REFERENCES
Abdallaha, M. M. S., Abdelgawad, Z. A., & El-Bassiounya, H. M. S. (2016). Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South African Journal of Botany103, 275-282.
AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., & Abuelsoud, W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize plants organs. Frontiers in Plant Science 7, 276.
Abebe, T., Guenzi, A. C., Martin, B., & Cushman, J. C. (2003). Tolerance of mannitol accumulating transgenic wheat to water stress and salinity. Plant Physiology 131, 1748-1755.
AlHassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima.AoB Plants 9, plx009.
Ali, A., Raddatz, N., Aman, R., Kim, S., Park, H. C., Jan, M., & Bressan, R. A. (2016). A single amino acid substitution in the sodium transporter HKT1 associated with plant salt tolerance. Plant Physiology 171, 2112-2126.
Ali, M. F., & Baek, K. H. (2020). Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences 21, 621.
An, D., Chen, J. G., Gao, Y. Q., Li, X., Chao, Z. F., Chen, Z. R., Li, Q. Q., Han, M. L., Wang, Y. L., Wang, Y. F., & Chao, D. Y. (2017).AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content. PLoS Genetics 13, e1007086.
Anower, M. R., Peel, M. D., Mott, I. W., & Wu, Y. (2017). Physiological process associated with salinity tolerance in an alfalfa half-sib family. Journal of Agronomy and Crop Science 203, 506-518.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris . Plant Physiology 24, 1-15.
Assaha, D. V., Ueda, A., Saneoka, H., Al‐Yahyai, R., & Yaish, M. W. (2017). The role of Na+ and K+transporters in salt stress adaptation in glycophytes. Frontiers in Physiology 8, 509.
Atikij, T., Syaputri, Y., Iwahashi, H., Praneenararat, T., Sirisattha, S., Kageyama, H., & Sirisattha, R. W. (2019). Enhanced lipid production and molecular dynamics under salinity stress in green microalgaChlamydomonas reinhardtii (137C). Marine Drugs 17, 484.
Baetz, U., Eisenach, C., Tohge, T., Martinoia, E., & De-Angeli, A. (2016). Vacuolar chloride fluxes impact ion content and distribution during early salinity stress. Plant Physiology 172, 1167-1181.
Bahieldin, A., Sabir, J. S. M., Ramadan, A., Alzohairy, A. M., Younis, R. A., Shokry, A. M., Gadalla, N. O., Edris, S., Hassan, S. M., Al-Kordy, M. A., Kamal, K. B. H., Rabah, S., Abuzinadah O. A., & El-Domyati, F. M. (2013). Control of glycerol biosynthesis under high salt stress in Arabidopsis . Functional Plant Biology 41, 87.
Bassil, E., Zhang, S., Gong, H., Tajima, H., & Blumwald, E. (2018). Cation specificity of vacuolar NHX-type cation/H+antiporters. Plant Physiology 179, 616-629.
Böhm, J., Messerer, M., Müller, H. M., Scholz-Starke, J., Gradogna, A., Scherzer, S., Maierhofer, T., Bazihizina, N., Zhang, H., Stigloher, C., Ache, P., Al-Rasheid, K. A. S., Mayer, K. F. X., Shabala, S., Carpaneto, A., Haberer, G., Zhu, J. K., & Hedrich, R. (2018). Understanding the molecular basis of salt sequestration in epidermal bladder cells ofChenopodium quinoa . Current Biology 28, 3075-3085.
Boyle, P. C., Schwizer, S., Hind, S. R., Kraus, C. M., De la Torre Diaz, S., He, B., & Martin, G. B. (2016). Detecting N-myristoylation and S-acylation of host and pathogen proteins in plants using click chemistry. Plant Methods 12, 38.
Cai, Q., Yuan, Z., Chen, M., Yin, C., Luo, Z., Zhao, X., Liang, W., Hu, J., & Zhang, D. (2014). Jasmonic acid regulates spikelet development in rice. Nature Communications 5, 3476.
