REFERENCES
Abdallaha, M. M. S., Abdelgawad, Z. A., & El-Bassiounya, H. M. S.
(2016). Alleviation of the adverse effects of salinity stress using
trehalose in two rice varieties. South African Journal of Botany103, 275-282.
AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., &
Abuelsoud, W. (2016). High salinity induces different oxidative stress
and antioxidant responses in maize plants organs. Frontiers in
Plant Science 7, 276.
Abebe, T., Guenzi, A. C., Martin, B., & Cushman, J. C. (2003).
Tolerance of mannitol accumulating transgenic wheat to water stress and
salinity. Plant Physiology 131, 1748-1755.
AlHassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente,
O. (2017). Antioxidant responses under salinity and drought in three
closely related wild monocots with different ecological optima.AoB Plants 9, plx009.
Ali, A., Raddatz, N., Aman, R., Kim, S., Park, H. C., Jan, M., &
Bressan, R. A. (2016). A single amino acid substitution in the sodium
transporter HKT1 associated with plant salt tolerance. Plant
Physiology 171, 2112-2126.
Ali, M. F., & Baek, K. H. (2020). Jasmonic acid signaling pathway in
response to abiotic stresses in plants. International Journal of
Molecular Sciences 21, 621.
An, D., Chen, J. G., Gao, Y. Q., Li, X., Chao, Z. F., Chen, Z. R., Li,
Q. Q., Han, M. L., Wang, Y. L., Wang, Y. F., & Chao, D. Y. (2017).AtHKT1 drives adaptation of Arabidopsis thaliana to
salinity by reducing floral sodium content. PLoS Genetics 13,
e1007086.
Anower, M. R., Peel, M. D., Mott, I. W., & Wu, Y. (2017). Physiological
process associated with salinity tolerance in an alfalfa half-sib
family. Journal of Agronomy and Crop Science 203, 506-518.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts polyphenol
oxidase in Beta vulgaris . Plant Physiology 24, 1-15.
Assaha, D. V., Ueda, A., Saneoka, H., Al‐Yahyai, R., & Yaish, M. W.
(2017). The role of Na+ and K+transporters in salt stress adaptation in glycophytes. Frontiers
in Physiology 8, 509.
Atikij, T., Syaputri, Y., Iwahashi, H., Praneenararat, T., Sirisattha,
S., Kageyama, H., & Sirisattha, R. W. (2019). Enhanced lipid production
and molecular dynamics under salinity stress in green microalgaChlamydomonas reinhardtii (137C). Marine Drugs 17, 484.
Baetz, U., Eisenach, C., Tohge, T., Martinoia, E., & De-Angeli, A.
(2016). Vacuolar chloride fluxes impact ion content and distribution
during early salinity stress. Plant Physiology 172, 1167-1181.
Bahieldin, A., Sabir, J. S. M., Ramadan, A., Alzohairy, A. M., Younis,
R. A., Shokry, A. M., Gadalla, N. O., Edris, S., Hassan, S. M.,
Al-Kordy, M. A., Kamal, K. B. H., Rabah, S., Abuzinadah O. A., &
El-Domyati, F. M. (2013). Control of glycerol biosynthesis under high
salt stress in Arabidopsis . Functional Plant Biology 41,
87.
Bassil, E., Zhang, S., Gong, H., Tajima, H., & Blumwald, E. (2018).
Cation specificity of vacuolar NHX-type cation/H+antiporters. Plant Physiology 179, 616-629.
Böhm, J., Messerer, M., Müller, H. M., Scholz-Starke, J., Gradogna, A.,
Scherzer, S., Maierhofer, T., Bazihizina, N., Zhang, H., Stigloher, C.,
Ache, P., Al-Rasheid, K. A. S., Mayer, K. F. X., Shabala, S., Carpaneto,
A., Haberer, G., Zhu, J. K., & Hedrich, R. (2018). Understanding the
molecular basis of salt sequestration in epidermal bladder cells ofChenopodium quinoa . Current Biology 28, 3075-3085.
Boyle, P. C., Schwizer, S., Hind, S. R., Kraus, C. M., De la Torre Diaz,
S., He, B., & Martin, G. B. (2016). Detecting N-myristoylation and
S-acylation of host and pathogen proteins in plants using click
chemistry. Plant Methods 12, 38.
Cai, Q., Yuan, Z., Chen, M., Yin, C., Luo, Z., Zhao, X., Liang, W., Hu,
J., & Zhang, D. (2014). Jasmonic acid regulates spikelet development in
rice. Nature Communications 5, 3476.
Cao, D., Lutz, A., Hill, C. B., Callahan, D. L., & Roessner, U. (2017).
A quantitative profiling method of phytohormones and other metabolites
applied to barley roots subjected to salinity stress. Frontiers in
Plant Science 7, 2070.
Cao, J., Li, M., Chen, J., Liu, P., & Li, Z. (2016). Effects of MeJA onArabidopsis metabolome under endogenous JA deficiency.Scientific Reports 6, 37674.
