (2) is non negative.

Step 2 We prove that the total population of humans and bacteria satisfies the boundedness
property. We first split model system (2) into two parts, the human population (i.e. S(t),
I(t) and R(t)) and the pathogen population (i.e. B(t)). Let N = S+ I+R and using equation
of model system (2), one can deduce that

Ṅ = Λ−µN−dI ≤ Λ−µN.

Thus,

0≤ N(t)≤ Λ

µ
+

(
N(0)− Λ

µ

)
e−µt ,

where N(0) represents the initial value of N(t). The lower limit comes naturally from
the fact that the model variables are non-negative (t ∈ [0,T [) since they monitor human

populations. Thus, 0≤ N(t)≤ Λ

µ
whenever 0≤ N(0)≤ Λ

µ
.

Suppose 0≤N(0)≤ Λ

µ
, from the last equation of model system (2) and using the fact that

I(t)≤ Λ/µ for all t ≥ 0 one has:

Ḃ≤ f (B)+
δΛ

µ
, (8)

where f (B) = rB(B− θ)(ρ −B). Note that lim
B→+∞

f (B) = −∞ and f (B) is a decreasing in

[ρ;+∞[. The equation of tangent of f (B) at B = ρ is given by y(B) =−rρ(ρ−θ)B+ rρ2(ρ−
θ). It follows that for B > ρ we have:

Ḃ≤ rρ
2(ρ−θ)+

δΛ

µ
− rρ(ρ−θ)B.
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Integrating the above differential inequality yields

0≤ B(t)≤ rρ2µ(ρ−θ)+δΛ

rρµ(ρ−θ)
+

(
B(0)− rρ2µ(ρ−θ)+δΛ

rρµ(ρ−θ)

)
e−rρ(ρ−θ)t ,

where B(0) is the initial condition of B(t). Thus, as t→+∞, one has

B(t)≤ rρ2µ(ρ−θ)+δΛ

rρµ(ρ−θ)
.

Since each maximal solution of the Cauchy problem associated to (2) is positive and bounded,
therefore each solution of (2) is global.,

Combining Step 1 and Step 2, Theorem 3.1 follows from the classical theory of dynamical
systems. This completes the proof. 2

Thus, model system (2) is mathematically and epidemiologically well-posed and it is suffi-
cient to consider the dynamics of the flow generated by model system (2) in Ω.

3.1.2 Positively invariant set

The study of the dynamics of system (2) requires the introduction of the following impor-
tant sets.

Let ε ∈]0;θ [ and Bm =
rρ2µ(ρ−θ)+δΛ

rρµ(ρ−θ)
. One notes:

Ω0 = {(S, I,R,B) ∈Ω : 0 < B < θ − ε} , Ωθ−ε = {(S, I,R,B) ∈Ω : θ − ε < B < Bm}

Ωθ = {(S, I,R,B) ∈Ω : θ ≤ B(t)≤ Bm} and Ωρ = {(S, I,R,B) ∈Ω : ρ ≤ B(t)≤ Bm}

Herein, we present some results which will be useful for investigation of the dynamics
system (2).

Lemma 3.1 The sets Ωθ and Ωρ are positively invariant for the model system (2).

Proof: To proof the result of lemma 3.1, we just consider the fact that Ḃ ≥ δ I ≥ 0 for all value
of B ∈ [θ ;ρ]. This means that every trajectory of B beginning in [θ ;ρ] will grow and cross the
value ρ and remain in [ρ;Bm]. It would be maintained on the value ρ if I = 0.

2

Lemma 3.2 The set Ωρ is a compact attractor for the model system (2).

Proof: The proof of Lemma 3.2 is essentially based on the fact that Ωρ is a invariant set and
also on the fact that for every solution X(t) of model system (2) associated to the initial condi-
tion X(0) = (S(0), I(0),R(0),B(0)) ∈ Ωθ we have lim

t−→+∞
dist(X(t),Ωρ) = 0. Thus, Ωρ is a attractor

and his attraction domain contains Ωθ . 2

3.2 Existence and stability of equilibrium
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3.2.1 Disease-free equilibrium

Model system (2) has tree disease-free equilibriums obtained by setting the right-hand
side of equations in model system (2) to zero with I = 0.

Q0 = (S0,0,0,0) , Qθ = (Sθ ,0,0,θ) and Qρ =
(
Sρ ,0,0,ρ

)
, (9)

where
S0 =

Λ

µ
, Sθ =

Λ(θ +K)

βθ +µ(θ +K)
and Sρ =

Λ(ρ +K)

βρ +µ(ρ +K)

Since the vibrio are aboriginal bacteria in the environment [28], it is consequently difficult
to entirely eradicate them in environment. So that disease-free equilibrium Q0, which is ideal
state, corresponds in reality to a situation where concentration of bacteria in environment is
very low to generate an epidemic. Thus state Q0 correspond in reality to a disease-free and
bacteria-free environment. The states Qθ and Qρ are the disease-free equilibriums associated
to Allee threshold and carrying capacity of bacteria respectively.

3.2.2 Stability of equilibrium and Threshold quantities

The local stability of disease-free equilibriums of model system (2) is summarized in the
following proposition.

Proposition 3.1 Let

R0
0 =

βΛδ

Krρθ µ(µ +d +α)
, (10)

and
Rρ

0 =
β

[µ(ρ +K)+βρ] (µ +d +α)

[
αργ

µ + γ
+

KΛδ

(K +ρ)rρ(ρ−θ)

]
. (11)

For the dynamical system (2),

(i) If R0
0 < 1, the disease-free equilibrium Q0 is locally stable.

(ii) If Rρ

0 < 1, the disease-free equilibrium Qρ is locally stable.

(iii) The disease-free equilibrium Qθ is always unstable.

To prove Proposition 3.1, we will use the following lemma of Kamgang J.C. and Sallet in
([29]):

Lemma 3.3 Let M be a square Metzler matrix written in block form M =

[
A B
C D

]
where A

and D are square matrices. Then, the matrix M is Metzler stable if and only if matrices A and
D−C A −1B (or D and A −BD−1C ) are Metzler stable.