Cao, D., Lutz, A., Hill, C. B., Callahan, D. L., & Roessner, U. (2017). A quantitative profiling method of phytohormones and other metabolites applied to barley roots subjected to salinity stress. Frontiers in Plant Science 7, 2070.
Cao, J., Li, M., Chen, J., Liu, P., & Li, Z. (2016). Effects of MeJA onArabidopsis metabolome under endogenous JA deficiency.Scientific Reports 6, 37674.
Chen, X., Wang, H., Li, X., Ma, K., Zhan, Y., & Zeng, F. (2019). Molecular cloning and functional analysis of 4-coumarate:CoA ligase 4(4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biology 19, 231.
Che-Othman, M. H., Jacoby, R. P., Millar, A. H., & Taylor, N. L. (2019). Wheat mitochondrial respiration shifts from the TCA cycle to the GABA shunt under salt stress. New Phytologist 225, 1166-1180.
Choi, W. G., Toyota, M., Kim, S. H., Hilleary, R., & Gilroy, S. (2014). Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signalling in plants.Proceedings of the National Academy of Sciences of the United States of America 111, 6497-6502.
Conde, A., Regalado, A., Rodrigues, D., Costa, J. M., Blumwald, E., & Chaves, M. M. (2015). Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. Journal of Experimental Botany 66, 889-906.
Corso, M., Doccula, F. G., de Melo, J. R. F., Costa, A., & Verbruggen, N. (2018). Endoplasmic reticulum-localized CCX2 is required for osmotolerance by regulating ER and cytosolic Ca2+dynamics in Arabidopsis . Proceedings of the National Academy of Sciences of the United States of America 115, 3966-3971.
Davenport, R. J., Muñoz-Mayor, A., Jha, D., Essah, P. A., Rus, A., & Tester, M. (2007). The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem inArabidopsis . Plant Cell & Environment 30, 497-507.
Devinar, G., Llanes, A., Masciarelli, O., & Luna, V. (2013). Different relative humidity conditions combined with chloride and sulfate salinity treatments modify abscisic acid and salicylic acid levels in the halophyte Prosopis strombulifera . Plant Growth Regulation70, 247-256.
Diallo, A. O., Agharbaoui, Z., Badawi, M. A., Ali-Benali, M. A., Moheb, A., Houde, M., & Sarhan, F. (2014). Transcriptome analysis of anmvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.Journal of Experimental Botany 65, 2271-2286.
Dragwidge, J. M., Ford, B. A., Ashnest, J. R., Das, P., & Gendall, A. R. (2018). Two endosomal NHX-type Na+/H+ antiporters are involved in auxin mediated development in Arabidopsis thaliana . Plant & Cell Physiology 59, 1660-1669.
Dumschott, K., Dechorgnat, J., & Merchant, A. (2019). Water deficit elicits a transcriptional response of genes governing D-pinitol biosynthesis in soybean (Glycine max ). International Journal of Molecular Sciences 20, 2411.
Fahad, S., Nie, L., Chen, Y., Wu, C., Xiong, D., Saud, S., Hongyan, L., Cui, K., & Huang, J. (2015). Crop plant hormones and environmental stress. Sustainable Agriculture Reviews 15, 371-400.
Falhof, J., Pedersen, J. T., Fuglsang, A. T., & Palmgren, M. (2016). Plasma membrane H+-ATPase regulation in the center of plant physiology. Molecular Plant 9, 323-337.
Fattorini, L., Hause, B., Gutierrez, L., Veloccia, A., Rovere, F. D., Piacentini, D., Falasca, G., & Altamura, M. M. (2018). Jasmonate promotes auxin-induced adventitious rooting in dark-grownArabidopsis thaliana plants and stem thin cell layers by a cross-talk with ethylene signaling and a modulation of xylogenesis.BMC Plant Biology 18, 182.
Felle, H. H., Hermann, A., Hückelhoven, R., & Kogel, K. H. (2005). Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare ).Protoplasma 227, 17-24.