Chen, X., Wang, H., Li, X., Ma, K., Zhan, Y., & Zeng, F. (2019).
Molecular cloning and functional analysis of 4-coumarate:CoA ligase
4(4CL-like 1) from Fraxinus mandshurica and its role in abiotic
stress tolerance and cell wall synthesis. BMC Plant Biology 19,
231.
Che-Othman, M. H., Jacoby, R. P., Millar, A. H., & Taylor, N. L.
(2019). Wheat mitochondrial respiration shifts from the TCA cycle to the
GABA shunt under salt stress. New Phytologist 225, 1166-1180.
Choi, W. G., Toyota, M., Kim, S. H., Hilleary, R., & Gilroy, S. (2014).
Salt stress-induced Ca2+ waves are associated with
rapid, long-distance root-to-shoot signalling in plants.Proceedings of the National Academy of Sciences of the United
States of America 111, 6497-6502.
Conde, A., Regalado, A., Rodrigues, D., Costa, J. M., Blumwald, E., &
Chaves, M. M. (2015). Polyols in grape berry: transport and metabolic
adjustments as a physiological strategy for water-deficit stress
tolerance in grapevine. Journal of Experimental Botany 66,
889-906.
Corso, M., Doccula, F. G., de Melo, J. R. F., Costa, A., & Verbruggen,
N. (2018). Endoplasmic reticulum-localized CCX2 is required for
osmotolerance by regulating ER and cytosolic Ca2+dynamics in Arabidopsis . Proceedings of the National
Academy of Sciences of the United States of America 115, 3966-3971.
Davenport, R. J., Muñoz-Mayor, A., Jha, D., Essah, P. A., Rus, A., &
Tester, M. (2007). The Na+ transporter AtHKT1;1
controls retrieval of Na+ from the xylem inArabidopsis . Plant Cell & Environment 30, 497-507.
Devinar, G., Llanes, A., Masciarelli, O., & Luna, V. (2013). Different
relative humidity conditions combined with chloride and sulfate salinity
treatments modify abscisic acid and salicylic acid levels in the
halophyte Prosopis strombulifera . Plant Growth Regulation70, 247-256.
Diallo, A. O., Agharbaoui, Z., Badawi, M. A., Ali-Benali, M. A., Moheb,
A., Houde, M., & Sarhan, F. (2014). Transcriptome analysis of anmvp mutant reveals important changes in global gene expression
and a role for methyl jasmonate in vernalization and flowering in wheat.Journal of Experimental Botany 65, 2271-2286.
Dragwidge, J. M., Ford, B. A., Ashnest, J. R., Das, P., & Gendall, A.
R. (2018). Two endosomal NHX-type
Na+/H+ antiporters are involved in
auxin mediated development in Arabidopsis thaliana . Plant
& Cell Physiology 59, 1660-1669.
Dumschott, K., Dechorgnat, J., & Merchant, A. (2019). Water deficit
elicits a transcriptional response of genes governing D-pinitol
biosynthesis in soybean (Glycine max ). International
Journal of Molecular Sciences 20, 2411.
Fahad, S., Nie, L., Chen, Y., Wu, C., Xiong, D., Saud, S., Hongyan, L.,
Cui, K., & Huang, J. (2015). Crop plant hormones and environmental
stress. Sustainable Agriculture Reviews 15, 371-400.
Falhof, J., Pedersen, J. T., Fuglsang, A. T., & Palmgren, M. (2016).
Plasma membrane H+-ATPase regulation in the center of
plant physiology. Molecular Plant 9, 323-337.
Fattorini, L., Hause, B., Gutierrez, L., Veloccia, A., Rovere, F. D.,
Piacentini, D., Falasca, G., & Altamura, M. M. (2018). Jasmonate
promotes auxin-induced adventitious rooting in dark-grownArabidopsis thaliana plants and stem thin cell layers by a
cross-talk with ethylene signaling and a modulation of xylogenesis.BMC Plant Biology 18, 182.
Felle, H. H., Hermann, A., Hückelhoven, R., & Kogel, K. H. (2005).
Root-to-shoot signalling: apoplastic alkalinization, a general stress
response and defence factor in barley (Hordeum vulgare ).Protoplasma 227, 17-24.
Formentin, E., Barizza, E., Stevanato, P., Falda, M., Massa, F.,
Tarkowskà, D., Novak, O., & Lo Schiavo, F. (2018). Fast regulation of
hormone metabolism contributes to salt tolerance in rice
(Oryzasativa spp. Japonica, L.) by inducing specific
morpho-physiological responses. Plants (Basel) 7, 75.
Fukuda, A., & Tanaka, Y. (2006). Effects of ABA, auxin, and gibberellin
on the expression of genes for vacuolar H+-inorganic
pyrophosphatase, H+-ATPase subunit A, and
Na+/H+ antiporter in barley.Plant Physiology and Biochemistry 44, 351-358.