Let Qx = (Sx,0,0,Bx) any disease-free equilibrium. The jacobian of system (2) at the point
Qx is denoted by the following matrix J(Qx):

J(Qx) =


−µ− βBx

Bx+K 0 γ − βSxK
(K+Bx)2

βBx
Bx+K −ω 0 βSxK

(K+Bx)2

0 α −(µ + γ) 0
0 δ 0 −Lx


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where Lx = rθρ−2r(θ +ρ)Bx +3rB2
x and ω = µ +d +α . Using lemma 3.3, matrix J(Qx) matrix

can be express in the form of the matrix M (in lemma 3.3) with:

A =

[
−µ− βBx

Bx+K 0
βBx

Bx+K −ω

]
, B =

[
γ − βSxK

(K+Bx)2

0 βSxK
(K+Bx)2

]
, C =

[
0 α

0 δ

]

and D =

[
−(µ + γ) 0

0 −Lx

]
.

Obviously the matrix A is Metzler stable matrix. A simple calculation gives:

(D−C A −1B)|Qx=Q0 =

−(µ + γ)
βS0α

Kω

0 −rθρ +
βS0δ

Kω

 ,

(D−C A −1B)|Qx=Qρ
=

−(µ + γ)+
αγβρ

ω[βρ +µ(ρ +K)]

βSρKαµ

(K +ρ)ω[βρ +µ(ρ +K)]
δγβρ

ω[βρ +µ(ρ +K)]
−r(ρ−θ)ρ +

βSρKδ µ

(K +ρ)ω[βρ +µ(ρ +K)]

 ,
and

(D−C A −1B)|Qx=Qθ
=

−(µ + γ)+
αγβθ

ω[βθ +µ(θ +K)]

βSθ Kαµ

(K +θ)ω[βθ +µ(θ +K)]
δγβθ

ω[βθ +µ(θ +K)]
r(ρ−θ)θ +

βSθ Kδ µ

(K +θ)ω[βθ +µ(θ +K)]

 .
Thus, the matrix (D−C A −1B)|Qx=Q0 is stable if and only if:

tr((D−C A −1B)|Qx=Q0)< 0 ⇐⇒ βS0δ

Kω[rθρ +µ + γ]
< 1

Det((D−C A −1B)|Qx=Q0)> 0 ⇐⇒ βS0δ

Kωrθρ
< 1

(12)

So that, (D−C A −1B)|Qx=Q0 is Metzler stable matrix when:

R0
0 =

βS0δ

Krθρ(µ +d +α)
< 1 (13)

Similarly we can easily prove that the matrix (D−C A −1B)|Qx=Qρ
is Metzler stable matrix

if:

Rρ

0 =
β

[µ(ρ +K)+βρ] (µ +d +α)

[
αργ

µ + γ
+

KΛδ

(K +ρ)rρ(ρ−θ)

]
< 1. (14)

For the matrix (D−C A −1B)|Qx=Qθ
, the condition det((D−C A −1B)|Qx=Qθ

)> 0 gives

(µ + γ)[βθ +µ(θ +K)]

αγβθ
+

Sθ Kδ (µ + γ)µ(θ +K)

rρ(ρ−θ)αγθ
< 1. (15)

Also, the condition tr((D−C A −1B)|Qx=Qθ
)< 0 gives

αγβθ

(µ + γ)[βθ +µ(θ +K)]
+

rθ(ρ−θ)

µ + γ
+

βSθ Kδ µ

(K +θ)ω[βθ +µ(θ +K)]
< 1, (16)
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which is a contradictory to the condition det((D −C A −1B)|Qx=Qθ
) > 0. This concludes the

proof.
2

We are now interested to the globally asymptotically stable of the disease and bacteria
free equilibrium point Q0. Following Kamgang and Sallet [30], we write model system (2) in
the following form: {

ẋs = A1(x)(xs− x0
s )+A12(x)xi,

ẋi = A2xi,
(17)

where xs = (S,R)T represents susceptible and recovered individuals, xi = (I,B)T represents the
infectious and population of bacteria. x0

s = (S0,0) is the non zero component of the disease-free
equilibrium, x = (xs,xi)

T ,

A1(x) =
[
−(µ +λ ) γ

0 −(γ +µ)

]
, A12(x) =

[
0 − βS0

B+K
α 0

]
and A2(x) =

[
−ω

βS
B+K

δ r(B−θ)(ρ−B)

]
.

The conditions H1−H5 below must be met to guarantee the global asymptotic stability
(GAS) of Q0.

H1: Model system (17) is defined on a positively invariant set D of the nonnegative orthant.
Model system (17) is dissipative on D .

H2: The sub-system ẋs = A1(xs,0)(xs− x0
s ) is globally asymptotically stable at the equilibrium

x0
s on the canonical projection of D on R2

+.

H3: The matrix A2(x) is Metzler (A Metzler matrix is a matrix with off-diagonal entries non-
negative ) and irreducible for any given x ∈D .

H4: There exists an upper-bound matrix A2 for M = {A2(x)|x ∈D} with the property that ei-
ther: A2 /∈M or if A2 ∈M then for any x ∈D such that A2 = A2(x) , x ∈ R2

+×{0}.

H5: ρ(A2) < 0 is satisfied. Where ρ(A2) < 0 denotes the largest real part of the eigenvalues of
A2.

If conditions H1−H5 are satisfied, then Q0 is globally asymptotically stable in D .
The result of Kamgang-Sallet approach [30] uses the algebraic structure of model system

(17), namely the fact that A1(x) and A2(x) are Metzler matrices. Since in the said approach the
matrix A2(x) is required to be irreducible, we further restrict the domain of the system to:

D = {(xs,xi) ∈Ω,xs 6= 0} .

The set D is positively invariant because only the initial point of any trajectory can have
xs = 0. Therefore, we restrict the domain of system (17) to D where A2(x) irreducible. Thus,
one has that

A2(x) is Metzler and irreducible for all x ∈D .

The sub-system ẋs = A1(xs,0)(xs− x0
s ) is equivalent to:{

Ṡ = Λ+ γR−µS,
Ṙ =−(δ +µ)R.

(18)

Resolving the above equations and taking the limit of solutions when t go to infinity yields:

lim
t−→+∞

S(t) =
Λ

µ
and lim

t−→+∞
R(t) = 0.
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Therefore, x0
s = (S0,0) is a globally asymptotically stable equilibrium of the reduced system

(18) on the sub-domain D . Then, the hypothesis H2 is satisfied.
Let ε ∈]0;θ [, since max

B∈[0;θ−ε]
{r(B−θ)(ρ−B)}=−rε(ρ−θ)− rε

2 we have the following upper-

bound matrix of A2(x) in Ω0 ( Ω

A2 =

[
−ω β

S0
K

δ −rε(ρ−θ)− rε2 .