Formentin, E., Barizza, E., Stevanato, P., Falda, M., Massa, F., Tarkowskà, D., Novak, O., & Lo Schiavo, F. (2018). Fast regulation of hormone metabolism contributes to salt tolerance in rice (Oryzasativa spp. Japonica, L.) by inducing specific morpho-physiological responses. Plants (Basel) 7, 75.
Fukuda, A., & Tanaka, Y. (2006). Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter in barley.Plant Physiology and Biochemistry 44, 351-358.
Gao, R., Duan, K., Guo, G., Du, Z., Chen, Z., Li, L., He, T., Lu, R., & Huang, J. (2013). Comparative transcriptional profiling of two contrasting barley genotypes under salinity stress during the seedling stage. International Journal of Genomics 139, 822-835.
Geilfus, C. M., Tenhaken, R., & Carpentier, S. C. (2017). Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride-salinity in corn leaves. Journal of Biological Chemistry 292, 18800-18813.
Ghanem, M. E., Albacete, A., Smigocki, A. C., Frébort, I., Pospíšilová, H., Martínez‐Andújar, C., Acosta, M., Sánchez-Bravo, J., Lutts, S., Dodd, I. C., & Pérez-Alfocea, F. (2011). Root‐synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany 62, 125-140.
Gharbi, E., Lutts, S. Dailly, H., & Quinet, M. (2018). Comparison between the impacts of two different modes of salicylic acid application on tomato (Solanum lycopersicum ) responses to salinity.Plant Signaling & Behavior 13, e146936.
Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., Fernie, A. R., Lahaye, M., Rothan, C., & Baldet, P. (2009). GDP-D-mannose 3, 5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant Journal 60, 499-508.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.Plant Physiology and Biochemistry 48, 909-930.
Golan, Y., Shirron, N., Avni, A., Shmoish, M., & Gepstein, S. (2016). Cytokinins induce transcriptional reprograming and improve Arabidopsis plant performance under drought and salt stress conditions.Frontiers in Environmental Science 4, 63.
Gonzalez, P., Syvertsen, J. P., & Etxeberria, E. (2012). Sodium distribution in salt-stressed citrus root stock plants.Horticultural Science 47, 1504-1511.
Graus, D., Konrad, K. R., Bemm, F., Patir-Nebioglu, M. G., Lorey, C., Duscha, K., Güthoff, T., Herrmann, J., Ferjani, A., Cuin, T. A., Roelfsema, M. R. G., Schumacher, K., Neuhaus, H. E., Marten, I., & Hedrich, R. (2018). High V-PPase activity is beneficial under high salt loads, but detrimental without salinity. New Phytologist 219, 1421-1432.
Guan, R., Qu, Y., Guo, Y., Yu, L., Liu, Y., Jiang, J., Chen, J., Ren, Y., Liu, G., Tian, L., Jin, L., Liu, Z., Hong, H., Chang, R., Gilliham, M., & Qiu, L. (2014). Salinity tolerance in soybean is modulated by natural variation in GmSALT3 . Plant Journal 80, 937-950.
Guo, M., Lu, J. P., Zhai, Y. F., Chai, W. G., Gong, Z. H., & Lu, M. H. (2015). Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterization of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biology 15, 151.
Gupta, A., Hisano, H., Hojo, Y., Matsuura, T., Ikeda, Y., Mori, I. C., & Senthil-Kumar, M. (2017). Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Scientific Reports 7, 4017.
Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science 7, 1787.
Hill, C. B., Jha, D., Bacic, A., Tester, M., & Roessner, U. (2013). Characterization of ion contents and metabolic responses to salt stress of different Arabidopsis AtHKT1;1 genotypes and their parental strains. Molecular Plant 6, 350-368.
Hossain, M. S., Persicke, M., ElSayed, A. I., Kalinowski, J., & Dietz, K.J. (2017). Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in carbohydrate beet. Journal of Experimental Botany 68, 5961-5976.