Gao, R., Duan, K., Guo, G., Du, Z., Chen, Z., Li, L., He, T., Lu, R., &
Huang, J. (2013). Comparative transcriptional profiling of two
contrasting barley genotypes under salinity stress during the seedling
stage. International Journal of Genomics 139, 822-835.
Geilfus, C. M., Tenhaken, R., & Carpentier, S. C. (2017). Transient
alkalinization of the leaf apoplast stiffens the cell wall during onset
of chloride-salinity in corn leaves. Journal of Biological
Chemistry 292, 18800-18813.
Ghanem, M. E., Albacete, A., Smigocki, A. C., Frébort, I., Pospíšilová,
H., Martínez‐Andújar, C., Acosta, M., Sánchez-Bravo, J., Lutts, S.,
Dodd, I. C., & Pérez-Alfocea, F. (2011). Root‐synthesized cytokinins
improve shoot growth and fruit yield in salinized tomato (Solanum
lycopersicum L.) plants. Journal of Experimental Botany 62,
125-140.
Gharbi, E., Lutts, S. Dailly, H., & Quinet, M. (2018). Comparison
between the impacts of two different modes of salicylic acid application
on tomato (Solanum lycopersicum ) responses to salinity.Plant Signaling & Behavior 13, e146936.
Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F.,
Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J.,
Stevens, R., Causse, M., Fernie, A. R., Lahaye, M., Rothan, C., &
Baldet, P. (2009). GDP-D-mannose 3, 5-epimerase (GME) plays a key role
at the intersection of ascorbate and non-cellulosic cell-wall
biosynthesis in tomato. Plant Journal 60, 499-508.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and
antioxidant machinery in abiotic stress tolerance in crop plants.Plant Physiology and Biochemistry 48, 909-930.
Golan, Y., Shirron, N., Avni, A., Shmoish, M., & Gepstein, S. (2016).
Cytokinins induce transcriptional reprograming and improve Arabidopsis
plant performance under drought and salt stress conditions.Frontiers in Environmental Science 4, 63.
Gonzalez, P., Syvertsen, J. P., & Etxeberria, E. (2012). Sodium
distribution in salt-stressed citrus root stock plants.Horticultural Science 47, 1504-1511.
Graus, D., Konrad, K. R., Bemm, F., Patir-Nebioglu, M. G., Lorey, C.,
Duscha, K., Güthoff, T., Herrmann, J., Ferjani, A., Cuin, T. A.,
Roelfsema, M. R. G., Schumacher, K., Neuhaus, H. E., Marten, I., &
Hedrich, R. (2018). High V-PPase activity is beneficial under high salt
loads, but detrimental without salinity. New Phytologist 219,
1421-1432.
Guan, R., Qu, Y., Guo, Y., Yu, L., Liu, Y., Jiang, J., Chen, J., Ren,
Y., Liu, G., Tian, L., Jin, L., Liu, Z., Hong, H., Chang, R., Gilliham,
M., & Qiu, L. (2014). Salinity tolerance in soybean is modulated by
natural variation in GmSALT3 . Plant Journal 80, 937-950.
Guo, M., Lu, J. P., Zhai, Y. F., Chai, W. G., Gong, Z. H., & Lu, M. H.
(2015). Genome-wide analysis, expression profile of heat shock factor
gene family (CaHsfs) and characterization of CaHsfA2 in pepper
(Capsicum annuum L.). BMC Plant Biology 15, 151.
Gupta, A., Hisano, H., Hojo, Y., Matsuura, T., Ikeda, Y., Mori, I. C.,
& Senthil-Kumar, M. (2017). Global profiling of phytohormone dynamics
during combined drought and pathogen stress in Arabidopsis thaliana
reveals ABA and JA as major regulators. Scientific Reports 7,
4017.
Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New
insights on plant salt tolerance mechanisms and their potential use for
breeding. Frontiers in Plant Science 7, 1787.
Hill, C. B., Jha, D., Bacic, A., Tester, M., & Roessner, U. (2013).
Characterization of ion contents and metabolic responses to salt stress
of different Arabidopsis AtHKT1;1 genotypes and their parental
strains. Molecular Plant 6, 350-368.
Hossain, M. S., Persicke, M., ElSayed, A. I., Kalinowski, J., & Dietz,
K.J. (2017). Metabolite profiling at the cellular and subcellular level
reveals metabolites associated with salinity tolerance in carbohydrate
beet. Journal of Experimental Botany 68, 5961-5976.
Huang, J., Lu, X., Yan, H., Chen, S., Zhang, W., Huang, R., & Zheng Y.
(2012). Transcriptome characterization and sequencing-based
identification of salt responsive genes in Millettia pinnata , a
semi-mangrove plant. DNA Research 19, 195-207.
Husen, A., Iqbal, M., Sohrab, S. S., & Ansari, M. K. A. (2018).
Salicylic acid alleviates salinity caused damage to foliar functions,
plant growth and antioxidant system in Ethiopian mustard (Brassica
carinataa . Br.). Agriculture & Food Security 7, 44.
