
Hands-on with IBM Visual Insights

Shirui Luo1 and Volodymyr Kindratenko1

1Affiliation not available

July 15, 2020

Introduction

Deep learning (DL) has emerged as a powerful tool to solve a variety of complex problems that have been
difficult to solve with traditional methods. However, domain experts attempting to apply DL methodology
have to learn to code in order to use it. Numerous frameworks have been developed, such as TensorFlow and
PyTorch, that simplify the task of building and training complex DL models, yet their efficient use requires
a good working knowledge of Python language. Consequently, a variety of tools have been developed that
provide easier to use DL models, ranging from the Keras API built on top of TensorFlow that still requires
coding, to tools such as H2O that provide a point-and-click web-based interface to configure and train pre-
built models. Among this new breed of tools, IBM Visual Insights (formerly IBM PowerAI Vision) (IBM
Visual Insights Version 1.2.0, n.d.) and Google’s AutoML Vision (Google Cloud AutoML, accessed July 9,
2020) have taken this concept further by providing a web-based graphical user interface (GUI) for configuring
and training a variety of models, as well as tools and APIs for deploying these models on a variety of
platforms. Both IBM Visual Insights and Google AutoML Vision implement complex workflows that
connect together many services and computational resources to deliver complex functionality that until
recently required a substantial coding effort. The functionality of these tools is still limited to just a few
pre-arranged models that work well only for specific problems. The users are also restricted to tweak only
some model parameters while leaving majority of the decisions to the computer. Yet these tools democratize
access to complex DL models and empower domain scientists to take advantage of this new methodology. In
this short article, we walk through an example of using IBM Visual Insights to train a DL model on a chest
X-ray image dataset. Google’s AutoML Vision’s applicability to medical problems has been discussed
in (Faes et al., 2019).

The System Architecture

IBM Visual Insights consists of hardware, resource management, deep learning computation, service man-
agement, and application service layers. The infrastructure layer includes the actual hardware needed to
run the tools, such as CPUs, GPUs, storage, and network. The resource management layer is responsible
for coordinating and scheduling all these resources to carry out a particular sequence of operations. The
deep learning calculation layer includes the implementation of actual DL algorithms as well as data process-
ing, model, and prediction modules. DL models implemented in this layer include GoogLeNet for image
classification, Faster R-CNN, tiny YOLO V2, Detectron, Single Shot Detector (SSD) for object detection,
and Structured Segment Network (SSN) for action detection. Custom models can also be imported. The
service management layer enables user project management via a graphical interface and the application
service layer is responsible for managing application-related services built on top of other layers.

IBM Visual Insights runs as a collection of pods in a Kubernetes environment (a pod is a group of containers

1



with shared storage and network resources that are created and managed together). The IBM Visual
Insights stand-alone deployment version 1.2.0 used here consists of 20 Docker images. These images are used
by pods that provide Kubernetes infrastructure to run the IBM Visual Insights and pods to run the actual
IBM Visual Insights applications.

Of course users do not need to be aware of these details, the entry point for them is just a web link to the
web-based GUI through which a model can be selected and trained. Once logged into the interface, the user
can upload data (images and videos, including annotated Common Objects in Context, or COCO, datasets),
label them, and train a model (classification, object detection, and action recognition models are currently
supported). The example application described below will walk step-by-step through the process of training
a classification model. Once the model is trained, it can be deployed for production use through a variety
of tools, including REST APIs and a mobile application.

For this article, our instance of IBM Visual Insights runs on an IBM 8335-GTH AC922 server (IBM Power
System AC922 Technical Overview and Introduction, n.d.). This is principally the same architecture used
in Summit and Sierra supercomputers. The server contains two 20-core 2.4 GHz IBM POWER9 CPUs, 256
GB DDR4 RAM, and four NVIDIA V100 GPUs with 16 GB HBM2 memory each. As of version 1.2.0, IBM
Visual Insights supports the x86 platform as well.

Example Application

We use classification of COVID-19 chest X-ray images as an example application to demonstrate the IBM
Visual Insights streamlined processes for image labeling, model training, and model deployment. With the
recent availability of annotated X-ray image datasets, good progress has been made using convolutional
neural networks (CNN) for medical diagnosis (Abbas et al., 2020), (Hassanien et al., 2020).The models can
detect the prominent pneumonia pattern of chest scans as a key COVID-19 indicator, but models applied in
these previous studies involve some advanced algorithms, such as transfer learning from other generic object
recognition tasks, which makes them less intuitive to deploy for subject matter experts with limited coding
and DL skills. In the following, we show how IBM Visual Insights helps train an advanced model relatively
easily, allowing domain experts to easily manage data and train models using a streamlined interface.