Huang, J., Lu, X., Yan, H., Chen, S., Zhang, W., Huang, R., & Zheng Y. (2012). Transcriptome characterization and sequencing-based identification of salt responsive genes in Millettia pinnata , a semi-mangrove plant. DNA Research 19, 195-207.
Husen, A., Iqbal, M., Sohrab, S. S., & Ansari, M. K. A. (2018). Salicylic acid alleviates salinity caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinataa . Br.). Agriculture & Food Security 7, 44.
Igamberdiev, A. U., & Kleczkowski, L. A. (2018). The glycerate and phosphorylated pathways of serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism. Frontiers in Plant Science 9, 318.
Ishimaru, Y., Hayashi, K., Suzuki, T., Fukaki, H., Prusinska, J., Meester, C., Quareshy, M., Egoshi, S., Matsuura, H., Takahashi, K., Kato, N., Kombrink, E., Napier, R. M., Hayashi, K. I., & Uedaa, M. (2018). Jasmonic acid inhibits auxin-induced lateral rooting independently of the CORONATINE INSENSITIVE1 receptor. Plant Physiology 177, 1704-1716.
Jang, G., Chang, S. H., Um, T. Y., Lee, S., Kim, J. K., & Do Choi, Y. (2017). Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Scientific Reports 7, 10212.
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsisby restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany 64, 2255-2268.
Kang, D. J., Seo, Y. J., Lee, J. D., Ishii, R., Kim, K. U., Shin, D. H., Park, S. K., Jang, S. W., & Lee, I. J. (2005). Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars.Journal of Agronomy and Crop Science 191, 273-282.
Kim, B. H., Kim, S. Y., & Nam, K. H. (2012). Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Molecules and Cells 34, 539-548.
Kim, J. I., Baek, D., Park, H. C., Chun, H. J., Oh, D. H., Lee, M. K., Cha, J. Y., Kim, W. Y., Kim, M. C., Chung, W. S., Bohnert, H. J., LeeS. Y., Bressan, R. A., Lee, S. W., & Yun D. J. (2012). Overexpression ofArabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Molecular Plant 6, 337-349.
Korkmaz, D. (2001). Precipitation titration: “determination of chloride by the Mohr method”. Methods 2, 4.
Lee, B. R., Kim, K. Y., Jung, W. J., Avice, J. C., Ourry, A., & Kim, T. H. (2007). Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifoliumrepens L.).Journal of Experimental Botany 58, 1271-1271.
Li, Q., Zheng, J., Li, S., Huang, G., Skilling, S. J., Wang, L., Li, L., Li, M., Yuan, L., & Liu, P. (2017). Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signalling.Molecular Plant 10, 695-708.
Li, Z., Wang, X., Chen, J., Gao, J., Zhou, X., & Kuai, B. (2016). CCX1, a putative Cation/Ca2+ exchanger, participates in regulation of reactive oxygen species homeostasis and leaf senescence.Plant & Cell Physiology 57, 2611-2619.
Liu, J., Gao, F., Ren, J., Lu, X., Ren, G., & Wang, R. (2017). A novel AP2/ERF transcription factor CR1 regulates the accumulation of vindoline and serpentine in Catharanthus roseus . Frontiers in Plant Science 8, 2082.
Liu, Q., Luo, L., & Zheng, L. (2018). Lignins: biosynthesis and biological functions in plants. International Journal of Molecular Sciences 19, 335.
Liu, Y. D., Yin, Z. J., Yu, J. W., LI, J., Wei, H. L., Han, X. L., & Shen, F. F. (2012). Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene.Biologia Plantarum 56, 237-246.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.
Lombardo, V. A., Osorio, S., Borsani, J., Lauxmann, M. A., Bustamante, C. A., Budde, C. O., Andreo, C. S., Lara, M. V., Fernie, A. R., & Drincovich, M. F. (2011). Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiology 157, 1969-1710.