Igamberdiev, A. U., & Kleczkowski, L. A. (2018). The glycerate and
phosphorylated pathways of serine synthesis in plants: the branches of
plant glycolysis linking carbon and nitrogen metabolism. Frontiers
in Plant Science 9, 318.
Ishimaru, Y., Hayashi, K., Suzuki, T., Fukaki, H., Prusinska, J.,
Meester, C., Quareshy, M., Egoshi, S., Matsuura, H., Takahashi, K.,
Kato, N., Kombrink, E., Napier, R. M., Hayashi, K. I., & Uedaa, M.
(2018). Jasmonic acid inhibits auxin-induced lateral rooting
independently of the CORONATINE INSENSITIVE1 receptor. Plant
Physiology 177, 1704-1716.
Jang, G., Chang, S. H., Um, T. Y., Lee, S., Kim, J. K., & Do Choi, Y.
(2017). Antagonistic interaction between jasmonic acid and cytokinin in
xylem development. Scientific Reports 7, 10212.
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S.
(2013). Salicylic acid improves salinity tolerance in Arabidopsisby restoring membrane potential and preventing salt-induced
K+ loss via a GORK channel. Journal of
Experimental Botany 64, 2255-2268.
Kang, D. J., Seo, Y. J., Lee, J. D., Ishii, R., Kim, K. U., Shin, D. H.,
Park, S. K., Jang, S. W., & Lee, I. J. (2005). Jasmonic acid
differentially affects growth, ion uptake and abscisic acid
concentration in salt-tolerant and salt-sensitive rice cultivars.Journal of Agronomy and Crop Science 191, 273-282.
Kim, B. H., Kim, S. Y., & Nam, K. H. (2012). Genes encoding
plant-specific class III peroxidases are responsible for increased cold
tolerance of the brassinosteroid-insensitive 1 mutant. Molecules
and Cells 34, 539-548.
Kim, J. I., Baek, D., Park, H. C., Chun, H. J., Oh, D. H., Lee, M. K.,
Cha, J. Y., Kim, W. Y., Kim, M. C., Chung, W. S., Bohnert, H. J., LeeS.
Y., Bressan, R. A., Lee, S. W., & Yun D. J. (2012). Overexpression ofArabidopsis YUCCA6 in potato results in high-auxin developmental
phenotypes and enhanced resistance to water deficit. Molecular
Plant 6, 337-349.
Korkmaz, D. (2001). Precipitation titration: “determination of chloride
by the Mohr method”. Methods 2, 4.
Lee, B. R., Kim, K. Y., Jung, W. J., Avice, J. C., Ourry, A., & Kim, T.
H. (2007). Peroxidases and lignification in relation to the intensity of
water-deficit stress in white clover (Trifoliumrepens L.).Journal of Experimental Botany 58, 1271-1271.
Li, Q., Zheng, J., Li, S., Huang, G., Skilling, S. J., Wang, L., Li, L.,
Li, M., Yuan, L., & Liu, P. (2017). Transporter-mediated nuclear entry
of jasmonoyl-isoleucine is essential for jasmonate signalling.Molecular Plant 10, 695-708.
Li, Z., Wang, X., Chen, J., Gao, J., Zhou, X., & Kuai, B. (2016). CCX1,
a putative Cation/Ca2+ exchanger, participates in
regulation of reactive oxygen species homeostasis and leaf senescence.Plant & Cell Physiology 57, 2611-2619.
Liu, J., Gao, F., Ren, J., Lu, X., Ren, G., & Wang, R. (2017). A novel
AP2/ERF transcription factor CR1 regulates the accumulation of vindoline
and serpentine in Catharanthus roseus . Frontiers in Plant
Science 8, 2082.
Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: biosynthesis and
biological functions in plants. International Journal of Molecular
Sciences 19, 335.
Liu, Y. D., Yin, Z. J., Yu, J. W., LI, J., Wei, H. L., Han, X. L., &
Shen, F. F. (2012). Improved salt tolerance and delayed leaf senescence
in transgenic cotton expressing the Agrobacterium IPT gene.Biologia Plantarum 56, 237-246.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene
expression data using real-time quantitative PCR and the
2-ΔΔCT method. Methods 25,
402-408.
Lombardo, V. A., Osorio, S., Borsani, J., Lauxmann, M. A., Bustamante,
C. A., Budde, C. O., Andreo, C. S., Lara, M. V., Fernie, A. R., &
Drincovich, M. F. (2011). Metabolic profiling during peach fruit
development and ripening reveals the metabolic networks that underpin
each developmental stage. Plant Physiology 157, 1969-1710.
Majeran, W., Le Caer J. P., Ponnala, L., Meinnel, T., & Giglione, C.
(2018). Targeted profiling of Arabidopsis thaliana sub-proteomes
illuminates co- and posttranslationally N-Terminal myristoylated
proteins. Plant Cell 30, 543-562.