]
Using Kamgang and Sallet’s result [30], the sub-matrix A2 is a Metzler stable matrix if:

R0
0 ≤ ξ , (19)

where
ξ = 1− θρ− ε(ρ−θ)

θρ
< 1.

We can now apply Theorem 4.3 in Kamgang and Sallet [30] and conclude that under the
condition (19) the disease-free equilibrium (x0

s ;0) of model system (2) is globally asymptotically
stable in Ω0. We have established the following result for the global stability of the DFE Q0.

Theorem 3.2 Let ε ∈]0;θ [, if R0
0 < ξ < 1 then the disease-free equilibrium point Q0 of model

system (2) is globally asymptotically stable in the domain Ω0 and unstable if R0
0 > 1. However,

when ξ < R0
0 < 1 the backward bifurcation phenomenon may occurs in Ω0, i.e. the DFE Q0,

may coexists with two endemic equilibrium, one asymptotically stable and one unstable.

The Fig. 2 is an illustration of Theorem 3.2, showing the stability of the disease-free
equilibrium of model system (2) when initial conditions are taken in the basin of attraction of
Q0 and R0

0 < ξ < 1. So, when Λ = 10, β = 0.0001, ε = 50000 (so that θ − ε = 9.5× 105) and all
other parameters are as in Tab. 1 we have R0

0 = 0.0103 and ξ = 0.0495. Under these conditions,
when various initial condition are chosen in attraction domain of Q0, it is seen on Fig. 2 that
the disease disappears.

The backward bifurcation phenomenon is illustrated by the Fig. 3 where are presented
time series of model system (2) when Λ = 50, β = 0.0015, θ = 106 (so that θ − ε = 9.5×105) and
ε = 50000 (so R0

0 = 0.7702 and ξ = 0.0495 ). It clearly appears that ξ ≤R0
0 < 1. The epidemiolog-

ical significance of the phenomenon of backward bifurcation is that the classical requirement
of ξ ≤ R0

0 < 1 is, although necessary, no longer sufficient for disease eradication when ini-
tial condition are taken in attraction domain of Q0. In such a scenario, disease elimination
would depend of various initial sizes of the population (state variables) chosen Ω0. That is,
the presence of backward bifurcation in the cholera transmission (2) suggests that the fea-
sibility of controlling cholera epidemic when ξ ≤ R0

0 < 1 always be dependent on the initial
sizes of the population even if the are chosen in Ω0. To illustrate this situation, model sys-
tem (2) was simulated for various initial condition (S(0), I(0),R(0),B(0)) taken firstly in the
domain : D1 =]0;50000]×]0;10]×]0;50]×

{
2×105,3×105,4×105,5×105

}
and secondly for vari-

ous initial condition (S(0), I(0),R(0),B(0)) taken in the domain D2 =]0;50000]×]0;10]×]0;50]×{
7.5×105,8×105,9×105,9.5×105

}
. As is presented in Fig. 3, cholera epidemic disappear in

the first case while in the second case disease and bacteria persist in environment.
In order to derive an expression for the region of stability of the boundary equilibrium

Qρ we measure the capacity of infectious to invade and persist in a human population at
the in the neighborhood of Qρ . Applying the methods in van den Driessche and Watmough
at equilibrium Qρ [31], we find the basic reproduction number of infectious in a population
model system (2) is (see Appendix A for details):

R0(Qρ) =
βΛKδ

[βρ +µ(ρ +K)](K +ρ)ωrρ(ρ−θ)
(20)
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Figure 2: Simulation of model system (2) when Λ= 10, β = 0.0001 and ε = 50000 (so that θ−ε =
9.5× 105, R0

0 = 0.0103 and ξ = 0.0495) using various initial conditions chosen in attraction
domain of Q0. All other parameters are as in Tab. 1

This formalism permits the derivation of a threshold condition for endemicity of cholera
epidemic in population where model system (2) is at equilibrium Qρ .

The proposition 3.2 below expresses this result in terms of stability for equilibrium point
Qρ .

Proposition 3.2 The equilibrium point Qρ of model system (2) is stable if R0(Qρ) < 1 and
unstable if R0(Qρ)> 1.

The following proposition give relationship between stability of Q0 and of Qρ .

Proposition 3.3 Let 0 < ε < θ , if R0
0 < ξ then R0(Qρ)< 1.

Proof: Let 0 < ε < θ ,

R0
0 < ξ ⇐⇒R0

0 < ε

(
ρ−θ

ρθ

)
,

⇐⇒R0(Qρ)<

(
K

K +ρ

)2 S0

Sρ

ε

ρ
,

=⇒R0(Qρ)< 1.
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Figure 3: Simulation of model system (2) when Λ = 50, β = 0.0015, θ = 106

and ε = 50000 (so that θ − ε = 9.5 × 105, ξ = 0.0495 and R0
0 = 0.7702) us-

ing various initial conditions (S(0), I(0),R(0),B(0)) chosen in the domains D1 =
]0;50000]×]0;10]×]0;50] ×

{
2×105,3×105,4×105,5×105

}
and D2 =]0;50000]×]0;10]×]0;50] ×{

7.5×105,8×105,9×105,9.5×105
}

. All other parameters values are as in Tab. 1.

2

The restriction of model system (2) on state variable I and B gives the following system:{
İ = λS− (µ +d +α)I,
Ḃ = rB(B−θ)(ρ−B)+δ I,

(21)

where state variable S is fixed. One notes X(I,B)(t) solution of reduced model system (21)
associated to the initial condition X(I,B)(0) ∈ Ωθ |(I,B) (the restriction of set Ωθ on the plane
(I,B)). Similarly to the proof of Lemma 3.2 it is easy to state that the set Ωρ |(I,B) is a attractor
set for model system (21). According to the Poincare-Bendixson theorem, X(I,B)(t) will tend
either to a fixed point either to a periodic orbit in Ωρ |(I,B). Now we will use Bendixson-Dulac
criteria to state that Ωρ |(I,B) does not contains periodic orbit:

dİ
dI

+
dḂ
dB

=−(µ +d +α)−3rB2 +2r(θ +ρ)B− rθρ. (22)

Since dİ
dI +

dḂ
dB < 0 for all B ≥ ρ. According to the Bendixson-Dulac criteria, reduced model

system (21) does not admits periodic orbit entirely contained in Ωρ |(I,B). The projection on

13



plane (I,B) of every periodic attractor (different to Qρ ) of model system (2) contained in Ωρ

correspond to a limit cycle in Ωρ |(I,B). Since for every value S fixed, model system (21) does not
contained cycle limit in Ωρ |(I,B). So that there is not periodic attractor in Ωρ for model system
(2).