Majeran, W., Le Caer J. P., Ponnala, L., Meinnel, T., & Giglione, C. (2018). Targeted profiling of Arabidopsis thaliana sub-proteomes illuminates co- and posttranslationally N-Terminal myristoylated proteins. Plant Cell 30, 543-562.
Marriboina, S., & Attipalli, R. R. (2020a). Hydrophobic cell-wall barriers and vacuolar sequestration of Na+ ions are the key mechanisms conferring high salinity tolerance in a biofuel tree species Pongamia pinnata L. pierre. Environmental and Experimental Botany 171, 103949.
Marriboina, S., & Attipalli, R. R. (2020b). Optimization of hydroponic growth system and Na+-fluorescence measurements for tree species Pongamia pinnata (L.) pierre.MethodsX 7, 100809.
Marriboina, S., Sengupta, D., Kumar, S., & Attipalli, R. R. (2017). Physiological and molecular insights into the high salinity tolerance ofPongamia pinnata (L.) pierre, a potential biofuel tree species.Plant Science 258, 102-111.
Maury, S., Sow, M. D., Le-Gac, A. L., Genitoni, J., Lafon-Placette, C., & Mozgova, I. (2019). Phytohormone and chromatin crosstalk: The missing link for developmental plasticity?. Frontiers in Plant Science10, 395.
Md-Hossain, S. (2019). Present scenario of global salt affected soils, its management and importance of salinity research. International Research Journal of Biological Sciences 1, 1-3.
Melo, Y. L., Dantas, C. V. S., Melo, Y. L., Maia, J. M., & De-Macêdo, C. E. C. (2016). Changes in osmotic and ionic indicators inAnanascomosus (L.) cv. MD gold pre-treated with phytohormones and submitted to saline medium. The Revista Brasileira de Fruticultura 39, e-155.
Mitra, S., & Baldwin, I. T. (2014). RuBPCase activase (RCA) mediates growth-defense trade-offs: silencing RCA redirects jasmonic acid (JA) flux from JA-isoleucine to methyl jasmonate (MeJA) to attenuate induced defense responses in Nicotiana attenuata . New Phytologist201, 1385-1395.
Mohamed, I. H., & Latif, H. H. (2017). Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiology and Molecular Biology of Plants 23, 545-556.
Moing, A., Aharoni, A., Biais, B., Rogachev, I., Meir, S., Brodsky, L., Allwood, J. W., Erban, A., Dunn, W. B., Kay, L., de Koning, S., de Vos, R. C. H., Jonker, H., Mumm, Roland., Deborde, C., Maucourt, M., Bernillon, S., Gibon, Y., Hansen, T. H., Husted, S., Goodacre, R., Kopka, J., Schjoerring, J. K., Rolin, D., & Hall, R. D. (2011). Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist 190, 683-696.
Morton, M. J. L., Awlia, M., Al-Tamimi, N., Saade, S., Pailles, Y., Negrão, S., & Tester, M. (2019). Salt stress under the scalpel-dissecting the genetics of salt tolerance. Plant Journal97, 148-163.
Munemasa, S., Hossain, M. A., Nakamura, Y., Mori, I. C., & Murata, Y. (2011). The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiology 155, 553-561.
Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C., Byrt, C. S., Hare R. A., Tyerman, S. D., Tester, M., Plett, D., & Gilliham, M. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology 30, 360-364.
Munns, R., Wallace, P. A., Teakle, N. L., & Colmer, T. D. (2010). Measuring soluble ion concentrations (Na+, K+, Cl-) in salt-treated plants, R. Sunkar, eds. Plant stress tolerance. Methods in molecular biology . (Springer protocols, Berlin: Humana Press), pp. 371-382.
Naliwajski, M. R., & Skłodowska. M. (2018). The relationship between carbon and nitrogen metabolism in cucumber leaves acclimated to salt stress. Peer J 6, e6043.
Nasir, F. A., Batarseh, M., Abdel-Ghani, A. H., & Jiries, A. (2010). Free amino acids content in some halophytes under salinity stress in arid environment. Jordan. Clean Soil Air Water 38, 592-600.
Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D. T., Kojima, M., Werner, T., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Kakimoto, T., Sakakibara, H., Schmülling, T., & Tran, L. S. P. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23, 2169-2183.
Nitschke, S., Cortleven, A., Iven, T., Feussner, I., Havaux, M., Riefler, M., & Schmülling, T. (2016). Circadian stress regimes affect the circadian clock and cause jasmonic acid-dependent cell death in cytokinin-deficient Arabidopsis plants. Plant Cell 28, 1616-1639.
Olfatmiri, H., Alemzadeh, A., & Zakipour, Z. (2014). Up-regulation of plasma membrane H+-ATPase under salt stress may enableAeluropus littoralis to cope with stress. Molecular Biology Research Communications 3, 67-75.
Pan, X., Welti, R., & Wang, X. (2010). Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols 5, 986-992.
Peng, Z., He, S. P., Sun, J. L., Pan, Z. E., Gong, W. F., Lu, Y. L., & Du, X. M. (2016). Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum ) plants. Scientific Reports 6, 34548.
Qi, X., Li, M. W., Xie, M., Liu, X., Ni, M., Shao, G., Song, C., Yim, A. K. Y., Tao, Y., Wong, F. L., Isobe, S., Wong, C. F., Wong, K. S., Xu, C., Li, C., Wang, Y., Guan, R., Sun, F., Fan, G., Xiao, Z., Zhou, F., Phang, T. H., Liu, X., Tong, S. W., Chan, T. F., Yiu, S. M., Tabata, S., Wang, J., Xu, X., & Lam, H. M. (2014). Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications 5, 4340.
Quinn, L. D., Straker, K. C., Guo, J., Kim, S., Santanu, T., Kling, G., Lee, D. K., & Voigt, T. B. (2015). Stress-tolerant feedstocks for sustainable bioenergy production on marginal land. Bioenergy Research 8, 1081-1100.
Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effect of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks.Plant Environment Interactions 13, 73-82.
Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 8, 39.
Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161, 1189-1202.
Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal 23, 131-142.
Saand, M. A., Xu, Y. P., Munyampundu, J. P., Li, W., Zhang, X. R., & Cai, X. Z. (2015). Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs. DNA Research 22, 471-483.
Sahoo, R. K., Ansari, M. W., Tuteja, R., & Tuteja, N. (2014). OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice 7, 17.
Sakamoto, T., & Murata, N. (2002). Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress.Current Opinion in Microbiology 5, 208-210.
Saleh, L., & Plieth, C. (2013). A9C sensitive Cl-accumulation in A. thaliana root cells during salt stress is controlled by internal and external calcium. Plant Signaling & Behavior 8, e24259.
Samuel, S., Scott, P. T., & Gresshoff, P. M. (2013). Nodulation in the legume biofuel feedstock tree Pongamia pinnata .Agricultural Research 2, 207-214.
Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A non-targeted approach unravels the volatile network in peach fruit. PLoS One 7, e38992.
Seifikalhor, M., Aliniaeifard, S., Hassani, B., Niknam, V., & Lastochkina, O. (2019). Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Reports 38, 847-867.
Shabala, L., Zhang, J., Pottosin, I., Bose, J., Zhu, M., Fuglsang, A. T., Buendia, A. V., Massart, A., Hill, C. B., Roessner, U., Bacic A., Wu, H., Azzarello, E., Pandolfi, C., Zhou, M., Poschenrieder, C., Mancuso, S., & Shabala, S. (2016). Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare ) to salinity stress. Plant Physiology172, 2445-2458.
Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, Zaman M., Shahid, S. A., & Heng, L. eds. (Cham, Switzerland: Springer), pp. 43-53.
Shahzad, A. N., Pitann, B., Ali, H., Qayyum, M. F., Fatima, A., & Bakhat, H. F. (2015). Maize genotypes differing in salt resistance vary in jasmonic acid accumulation during the first phase of salt stress.Journal of Agronomy and Crop Science 201, 443-451.