Marriboina, S., & Attipalli, R. R. (2020a). Hydrophobic cell-wall
barriers and vacuolar sequestration of Na+ ions are
the key mechanisms conferring high salinity tolerance in a biofuel tree
species Pongamia pinnata L. pierre. Environmental and
Experimental Botany 171, 103949.
Marriboina, S., & Attipalli, R. R. (2020b). Optimization of hydroponic
growth system and Na+-fluorescence measurements for
tree species Pongamia pinnata (L.) pierre.MethodsX 7,
100809.
Marriboina, S., Sengupta, D., Kumar, S., & Attipalli, R. R. (2017).
Physiological and molecular insights into the high salinity tolerance ofPongamia pinnata (L.) pierre, a potential biofuel tree species.Plant Science 258, 102-111.
Maury, S., Sow, M. D., Le-Gac, A. L., Genitoni, J., Lafon-Placette, C.,
& Mozgova, I. (2019). Phytohormone and chromatin crosstalk: The missing
link for developmental plasticity?. Frontiers in Plant Science10, 395.
Md-Hossain, S. (2019). Present scenario of global salt affected soils,
its management and importance of salinity research. International
Research Journal of Biological Sciences 1, 1-3.
Melo, Y. L., Dantas, C. V. S., Melo, Y. L., Maia, J. M., & De-Macêdo,
C. E. C. (2016). Changes in osmotic and ionic indicators inAnanascomosus (L.) cv. MD gold pre-treated with phytohormones and
submitted to saline medium. The Revista Brasileira de
Fruticultura 39, e-155.
Mitra, S., & Baldwin, I. T. (2014). RuBPCase activase (RCA) mediates
growth-defense trade-offs: silencing RCA redirects jasmonic acid (JA)
flux from JA-isoleucine to methyl jasmonate (MeJA) to attenuate induced
defense responses in Nicotiana attenuata . New Phytologist201, 1385-1395.
Mohamed, I. H., & Latif, H. H. (2017). Improvement of drought tolerance
of soybean plants by using methyl jasmonate. Physiology and
Molecular Biology of Plants 23, 545-556.
Moing, A., Aharoni, A., Biais, B., Rogachev, I., Meir, S., Brodsky, L.,
Allwood, J. W., Erban, A., Dunn, W. B., Kay, L., de Koning, S., de Vos,
R. C. H., Jonker, H., Mumm, Roland., Deborde, C., Maucourt, M.,
Bernillon, S., Gibon, Y., Hansen, T. H., Husted, S., Goodacre, R.,
Kopka, J., Schjoerring, J. K., Rolin, D., & Hall, R. D. (2011).
Extensive metabolic cross-talk in melon fruit revealed by spatial and
developmental combinatorial metabolomics. New Phytologist 190,
683-696.
Morton, M. J. L., Awlia, M., Al-Tamimi, N., Saade, S., Pailles, Y.,
Negrão, S., & Tester, M. (2019). Salt stress under the
scalpel-dissecting the genetics of salt tolerance. Plant Journal97, 148-163.
Munemasa, S., Hossain, M. A., Nakamura, Y., Mori, I. C., & Murata, Y.
(2011). The Arabidopsis calcium-dependent protein kinase, CPK6,
functions as a positive regulator of methyl jasmonate signaling in guard
cells. Plant Physiology 155, 553-561.
Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C.,
Byrt, C. S., Hare R. A., Tyerman, S. D., Tester, M., Plett, D., &
Gilliham, M. (2012). Wheat grain yield on saline soils is improved by an
ancestral Na+ transporter gene. Nature
Biotechnology 30, 360-364.
Munns, R., Wallace, P. A., Teakle, N. L., & Colmer, T. D. (2010).
Measuring soluble ion concentrations (Na+,
K+, Cl-) in salt-treated plants, R.
Sunkar, eds. Plant stress tolerance. Methods in molecular
biology . (Springer protocols, Berlin: Humana Press), pp. 371-382.
Naliwajski, M. R., & Skłodowska. M. (2018). The relationship between
carbon and nitrogen metabolism in cucumber leaves acclimated to salt
stress. Peer J 6, e6043.
Nasir, F. A., Batarseh, M., Abdel-Ghani, A. H., & Jiries, A. (2010).
Free amino acids content in some halophytes under salinity stress in
arid environment. Jordan. Clean Soil Air Water 38, 592-600.
Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D. T., Kojima, M., Werner,
T., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Kakimoto, T.,
Sakakibara, H., Schmülling, T., & Tran, L. S. P. (2011). Analysis of
cytokinin mutants and regulation of cytokinin metabolic genes reveals
important regulatory roles of cytokinins in drought, salt and abscisic
acid responses, and abscisic acid biosynthesis. Plant Cell 23,
2169-2183.
Nitschke, S., Cortleven, A., Iven, T., Feussner, I., Havaux, M.,
Riefler, M., & Schmülling, T. (2016). Circadian stress regimes affect
the circadian clock and cause jasmonic acid-dependent cell death in
cytokinin-deficient Arabidopsis plants. Plant Cell 28,
1616-1639.