Let 0 < ε < θ , if we suppose R0
0 < ξ < 1 according to the Proposition 3.3 this imply that

R0(Qρ)< 1. Thus equilibrium point Qρ is a unique asymptotically stable point in Ωρ . Conse-
quently every solution of model system (2) associated to initial condition in Ωθ will converge
to Qρ .

Theorem 3.3 Let ε ∈]0;θ [, if R0
0 < ξ < 1, equilibrium point Qρ of model system (2) is globally

asymptotically stable in Ωθ .

Remark 3.1 Considering hypothesis of theorem 3.3, it will be numerically observed that Qρ is
GAS in Ωθ−ε .

By the Fig. 4 global stability of Qρ in Ωθ−ε is also illustrated. Considering d = 0.7,
γ = 0.5, α = 0.45 and all other parameters are as in Tab. 1 we get R0

0 = 0.0058, ξ = 0.0505
and R0(Qρ) = 0.0033. Choosing various initial conditions in D3 =]0;50000]×]0;10]×]0;50]×[
0.9×106,1.2×108

]
. It is seen on Fig. 4 that solutions of model system (2) converge to Qρ .

3.2.3 Endemic equilibrium

Let Q∗ = (S∗, I∗,R∗,B∗) be a homogeneous endemic equilibrium of model system (2) with S∗,
I∗, R∗ and B∗ satisfying the following equations:

Λ− (λ ∗+µ)S∗+ γR∗ = 0,

λ ∗S∗−ωI∗ = 0,

αI∗− (µ + γ)R∗ = 0,

rB∗(B∗−θ)(ρ−B∗)+δ I∗ = 0.

(23)

where λ ∗ =
βB∗

K +B∗
. Expressing endemic states S∗ and R∗ as a function of I∗ and λ ∗ gives:

S∗ =
ω

λ ∗
I∗ and R∗ =

α

µ + γ
I∗. (24)

Using Eqs. (24) and the first equation of model system (2), one has

I∗ =
λ ∗S∗

ω
=

λ ∗

ω

[
Λ

µ
− ω

µ
I∗+

γα

µ(µ + γ)
I∗.
]

(25)

Using Eq. (25), one can deduce that

I∗ =
Λ(µ + γ)λ ∗

[µω + γ(µ +d)]λ ∗+ωµ(µ + γ)
. (26)

Using expression λ ∗ =
βB∗

K +B∗
in Eq. (26) we get:

I∗ =
Λ(µ + γ)βB∗

[(µω + γ(µ +d))β +ωµ(µ + γ)]B∗+ωµ(µ + γ)K
. (27)
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Figure 4: Simulation of model system (2) when d = 0.7, γ = 0.5, α = 0.45 (so that
R0

0 = 0.0058, ξ = 0.0505 and R0(Qρ) = 0.0033) and initial condition are chosen in D3 =
]0;50000]×]0;10]×]0;50]×

[
0.9×106,1.2×108

]
. All other parameters are as in Tab. 1

Using Eq. (27) in the last equation of (23) we obtain the following three order polynomial
equation in B∗ :

a3 (B∗)
3 +a2 (B∗)

2 +a1B∗+a0 = 0, (28)
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where

a3 = −r [β µ(µ +d +α)+βγ(µ +d)+(µ +d +α)µ(µ + γ)] ,

a2 = r(θ +ρ) [β µ(µ +d +α)+βγ(µ +d)+(µ +d +α)µ(µ + γ)]− rK(µ +d +α)µ(µ + γ),

a1 = −rθρ [β µ(µ +d +α)+βγ(µ +d)+(µ +d +α)µ(µ + γ)]+ rK(µ +d +α)µ(µ + γ)(θ +ρ),

a0 = rθρ(µ +d +α)Kµ(µ + γ)(R0
0 −1).

Thus, positive endemic equilibrium Q∗ are obtained by solving the cubic equation (28) in
B∗ and substituting the result (positive values of B∗) into the expression of λ ∗ and deducing
the values of other state variables using relation (24). It is worth noting that the coefficient
a3 is always negative. The coefficient a0 is positive (negative) if R0

0 is greater than ( less than)
unity, respectively. As is demonstrated in Appendix B, System (2) may have none, one, two or
three interior equilibriums, depending on parameter values. The various possibilities for the
roots of Eq. (28) are summarized in the following lemma.

Lemma 3.4 : Model system (2) could have

1. either one or three interior equilibrium if R0
0 > 1.

2. either none or two endemic equilibrium if R0
0 < 1.

Lemma 3.5 : For every positive solution B∗0 of polynomial equation (28) we have B∗0 ∈]0;θ [∪]ρ;Bm[

Proof: The proof of Lemma (3.5) is straightforward and evident. Let B∗0 a solution of polyno-
mial equation (28). Suppose that B∗0 ∈]θ ;ρ[. Consider Q∗0 = (S∗0, I

∗
0 ,R

∗
0,B
∗
0) the endemic equilib-

rium state deduced from Eq. (26) and (24). Using the last equation of (23) we have:

I∗0 =− r
δ

B∗0(B
∗
0−θ)(ρ−B∗0)< 0 which is impossible

2

Now, using the center manifold theory, we are going to show that if ξ < R0
0 < 1 and for a

certain set of model parameters, model system (2) has exactly two endemic equilibrium, with
one stable and and another one unstable. To do this, we use the theorem of Castillo-Chavez
and Song [32]. We have the following result.

Theorem 3.4 Model system (3) undergoes a backward bifurcation at R0
0 = 1 if the coefficient a

defined as in Eq. (36) is positive, otherwise a < 0 there exists an endemic equilibrium Q∗ which
is locally asymptotically stable for R0

0 > 1 but close to 1.

The proof of Theorem (3.4) is given in the Appendix C.
The Fig. 5 shows time series of model system (2) when Λ = 30,β = 0.01 (so that R0

0 =
3.0809 > 1) and all other parameters are as in Tab. 1. Various initial condition have been
taken in D3 =]0;7.5×106]×]0;1.5×103]×]0;7.5×103]×

[
105,1.5×108

]
. It clearly appears on Fig.

5 that the trajectories of model converge to an unique endemic equilibrium belonging to Ωρ .
This means that cholera persists within the community and the disease is uncontrollable.