Shahzad, R., Waqas, M., Khan, A. L., Hamayun, M., Kang, S. M., & Lee, I. J. (2015). Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes. Plant Physiology and Biochemistry 96, 406-416.
Shaki, F., Maboud, H. E., & Niknam, V. (2019). Effects of salicylic acid on hormonal cross talk, fatty acids profile, and ions homeostasis from salt-stressed safflower. Journal of Plant Interactions 14, 340-346.
Sharma, A., Kumar, V., Yuan, H., Kanwar, M. K., Bhardwaj, R., Thukral, A. K., & Zheng, B. (2018). Jasmonic acid observed treatment stimulates insecticide detoxification in Brassica juncea L. Frontiers in Plant Science 9, 1609.
Shi, L., Guo, M. M., Ye, N. H., Liu, Y. G., Liu, R., Xia, Y. J., Cui, S. X., & Zhang, J. H. (2015). Reduced ABA accumulation in the root system is caused by ABA exudation in upland rice (Oryza sativa L. var. Gaoshan 1) and this enhanced drought adaptation. Plant& Cell Physiology 56, 951-964.
Shu, S., Yuan, Y., Chen, J., Sun, J., Zhang, W., Tang, Y., Zhong, M., & Guo, S. (2015). The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Scientific Reports 5, 14390.
Siddiqi, K. S., & Husen, A. (2019). Plant response to jasmonates: current developments and their role in changing environment.Bulletin of the National Research Centre 43, 153.
Singha, K. T., Sreeharsha, R. V., Marriboina, S., & Attipalli, R. R. (2019). Dynamics of metabolites and key regulatory proteins in the developing seeds of Pongamia pinnata, a potential biofuel tree species. Industrial Crops and Products 140, 111621.
Skorupa, M., Gołębiewski, M., Kurnik, K., Niedojadło, J., Kęsy, J., Klamkowski, K., Wójcik, K., Treder, W., Tretyn, A., & Tyburski, J. (2019). Salt stress vs. salt shock the case of carbohydrate beet and its halophytic ancestor. BMC Plant Biology 19, 57.
Slama, I., Abdell, C., Bouchereau, A., Flowers, T., & Savoure, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany115, 433-447.
Spiess, G. M., Hausman, A., Yu, P., Cohen, J. D., Rampey, R. A., & Zolman, B. K. (2014). Auxin input pathway disruptions are mitigated by changes in auxin biosynthetic gene expression in Arabidopsis .Plant Physiology 165, 1092-1104.
Sreeharsha, R. V., Shalini, M., Singha, K. T., & Attipalli, R. R. (2016). Unravelling molecular mechanisms from floral initiation to lipid biosynthesis in a promising biofuel tree species, Pongamia pinnata using transcriptome analysis. Scientific Reports 6, 34315.
Tavallali, V., & Karimi, S. (2019). Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gas exchange. Journal of Plant Physiology 234-235, 98-105.
Thor, K. (2019). Calcium-nutrient and messenger. Frontiers in Plant Science 10, 440.
Tognetti, V. B., Aken, O. V., Morreel, K., Vandenbroucke, K., van de Cotte, B., De Clercq, I., Chiwocha, S., Fenske, R., Prinsen, E., Boerjan, W., Genty, B., Stubbs, K. A., Inzé, D., & Breusegem, F. V. (2010). Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsisarchitecture and water stress tolerance. Plant Cell 22, 2660-2679.
Tuteja, N. (2007). Abscisic ccid and abiotic stress signaling.Plant Signaling & Behavior 2, 135-138.
Uddin, M. R., Thwe, A. A., Kim, Y. B., Park, W. T., Chae, S. C., & Park, S. U. (2013). Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in sorghum roots.Journal of Chemical Ecology 39, 712-722.
Ueda, J., & Kato, J. (1982). Inhibition of cytokinin-induced plant growth by jasmonic acid and its methylester. Physiologia Plantarum 54, 249-252.