Olfatmiri, H., Alemzadeh, A., & Zakipour, Z. (2014). Up-regulation of
plasma membrane H+-ATPase under salt stress may enableAeluropus littoralis to cope with stress. Molecular Biology
Research Communications 3, 67-75.
Pan, X., Welti, R., & Wang, X. (2010). Quantitative analysis of major
plant hormones in crude plant extracts by high-performance liquid
chromatography-mass spectrometry. Nature Protocols 5, 986-992.
Peng, Z., He, S. P., Sun, J. L., Pan, Z. E., Gong, W. F., Lu, Y. L., &
Du, X. M. (2016). Na+ compartmentalization related to
salinity stress tolerance in upland cotton (Gossypium hirsutum )
plants. Scientific Reports 6, 34548.
Qi, X., Li, M. W., Xie, M., Liu, X., Ni, M., Shao, G., Song, C., Yim, A.
K. Y., Tao, Y., Wong, F. L., Isobe, S., Wong, C. F., Wong, K. S., Xu,
C., Li, C., Wang, Y., Guan, R., Sun, F., Fan, G., Xiao, Z., Zhou, F.,
Phang, T. H., Liu, X., Tong, S. W., Chan, T. F., Yiu, S. M., Tabata, S.,
Wang, J., Xu, X., & Lam, H. M. (2014). Identification of a novel salt
tolerance gene in wild soybean by whole-genome sequencing. Nature
Communications 5, 4340.
Quinn, L. D., Straker, K. C., Guo, J., Kim, S., Santanu, T., Kling, G.,
Lee, D. K., & Voigt, T. B. (2015). Stress-tolerant feedstocks for
sustainable bioenergy production on marginal land. Bioenergy
Research 8, 1081-1100.
Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effect of salinity
stress on some growth, physiological, biochemical parameters and
nutrients in two pistachio (Pistacia vera L.) rootstocks.Plant Environment Interactions 13, 73-82.
Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu,
J. (2019). Impact of climate change on crops adaptation and strategies
to tackle its outcome: A review. Plants 8, 39.
Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought
induced responses of photosynthesis and antioxidant metabolism in higher
plants. Journal of Plant Physiology 161, 1189-1202.
Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L.
(2000). Simultaneous analysis of metabolites in potato tuber by gas
chromatography-mass spectrometry. Plant Journal 23, 131-142.
Saand, M. A., Xu, Y. P., Munyampundu, J. P., Li, W., Zhang, X. R., &
Cai, X. Z. (2015). Phylogeny and evolution of plant cyclic
nucleotide-gated ion channel (CNGC) gene family and functional analyses
of tomato CNGCs. DNA Research 22, 471-483.
Sahoo, R. K., Ansari, M. W., Tuteja, R., & Tuteja, N. (2014). OsSUV3
transgenic rice maintains higher endogenous levels of plant hormones
that mitigates adverse effects of salinity and sustains crop
productivity. Rice 7, 17.
Sakamoto, T., & Murata, N. (2002). Regulation of the desaturation of
fatty acids and its role in tolerance to cold and salt stress.Current Opinion in Microbiology 5, 208-210.
Saleh, L., & Plieth, C. (2013). A9C sensitive Cl-accumulation in A. thaliana root cells during salt stress is
controlled by internal and external calcium. Plant Signaling &
Behavior 8, e24259.
Samuel, S., Scott, P. T., & Gresshoff, P. M. (2013). Nodulation in the
legume biofuel feedstock tree Pongamia pinnata .Agricultural Research 2, 207-214.
Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A.
(2012). A non-targeted approach unravels the volatile network in peach
fruit. PLoS One 7, e38992.
Seifikalhor, M., Aliniaeifard, S., Hassani, B., Niknam, V., &
Lastochkina, O. (2019). Diverse role of γ-aminobutyric acid in dynamic
plant cell responses. Plant Cell Reports 38, 847-867.
Shabala, L., Zhang, J., Pottosin, I., Bose, J., Zhu, M., Fuglsang, A.
T., Buendia, A. V., Massart, A., Hill, C. B., Roessner, U., Bacic A.,
Wu, H., Azzarello, E., Pandolfi, C., Zhou, M., Poschenrieder, C.,
Mancuso, S., & Shabala, S. (2016). Cell-type-specific
H+-ATPase activity in root tissues enables
K+ retention and mediates acclimation of barley
(Hordeum vulgare ) to salinity stress. Plant Physiology172, 2445-2458.
Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical
perspectives and a world overview of the problem. In guideline for
salinity assessment, mitigation and adaptation using nuclear and related
techniques, Zaman M., Shahid, S. A., & Heng, L. eds. (Cham,
Switzerland: Springer), pp. 43-53.
Shahzad, A. N., Pitann, B., Ali, H., Qayyum, M. F., Fatima, A., &
Bakhat, H. F. (2015). Maize genotypes differing in salt resistance vary
in jasmonic acid accumulation during the first phase of salt stress.Journal of Agronomy and Crop Science 201, 443-451.