To derive the stability region of any endemic equilibrium when R0
0 ≥ 1, we applied the

methods in van den Driessche and Watmough [31] once again. We found the basic repro-
duction number of infectious in a population where endemic equilibrium Q∗ = (S∗, I∗,R∗,B∗) is
fixed (see Appendix D for details):

R0(Q∗) =
βKδS∗

(K +B∗)2ω(rθρ−2r(θ +ρ)B∗+3r(B∗)2)
, (29)
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Figure 5: Simulation of model system (2) when Λ = 30 , β = 0.01 (so that R0
0 = 3.0809 > 1)

and various initial conditions have been taken in D3 =]0;7.5×106]×]0;1.5×103]×]0;7.5×103]×[
0,1.5×108

]
. All other parameters are as in Tab. 1.

According to the van den Driessche and Watmough [31] methods, this endemic equilib-
rium is locally asymptotically stable when R0(Q∗)< 1.
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Now,

R0(Q∗)< 1⇐⇒R0
0

S∗

S0

(
K

K +B∗

)2

rθρ < rθρ−2r(θ +ρ)B∗+3r(B∗)2 (30)

Thus,

R0(Q∗)< 1⇐= R0
0rθρ < rθρ−2r(θ +ρ)B∗+3r(B∗)2

⇐⇒ 0 < 3r(B∗)2−2r(θ +ρ)B∗− rθρ(R0
0 −1)

⇐⇒ B∗ ∈]0;B∗1[∪]B∗2;Bm[

where,

B∗1 =
1
3

[
θ +ρ−

√
(ρ−θ)2 +θρ +3θρR0

0

]
and B∗2 =

1
3

[
θ +ρ +

√
(ρ−θ)2 +θρ +3θρR0

0

]
Considering B∗1 > 0 we get R0

0 < 1. Since we have assumed that R0
0 ≥ 1 this imply that

B∗1 ≤ 0 and consequently B∗ ∈]B∗2;Bm[.
One has,

B∗2 =
1
3

[
θ +ρ +

√
(ρ−θ)2 +θρ +3θρR0

0

]
>

1
3

[
2θ +

√
θ 2 +ρ(ρ−θ)+3θρR0

0

]
> θ

Considering the lemma (3.5) we get B∗ ∈]ρ;Bm[. We have the following result:

Proposition 3.4 If R0
0 ≥ 1 then any stable endemic equilibrium Q∗ = (S∗, I∗,R∗,B∗) of model

system (2) verifies B∗ ∈ ]ρ;Bm[.

Now we are interested to know what would goes if R0(Qρ) ≥ 1? The contrapositive of
Proposition 3.3 gives:

If R0(Qρ)≥ 1 then ∀ε ∈ ]0;θ [ , R0
0 ≥ ξ

This imply existence of one stable endemic equilibrium for model system (2) in Ω.

Theorem 3.5 There exists an endemic equilibrium Q∗ which is locally asymptotically stable
when R0(Qρ)> 1 but close to 1.

The proof of Theorem 3.5 is given in the Appendix E.
It is important to have a global view of dynamic on model system (2) when various initial

conditions are taken in R4
+ and when threshold quantity R0

0 and R0(Qρ) are varying around
critical values (unity and value of ξ ). So that, four cases will be examined through graphs of
bacteria and infected population.

Case 1: R0(Qρ)< 1 < R0
0

To get this situation, we just have to take Λ = 50, β = 0.02 and r = 10−20 (so that R0(Qρ) =
0.0526 and R0

0 = 1.7594× 103) and all other parameters are as in Tab. 1. The numerical
simulations obtained in Fig. 6 show that all the solutions of model system (2) converges to an
endemic equilibrium. It is therefore numerically observed that the instability of Q0 also imply
instability of Qρ .

Case 2: R0(Qρ)< R0
0 < ξ < 1

According to theorem 3.2 and theorem 3.3, this case expect convergence to Q0 or Qρ of every
solution of model (2) when initial conditions are taken in their attraction domain respectively.
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Figure 6: Simulation of model system (2) when Λ = 50, β = 0.02 and r = 10−20 (so that R0(Qρ) =
0.0526 and R0

0 = 1.7594×103) and various initial conditions in R4
+. All other parameters are as

in Tab. 1.

The Fig. 7 is obtained by considering parameter values in Tab. 1 with ε = 50000. For these
values we have R0(Qρ) = 0.0023 , R0

0 = 0.0045 and ξ = 0.0495. Extinction of infectious does
not depend on the initial conditions. Extinction of population of bacteria is obtained when
initial values are chosen in D3 =]0;50000]×]0;10]×]0;50]×

[
105,9.9×105

]
. Saturation of the

bacterial population is obtained for initial conditions chosen in D4 =]0;50000]×]0;10]×]0;50]×[
106,2×108

]
.

Case 3: ξ < R0(Qρ)< R0
0 < 1

The phenomenon of backward bifurcation occurs. But the fact that an stable equilibrium
endemic exists in Ωρ imply consequently instability of Qρ even if R0(Qρ)< 1. The simulations
of Fig. 8 are obtained when Λ = 30, β = 0.001 and ε = 1000 (so that ξ = 0.0010,R0(Qρ) = 0.027
and R0

0 = 0.308). Extinction of epidemic and population of bacteria is obtained for initial
values chosen in D5 =]0;50000]×]0;10]×]0;50]×

[
0,5×105

]
. Endemicity situation is observed

for initial values chosen in D6 =]0;50000]×]0;10]×]0;50]×
[
7×105,2×108

]
.

Case 4: ξ < R0
0 < 1 < R0(Qρ)

The following parameters are modified β = 0.1, µ = 1.04×10−3, θ = 0.999×108 and ε = 50000
(so that ξ = 5.005×10−8,R0

0 = 0.0104 and R0(Qρ)= 4.5370). The previously situation is obtained
one again.

From these different cases, it is easy to project dynamic of model system (2) in other situ-
ations.

3.3 Numerical simulations of threshold quantities and bifurcations.

The theoretical results in section 3.2 really confirm the biological and epidemiological re-
sults on cholera which establish that bacterial growth is a substantial factor for cholera pro-
cess emergence [33, 34, 35, 36]. That growth is mathematically modelized in model system
(2) by a dynamic with Allee effect. This dynamic allows us to represent the different phases of
bacterial growth fluctuations due to variations of environmental conjunctures. These differ-
ent growth phases are materialized by the parameters θ and ρ which represent Allee thresh-
old and carrying capacity of bacteria respectively. The fact that these parameters determine
the bacterial growth in the environment involves importance to do a deep simulation of their
impact on extinction and persistence of cholera.