Wang, F., Guo, Z., Li, H., Wang, M., Onac, E., Zhou, J., Xia, X., Shi, K., Yu, J., & Zhou, Y. (2016). Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiology 170, 459-471.
Wang, J., Song, Li., Gong, X., Xu, J., & Li, M. (2020). Functions of jasmonic acid in plant regulation and response to abiotic stress.International Journal of Molecular Sciences 21, 1446.
Wang, Y. F., Munemasa, S., Nishimura, N., Ren, H. M., Robert, N., Han, M., Puzorjova, I., Kollist, H., Lee, S., Mori, I., & Schroeder, J. I. (2013). Identification of cyclic GMP-activated nonselective Ca2+ permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. Plant Physiology 163, 578-590.
Wei, P., Wang, L., Liu, A., Yu, B., & Lam, H. M. (2016). GmCLC1confers enhanced salt tolerance through regulating chloride accumulation in soybean. Frontiers in Plant Science 25, 1082.
Wu, H. (2018). Plant salt tolerance and Na+ sensing and transport. The Crop Journal 6, 215-225.
Wu, H., Shabala, L., Azzarello, E., Huang, Y., Pandolfi, C., Su, N., Wu, Q., Cai, S., Bazihizina, N., Wang, L., Zhou, M., Mancuso, S., Chen, Z., & Shabala, S. (2018). Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat.Journal of Experimental Botany 69, 3987-4001.
Wu, X., He, J., Chen, J., Yang, S., & Zha, D. (2014). Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma 251, 169-176.
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International 2019, 9732325.
Xu, L., Zhao, H., Ruan, W., Deng, M., Wang, F., Peng, J., Luo, J., Chen, Z., & Yi, K. (2017). ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice. Plant Cell 29, 560-574.
Yang, C. Y., Liang, Y. B., Qiu, D. W., Zeng, H. M., Yuan, J. J., & Yang, X. F. (2018). Lignin metabolism involves Botrytis cinereaBcG1-induced defense response in tomato. BMC Plant Biology 18, 103.
Yang, T., Lv, R., Li, J., Lin, H., & Xi, D. (2018). Phytochrome A and B negatively regulate salt stress tolerance of Nicotiana tobacumvia ABA-jasmonic acid synergistic cross-talk. Plant & Cell Physiology 59, 2381-2393.
Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist 217, 523-539.
Yang, Y., Qi, M., & Mei, C. (2004). Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant Journal 40, 909-919.
Yong, H. Y., Zou, Z., Kok, E. P., Kwan, B. H., Chow, K., Nasu, S., Nanzyo, M., Kitashiba, H., & Nishio, T. (2014). Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. BioMed Research International 2014, 467395.
Zelm, E. V., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71, 24.1-24.31.
Zhang, M., Cao, Y., Wang, Z., Wang, Z. Q., Shi, J., Liang, X., Song, W., Chen, Q., Lai, J., & Jiang, C. (2018). A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+exclusion and salt tolerance in maize. New Phytologist 217, 1161-1176.
Zhang, Z., Mao, C., Shi, Z., & Kou, X. (2017). The amino acid metabolic and carbohydrate metabolic pathway play important roles during salt-stress response in tomato. Frontiers in Plant Science 8, 1231.
Zhao, C., Zayed, O., Zeng, F., Liu, C., Zhang, L., Zhu, P., Hsu, C. C., Tuncil, Y. E., Tao, W. A., Carpita, N. C., & Zhu, J. K. (2019). Arabinose biosynthesis is critical for salt stress tolerance inArabidopsis . New Phytologist 224, 274-290.
Zhao, Q., Tobimatsu, Y., Zhou, R., Pattathil, S., Gallego-Giraldo, L., Fu, C., Jackson, L.A., Hahn, M. G., Kim, H., Chen, F., Ralph, J., & Dixon, R. A. (2013). Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula . Proceedings of the National Academy of Sciences of the United States of America 110, 13660-13665.