Shahzad, R., Waqas, M., Khan, A. L., Hamayun, M., Kang, S. M., & Lee,
I. J. (2015). Foliar application of methyl jasmonate induced
physio-hormonal changes in Pisum sativum under diverse
temperature regimes. Plant Physiology and Biochemistry 96,
406-416.
Shaki, F., Maboud, H. E., & Niknam, V. (2019). Effects of salicylic
acid on hormonal cross talk, fatty acids profile, and ions homeostasis
from salt-stressed safflower. Journal of Plant Interactions 14,
340-346.
Sharma, A., Kumar, V., Yuan, H., Kanwar, M. K., Bhardwaj, R., Thukral,
A. K., & Zheng, B. (2018). Jasmonic acid observed treatment stimulates
insecticide detoxification in Brassica juncea L. Frontiers
in Plant Science 9, 1609.
Shi, L., Guo, M. M., Ye, N. H., Liu, Y. G., Liu, R., Xia, Y. J., Cui, S.
X., & Zhang, J. H. (2015). Reduced ABA accumulation in the root system
is caused by ABA exudation in upland rice (Oryza sativa L. var.
Gaoshan 1) and this enhanced drought adaptation. Plant& Cell
Physiology 56, 951-964.
Shu, S., Yuan, Y., Chen, J., Sun, J., Zhang, W., Tang, Y., Zhong, M., &
Guo, S. (2015). The role of putrescine in the regulation of proteins and
fatty acids of thylakoid membranes under salt stress. Scientific
Reports 5, 14390.
Siddiqi, K. S., & Husen, A. (2019). Plant response to jasmonates:
current developments and their role in changing environment.Bulletin of the National Research Centre 43, 153.
Singha, K. T., Sreeharsha, R. V., Marriboina, S., & Attipalli, R. R.
(2019). Dynamics of metabolites and key regulatory proteins in the
developing seeds of Pongamia pinnata, a potential biofuel tree
species. Industrial Crops and Products 140, 111621.
Skorupa, M., Gołębiewski, M., Kurnik, K., Niedojadło, J., Kęsy, J.,
Klamkowski, K., Wójcik, K., Treder, W., Tretyn, A., & Tyburski, J.
(2019). Salt stress vs. salt shock the case of carbohydrate beet and its
halophytic ancestor. BMC Plant Biology 19, 57.
Slama, I., Abdell, C., Bouchereau, A., Flowers, T., & Savoure, A.
(2015). Diversity, distribution and roles of osmoprotective compounds
accumulated in halophytes under abiotic stress. Annals of Botany115, 433-447.
Spiess, G. M., Hausman, A., Yu, P., Cohen, J. D., Rampey, R. A., &
Zolman, B. K. (2014). Auxin input pathway disruptions are mitigated by
changes in auxin biosynthetic gene expression in Arabidopsis .Plant Physiology 165, 1092-1104.
Sreeharsha, R. V., Shalini, M., Singha, K. T., & Attipalli, R. R.
(2016). Unravelling molecular mechanisms from floral initiation to lipid
biosynthesis in a promising biofuel tree species, Pongamia
pinnata using transcriptome analysis. Scientific Reports 6,
34315.
Tavallali, V., & Karimi, S. (2019). Methyl jasmonate enhances salt
tolerance of almond rootstocks by regulating endogenous phytohormones,
antioxidant activity and gas exchange. Journal of Plant
Physiology 234-235, 98-105.
Thor, K. (2019). Calcium-nutrient and messenger. Frontiers in
Plant Science 10, 440.
Tognetti, V. B., Aken, O. V., Morreel, K., Vandenbroucke, K., van de
Cotte, B., De Clercq, I., Chiwocha, S., Fenske, R., Prinsen, E.,
Boerjan, W., Genty, B., Stubbs, K. A., Inzé, D., & Breusegem, F. V.
(2010). Perturbation of indole-3-butyric acid homeostasis by the
UDP-glucosyltransferase UGT74E2 modulates Arabidopsisarchitecture and water stress tolerance. Plant Cell 22,
2660-2679.
Tuteja, N. (2007). Abscisic ccid and abiotic stress signaling.Plant Signaling & Behavior 2, 135-138.
Uddin, M. R., Thwe, A. A., Kim, Y. B., Park, W. T., Chae, S. C., &
Park, S. U. (2013). Effects of jasmonates on sorgoleone accumulation and
expression of genes for sorgoleone biosynthesis in sorghum roots.Journal of Chemical Ecology 39, 712-722.
Ueda, J., & Kato, J. (1982). Inhibition of cytokinin-induced plant
growth by jasmonic acid and its methylester. Physiologia
Plantarum 54, 249-252.
Wang, F., Guo, Z., Li, H., Wang, M., Onac, E., Zhou, J., Xia, X., Shi,
K., Yu, J., & Zhou, Y. (2016). Phytochrome A and B function
antagonistically to regulate cold tolerance via abscisic acid-dependent
jasmonate signaling. Plant Physiology 170, 459-471.