A three-dimensional simulation of R0
0 in terms of θ and ρ is given in Fig. 10.
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Figure 7: Simulation of model system (2) when all parameters values are as in Tab. 1 (so that
R0(Qρ)= 0.0023 , R0

0 = 0.0045, ε = 50000 and ξ = 0.0495) and various initial conditions chosen in
D3 =]0;50000]×]0;10]×]0;50]×

[
105,9.5×105

]
and in D4 =]0;50000]×]0;10]×]0;50]×

[
106,2×108

]
.

It is obvious to notice that the basic reproductive number R0
0 is very closed to zero for θ

values greater than 105. This would mean that the risk of outbreaks are very small when the
Allee threshold is higher that 105 in this situation.

On the Fig. 11, we present variations of R0(Qρ) for some values of θ and ρ. The curves
obtained on Fig. 11 reveal importance to point out the fact that risk of disease outbreaks are
not negligible for all values of θ . Furthermore, epidemic outbreaks are increasingly likely for
θ values close to ρ

The Fig. 12 present the various combination values of θ and ρ for which we have R0
0 = ξ

(ε will be fixed) and R0(Qρ) = 1. The Fig. 12-(a) and the Fig. 12-(b) are obtained for ε = 1 and
ε = 50000 respectively. Taking several values of ε ∈]0;θ [, it quickly notice that the conditions
R0

0 < ξ and R0(Qρ) < 1 become nearly equivalent when ε > 50. Numerical results on Fig. 12
confirm the theoretical result obtained on proposition 3.3 which states that stability condition
of Q0 imply that of Qρ .

It was stated in theorem 3.4 that model system undergoes a bifurcation at R0
0 = 1. When

we vary parameter value R0
0 around unity through parameter β (all other parameters values

are fixed) of model system (2) we get for each value of β different solutions of polynomial
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Figure 8: Simulation of model system (2) when Λ = 30, β = 0.001 and ε = 1000 (so that
ξ = 0.0010,R0(Qρ) = 0.027 and R0

0 = 0.308) all other parameters values are as in Tab. 1.
Various initial conditions chosen in D5 =]0;50000]×]0;10]×]0;50] ×

[
105,5×105

]
and D6 =

]0;50000]×]0;10]×]0;50]×
[
7×105,2×108

]
equation (28) which permit us to deduce different persistent infection forces. The Figures
below illustrate and confirm the discussion on lemma 3.4.
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Figure 9: Simulation of model system (2) when β = 0.1, µ = 1.04× 10−3, θ = 0.999× 108 and
ε = 50000 (so that ξ = 5.005× 10−8,R0

0 = 0.0104 and R0(Qρ) = 4.5370) all other parameters
values are as in Tab. 1. Various initial conditions chosen in D7 =]0;50000]×]0;10]×]0;50]×[
105,2×108

]
.
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Figure 10: Simulation of R0
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and all other parameters values are as in Tab. 1. (a) The curve in 3 dimensions. (b) The
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Figure 13: Bifurcation Diagram of R0
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4 Conclusion

The point of departure of this work is to acknowledge the complexity of taking into account
in model of cholera a bacteria reproduction rate incorporating an Allee Effect. In some of the
existing models in the literature, the difficulty is neglected through unrealistic assumptions
such as bacteria have linear or logistic growth [2, 3, 4, 5, 6, 7, 8]. In this work, we have formu-
lated a generic S-I-R-S epidemic model for the dynamical transmission of cholera disease in
which the following factors are incorporated: (i) the bacteria net reproduction rate incorporate
an Allee Effect, (ii) the loss of immunity of recovered individuals (iii) infection force to cholera
regulated by the contact and logistic dose-reponse of bacteria. The model have three disease-
free equilibriums which each corresponds to the real situation. Equilibrium Q0 is a desirable
situation. Concretely this is a situation where there is no infected individual and bacteria
concentration is very negligible because the V. cholerae cannot be absolutely absent in envi-
ronment, but its concentration can be so low to generate a disease. Many European countries
living that context. The disease-free equilibrium Qθ is the critical situation under which the
disease and bacteria may disappear if R0

0 < ξ and initial condition owns in attraction domain
of Q0. But when bacteria concentration cross the value θ solutions of model system (2) will
converge either to Qρ if R0

0 < ξ or to an endemic situation. The context of Qρ where bacteria
are saturated in environment without infected individual is a common situation to endemic
regions in Africa (Cameroon for example). Because when the V cholerae is densely present
in environment, cholera epidemics are common in these areas. Through sensitivity analysis
of the system (2), we found that parameters relative to human-bacteria contact and bacteria
dynamic should significantly affect global dynamic of model. This means that in an epidemic
situation it is urgent to make an intense awareness campaigns of the population about com-
pliance with hygiene rules and to start sanitation campaigns of areas at risk. The numerical
results presented illustrate and validate theoretical results. Through numerical simulation,
we found that; the stability of the three disease-free equilibriums of model, the existence
and the stability of endemic equilibrium is essentially determined by threshold quantity R0

0 .
Different improvements and extensions of the model on which we are still working include:
extension to 2 patches; introducing time-dependent parameters in order to integrate fluctu-
ation of environmental factors du to periodic variations of climate. More precisely, we will
consider periodic values for parameters β , θ , ρ and δ .
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Appendix A: Calculation of Persistence Threshold for Disease
Free Equilibrium Qρ .

Considering the disease-free equilibrium Qρ = (Sρ ,0,0,ρ) and using the notations in van den
Driessche and Watmough [31] for model system (2) the matrices F and V for the new infection
terms and the remaining transfer terms are, respectively, given by:

F =

 0
βKΛ

(k+ρ)[βρ +µ(ρ +K)]
0 0

 and V =

[
ω 0
−δ −rρ(ρ−θ)

]

Following van den Driessche and Watmough [31], the basic reproduction number of infections
in population where Qρ is fixed is then the spectral radius of the next generation matrix FV−1,

R0(Qρ) =
βKδΛ

[βρ +µ(ρ +K)](K +ρ)ωrρ(ρ−θ)
, (31)

Appendix B: Proof of Lemma 3.4

The number of positive roots of (28) determines the number of endemic equilibrium of system
(2). In order to identify the number of endemic equilibriums, we require the partial derivative
of function P : B∗ 7−→ a3 (B∗)

3 +a2 (B∗)
2 +a1B∗+a0 with respect to B∗ which is given by:

dP(B∗)
dB∗

= 3a3(B∗)3 +2a2(B∗)2 +a1

Thus, when ∆ = 4a2
2−12a1a3 > 0, equation

dP(B∗)
dB∗

= 0 has two real roots vi, i = 1,2 given by:

v1 =
−2a2−

√
4a2

2−12a1a3

6a3
and v2 =

−2a2 +
√

4a2
2−12a1a3

6a3

Therefore we conclude that:

if R0
0 > 1 model system (2) has:

• one endemic equilibrium if (v1 < v2 < 0, P(v2) > 0) or if (v1 < 0 < v2, P(v2) > 0) or if
(v2 > v1 > 0, P(v1)< 0, P(v2)< 0) or if (v2 > v1 > 0, P(v1)> 0, P(v2)> 0).

• three endemic equilibriums if (v2 > v1 > 0, P(v1)< 0, P(v2)> 0).

if R0
0 < 1 model system (2) has:

• no endemic equilibrium if (0 < v1 < v2, P(v1)< 0, P(v2)< 0) or if (v1 < v2 < 0, P(v1)< 0)
or if (v1 < v2 < 0, P(v1)> 0, P(v2)> 0) or if (v1 < 0 < v2, P(v1)< 0, P(v2)< 0).

• two endemic equilibriums if (v1 < 0 < v2, P(v1)< 0, P(v2)> 0) or if (0 < v1 < v2, P(v1)<
0, P(v2)> 0).

Appendix C: Proof of Theorem 3.4

We present the proof of Theorem 3.4 on the local stability of the endemic equilibrium point
of system (2) when R0

0 > 1. To do so, the following simplification and change of variables
are made first to all. Let x1 = S, x2 = I, x3 = R, x4 = B. Further, by using the vector notation
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x = (x1,x2,x3,x4). The model (2) can be written in the form ẋ = f (x) with f = ( f1, f2, f3, f4) as
follows: 

ẋ1 = Λ− (λ +µ)x1 + γx3,
ẋ2 = λx1−ωx2,
ẋ3 = αx2− (γ +µ)x3,
ẋ4 = rx4(x4−θ)(ρ− x4)+δx2,

(32)

where λ = β
x4

x4+K . System (32) has a DFE given by Q0 = (S0,0,0,0) where S0 =
Λ

µ
. The Jacobian

of system (2) at the DFE Q0 is

J(Q0) =


−µ 0 γ −β ∗ S0

K
0 −ω 0 β ∗ S0

K
0 α −(µ + γ) 0
0 δ 0 −rρθ

 .
The basic reproduction number of the transformed (linearized) model system (32) is the

same as that of the original model given by Eq. (2). Therefore, choosing β as a bifurcation
parameter. Solving for β from R0

0 = 1, we obtain:

β
∗ =

Krρθ µω

Λδ
(33)

It follows that the Jacobian J(Q0) of system (32) at the DFE Q0, with β = β ∗, denoted
by Jβ ∗ has a simple zero eigenvalue (with all other eigenvalues having negative real parts).
Hence, the Centre Manifold theory [37] can be used to analyze the dynamics of system (32).
In particular, the theorem in Castillo and Song [32], reproduced below for convenience, will
be used to show that when R0

0 > 1 there exists an endemic equilibrium of system (32) which
is locally asymptotically stable for R0

0 near 1 under certain conditions.

Theorem 4.1 (Castillo-Chavez and Song [32]). Consider the following general system of ordi-
nary differential equations with a parameter Φ:

dz
dt

= f (x,Φ) , f : Rn×R−→ R and f ∈C2(Rn×R) (34)

where 0 is an equilibrium point of the system (that is, f (0,Φ)≡ 0 for all Φ) and assume

1. A = Dz f (0,0) =
(

∂ fi
∂ z j

(0,0)
)

is the linearization matrix of system (34) around the equilib-
rium 0 with Φ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of
A have negative real parts;

2. Matrix A has a right eigenvector u and a left eigenvector v (each corresponding to the zero
eigenvalue ). Let fk be the kth component of f and

a =
n

∑
k,i, j=1

vkuiu j
∂ 2 fk

∂xi∂x j
(0,0) and b =

n

∑
k,i=1

vkui
∂ 2 fk

∂xi∂Φ
(0,0),

then, the local dynamics of the system around the equilibrium point 0 is totally deter-
mined by the signs of a and b.

1. a > 0, b > 0. When Φ < 0 with |Φ| � 1, 0 is locally asymptotically stable and there exists a
positive unstable equilibrium; when 0 < Φ� 1, 0 is unstable and there exists a negative,
locally asymptotically stable equilibrium;
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2. a < 0, b < 0. When Φ < 0 with |Φ| � 1, 0 is unstable; when 0 < Φ � 1, 0, is locally
asymptotically stable equilibrium, and there exists a positive unstable equilibrium;

3. a > 0, b < 0. When Φ < 0 with |Φ| � 1, 0 is unstable and there exists a locally asymptot-
ically stable negative equilibrium; when 0 < Φ� 1, 0 is stable, and a positive unstable
equilibrium appears;

4. a < 0, b > 0. When Φ changes from negative to positive, 0 changes its stability from
stable to unstable. Correspondingly a negative unstable equilibrium becomes positive
and locally asymptotically stable.

In order to apply the above theorem, the following computations are necessary (it should
be noted that we are used β ∗ as the bifurcation parameter, in place of Φ in Theorem 4.1).

Eigenvectors of Jβ ∗ . For the case when R0
0 = 1, it can be shown that the Jacobian of

system (32) has a right eigenvector (corresponding to the zero eigenvalue ), given by
U = (u1,u2,u3,u4)

T , where

u1 =−
[

γα

µ(µ + γ)
− ω

µ

]
u2, u2 = u2 > 0, u3 =

α

µ + γ
u2, and u4 =

δ

rρθ
u2 (35)

Similarly, the components of the left eigenvectors of Jβ ∗ (corresponding to the zero eigen-
value), denoted by V = (v1,v2,v3,v4)

T , are given by:

v1 = 0, v2 = v2 > 0, v3 = 0, and v4 =
βS0

Krρθ
v2

Computation of b For the sign of b, it can be shown that the associated non-vanishing par-
tial derivatives of f are:

∂ 2 f1

∂x4∂β ∗
(0,0) =−S0

K
and

∂ 2 f2

∂x4∂β ∗
(0,0) =

S0

K
.