Wang, J., Song, Li., Gong, X., Xu, J., & Li, M. (2020). Functions of
jasmonic acid in plant regulation and response to abiotic stress.International Journal of Molecular Sciences 21, 1446.
Wang, Y. F., Munemasa, S., Nishimura, N., Ren, H. M., Robert, N., Han,
M., Puzorjova, I., Kollist, H., Lee, S., Mori, I., & Schroeder, J. I.
(2013). Identification of cyclic GMP-activated nonselective
Ca2+ permeable cation channels and associated CNGC5
and CNGC6 genes in Arabidopsis guard cells. Plant
Physiology 163, 578-590.
Wei, P., Wang, L., Liu, A., Yu, B., & Lam, H. M. (2016). GmCLC1confers enhanced salt tolerance through regulating chloride accumulation
in soybean. Frontiers in Plant Science 25, 1082.
Wu, H. (2018). Plant salt tolerance and Na+ sensing
and transport. The Crop Journal 6, 215-225.
Wu, H., Shabala, L., Azzarello, E., Huang, Y., Pandolfi, C., Su, N., Wu,
Q., Cai, S., Bazihizina, N., Wang, L., Zhou, M., Mancuso, S., Chen, Z.,
& Shabala, S. (2018). Na+ extrusion from the cytosol
and tissue-specific Na+ sequestration in roots confer
differential salt stress tolerance between durum and bread wheat.Journal of Experimental Botany 69, 3987-4001.
Wu, X., He, J., Chen, J., Yang, S., & Zha, D. (2014). Alleviation of
exogenous 6-benzyladenine on two genotypes of eggplant (Solanum
melongena Mill.) growth under salt stress. Protoplasma 251,
169-176.
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The
roles of environmental factors in regulation of oxidative stress in
plant. BioMed Research International 2019, 9732325.
Xu, L., Zhao, H., Ruan, W., Deng, M., Wang, F., Peng, J., Luo, J., Chen,
Z., & Yi, K. (2017). ABNORMAL INFLORESCENCE MERISTEM1 functions in
salicylic acid biosynthesis to maintain proper reactive oxygen species
levels for root meristem activity in rice. Plant Cell 29,
560-574.
Yang, C. Y., Liang, Y. B., Qiu, D. W., Zeng, H. M., Yuan, J. J., &
Yang, X. F. (2018). Lignin metabolism involves Botrytis cinereaBcG1-induced defense response in tomato. BMC Plant Biology 18,
103.
Yang, T., Lv, R., Li, J., Lin, H., & Xi, D. (2018). Phytochrome A and B
negatively regulate salt stress tolerance of Nicotiana tobacumvia ABA-jasmonic acid synergistic cross-talk. Plant & Cell
Physiology 59, 2381-2393.
Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms
mediating plant salt-stress responses. New Phytologist 217,
523-539.
Yang, Y., Qi, M., & Mei, C. (2004). Endogenous salicylic acid protects
rice plants from oxidative damage caused by aging as well as biotic and
abiotic stress. Plant Journal 40, 909-919.
Yong, H. Y., Zou, Z., Kok, E. P., Kwan, B. H., Chow, K., Nasu, S.,
Nanzyo, M., Kitashiba, H., & Nishio, T. (2014). Comparative
transcriptome analysis of leaves and roots in response to sudden
increase in salinity in Brassica napus by RNA-seq. BioMed
Research International 2014, 467395.
Zelm, E. V., Zhang, Y., & Testerink, C. (2020). Salt tolerance
mechanisms of plants. Annual Review of Plant Biology 71,
24.1-24.31.
Zhang, M., Cao, Y., Wang, Z., Wang, Z. Q., Shi, J., Liang, X., Song, W.,
Chen, Q., Lai, J., & Jiang, C. (2018). A retrotransposon in an HKT1
family sodium transporter causes variation of leaf Na+exclusion and salt tolerance in maize. New Phytologist 217,
1161-1176.
Zhang, Z., Mao, C., Shi, Z., & Kou, X. (2017). The amino acid metabolic
and carbohydrate metabolic pathway play important roles during
salt-stress response in tomato. Frontiers in Plant Science 8,
1231.
Zhao, C., Zayed, O., Zeng, F., Liu, C., Zhang, L., Zhu, P., Hsu, C. C.,
Tuncil, Y. E., Tao, W. A., Carpita, N. C., & Zhu, J. K. (2019).
Arabinose biosynthesis is critical for salt stress tolerance inArabidopsis . New Phytologist 224, 274-290.
Zhao, Q., Tobimatsu, Y., Zhou, R., Pattathil, S., Gallego-Giraldo, L.,
Fu, C., Jackson, L.A., Hahn, M. G., Kim, H., Chen, F., Ralph, J., &
Dixon, R. A. (2013). Loss of function of cinnamyl alcohol dehydrogenase
1 leads to unconventional lignin and a temperature-sensitive growth
defect in Medicago truncatula . Proceedings of the National
Academy of Sciences of the United States of America 110, 13660-13665.