It follows that
b =

ω

β ∗
v2u2 > 0

Computation of a: For system (32), the associated non-zero partial derivatives of f (at the
DFE Q0) are given by:

∂ 2 f1

∂x1x4
(0,0) =−β ∗

K
,

∂ 2 f1

∂x2
4
(0,0) =

2β ∗S0

K
,

∂ 2 f2

∂x1∂x4
(0,0) =

β ∗

K
,

∂ 2 f2

∂x2
4
(0,0) =−2β ∗S0

K

and
∂ 2 f4

∂x2
4
(0,0) = 2r(ρ +θ).

Then, it follows that

a = v2

4

∑
i, j=1

uiu j
∂ 2 f2

∂xi∂x j
(0,0)+ v4

4

∑
i, j=1

uiu j
∂ 2 f4

∂xi∂x j
(0,0),

= v2u2
2

[
αγω

(µ + γ)S0
+2
(

ωK
β ∗S0

)2
ω

δ
r(ρ +θ)− ω

S0

(
1
µ
+

2K
β ∗

)] (36)

Thus, depending on the values of the parameters of the model system (2), the value of a can
be positive or negative. So, if b > 0, if a > 0, model system (2) undergoes the phenomenon of
backward bifurcation (see Theorem 4.1, item (1)). Also, if a < 0 (by Theorem 4.1, item (4)), we
have established the result about the local stability of the endemic equilibrium Q∗ of model
system (2) for R0

0 > 1 but close to 1. This concludes the proof of Theorem 3.4
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Appendix D: Calculation of Persistence Threshold for Endemic-
ity.

Consider any endemic equilibrium Q∗ = (S∗, I∗,R∗,B∗). Suppose cholera is transmissible in
population at point Q∗. Using the notations in van den Driessche and Watmough [31] for
model system (2), the matrices F and V for the new infection terms and the remaining transfer
terms are, respectively, given by:

F =

 0
βKS∗

(k+B∗)2

0 0

 and V =

[
ω 0
−δ rθρ−2r(θ +ρ)B∗+3r(B∗)2

]

Following Van den Driessche and Watmough [31], the basic reproduction number of infections
in population where Q∗ is fixed is then the spectral radius of the next generation matrix FV−1,

R0(Q∗) =
βKδS∗

(K +B∗)2ω(rθρ−2r(θ +ρ)B∗+3r(B∗)2)
(37)

Appendix E: Proof of Theorem 3.5.

The proof will be the same like in Appendix C. Let us made the following simplification and
change of variables: Let y1 = S, y2 = I, y3 = R, y4 = B. Further, by using the vector notation
y = (y1,y2,y3,y4). The model (2) can be written in the form ẏ = g(y) with g = (g1,g2,g3,g4) as
follows: 

ẏ1 = Λ− (λ +µ)y1 + γy3,
ẏ2 = λy1−ωy2,
ẏ3 = αy2− (γ +µ)y3,
ẏ4 = ry4(y4−θ)(ρ− y4)+δy2,

(38)

where λ = β
y4

y4+K . System (38) has a DFE given by Qρ = (S0,0,0,ρ) where Sρ = Λ(ρ+K)
βρ+µ(ρ+K) . The

Jacobian of system (2) at the DFE Qρ is

J(Qρ) =


−µ− βρ

ρ +K
0 γ − βKΛ

(k+ρ)[βρ +µ(ρ +K)]
βρ

ρ +K
−ω 0

βKΛ

(k+ρ)[βρ +µ(ρ +K)]
0 α −(µ + γ) 0
0 δ 0 −rρ(ρ−θ)

 .

Therefore, choosing β as a bifurcation parameter. Solving for β from R0(Qρ) = 1, we obtain:

β = β
∗ =

(K +ρ)ωrρ(ρ−θ)[βρ +µ(ρ +K)]

ΛKδ

It follows that the Jacobian J(Qρ) of system (2) at the DFE Qρ , denoted by simple Jβ ∗ has a
simple zero eigenvalue (with all other eigenvalue having negative real parts).

Eigenvectors of Jβ ∗ . For the case when R0(Qρ) = 1, it can be shown that the Jacobian of
system (38) has a right eigenvector (corresponding to the zero eigenvalue ), given by
U = (u1,u2,u3,u4)

T , where

u1 = 0, u2 = u2 > 0, u3 =
α

µ + γ
u2, and u4 =

δ

rρ(ρ−θ)
u2 (39)
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Similarly, the components of the left eigenvectors of Jβ ∗ (corresponding to the zero eigen-
value), denoted by V = (v1,v2,v3,v4)

T , are given by:

v1 = v1 > 0, v2 =
[βρ +µ(ρ +K)]

βρ
v1, v3 =

γ

γ +µ
v1, and v4 =

[
ω[βρ +µ(ρ +K)]

βρ
− αγ

γ +µ

]
v1

δ

Computation of b For the sign of b, it can be shown that the associated non-vanishing par-
tial derivatives of f are:

∂ 2g1

∂y1∂β ∗
(0,0) =− ρ

K +ρ
,

∂ 2g1

∂y1∂β ∗
(0,0) =− KΛ

(k+ρ)[βρ +µ(ρ +K)]
,

∂ 2g2

∂y1∂β ∗
(0,0) =

ρ

K +ρ

and
∂ 2g2

∂y1∂β ∗
(0,0) =

KΛ

(k+ρ)[βρ +µ(ρ +K)]

It follows that
b =

µ(K +ρ)ω

β ∗ρ
u2 > 0

Computation of a: For system (38), the associated non-zero partial derivatives of g (at the
DFE Qρ ) are given by:

∂ 2g1

∂x1x4
(0,0) =− β ∗K

(K +ρ)2 ,
∂ 2g1

∂ 2x4
(0,0) =

2β ∗KΛ

(K +ρ)2[βρ +µ(ρ +K)]
,

∂ 2g2

∂x1x4
(0,0) =

β ∗K
(K +ρ)2

and
∂ 2g1

∂ 2x4
(0,0) =− 2β ∗KΛ

(K +ρ)2[βρ +µ(ρ +K)]

Then, it follows that,

a=−
(

δ

rρ(ρ−θ)

)2[ 2β ∗KΛµ

(K +ρ)[βρ +µ(ρ +K)]β ∗ρ
+

(
ω[βρ +µ(ρ +K)]

βρδ
− αγ

(γ +µ)δ

)]
v1u2

2 < 0

Thus, a < 0 and b > 0 model system (2) undergoes the phenomenon of forward bifurcation (see
Theorem 4.1, item (4)). So we have established the result about the local stability of the en-
demic equilibrium of cholera disease model when Qρ is suppose be a disease-free equilibrium
(note that this result holds for R0(Qρ)> 1 but close to 1). This concludes the proof of Theorem
3.5.
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