Importing the Dataset

The dataset used in this example is from a Github repository publicly released by Skytells (Cohen et al.,
2020). Figure 1 shows example scans from four categories of X-ray images. This dataset contains 860 nor-
mal, 60 COVID-19, 650 bacteria pneumonia, and 412 viral pneumonia images. All images are the same size
(400x300 pixels) and are stored in JPEG format. The dataset is imbalanced in the sense that the num-
ber of COVID-19 images is far less than images in other three categories. A good supplement is another
dataset (Cohen et al., 2020) that contains 660 COVID-19 and other viral and bacterial pneumonia cases
scraped from the web.

Figure 1: A sample of X-ray images from 4 categories.

2



Once the images are downloaded, the first step is to import them into the platform and assign proper
categories to each image. The images can be imported one category at a time and assigned labels (such as
covid19, bacterial, viral, and normal in our case). The interface for importing and categorizing images is
shown in Figure 2. Images with format JPEG, PNG, and DICOM are supported. The models used by IBM
Visual Insights have limitations on the size and resolution of images (1-2 megapixels). High-resolution images
need to be divided into smaller sub-images if they require fine details, or down-sampled if they have coherent
structural information that can not be divided. During the training, the images will be automatically scaled
to the appropriate dimensions for the model to use. For example, the 400x300 pixels images will be scaled to
meet the GoogLeNet requirement of 224x224 pixels.

Figure 2: The interface for importing and categorizing images.

Training the Model

Figure 3 shows the schematic representation of the model architecture for the classification of COVID-19
samples. The model includes two parts: 1) a pre-trained CNN model for feature extraction and 2) a fully-
connected network for classification. Under pre-trained models, users can bring their own TensorFlow-based
custom models or use system default models for different computer vision tasks (image classification, object
detection, and action detection). The default model for classification is GoogLeNet, which is a convolutional
neural network with 22 layers. Users have access to a pool of the GoogLeNet base models pre-trained on
various data sets (Link). These data sets include different categories of images for action, flower, food, land-
scape, scene, and vehicle. In this project, we loaded a GoogLeNet base model pre-trained on the ImageNet
dataset. Besides the many choices for pre-trained models, users can also change the model hyperparameters
in the Advanced settings. These hyperparameters include model features such as max iterations, learning
rate, weight decay, and so on. The dataset will be automatically split for internal validation of the model’s
performance during training; the default split is 80/20.

3

https://www.ibm.com/support/knowledgecenter/en/SSRU69_1.2.0/base/vision_base_models.html


Figure 3: Schematic representation of pre-trained models for the prediction of COVID-19 patients and
normal cases.

After the model is initiated, a progress bar will show how much time remains for the training to finish. Once
finalized, users have the option to check the model details, deploy the model, and export the model. The
model details include model hyperparameters, a plot of loss vs. iteration, and performance metrics results
as shown in Figure 4.

Figure 4: Screenshot from the IBM Visual Insights, (left) Loss vs Iteration during the training; (right)
model’s performance, the result is from a classifier for only two categories, viral and normal X-ray.

Model Performance

The very first model that we tried achieves an accuracy of 81% for differentiating COVID-19 X-ray images
from normal and two other respiratory infection cases. Specifically, the precision and recall for the COVID-19
category are 90.9% and 100%, meaning that the model performs very well when differentiating COVID-19
images from others. However, the model did considerably worse when differentiating images of viral and
bacterial pneumonia.

The first thing that is worth trying is data augmentation. A larger data set with more variety of representative
objects will train a more accurate model. The exact number of images and objects cannot be specified, but
some guidelines recommend as many as 1,000 representative images for each class. We mentioned previously
that the dataset is imbalanced with only 60 COVID-19 cases, thus we can add more COVID-19 images by
referring to other data sources. However, most of the time the dataset is indeed limited and obtaining more
images is either impossible or too difficult. Data augmentation can attenuate this challenge by artificially
generating more images while preserving the same pattern. The augmentation filters available in IBM Visual
Insights include blur, sharpen, vertical and horizontal flips, rotation with different angles, and noise. We

4



applied the vertical and horizontal flip and rotation with 90 degrees to augment our COVID-19 dataset,
thus increasing the number of cases from 60 to 480. The updated model achieves an overall accuracy of
84%, with precision and recall for the COVID-19 category are 95.4% and 98.8%. The results suggest that
DL with X-ray imaging may extract significant biomarkers related to the COVID-19 disease. Users can also
choose other base models and conduct the hyperparameter tuning to get a better model.

Deployment

After training the model can be deployed on an accelerator (such as GPU or Xilinx FPGA). An API
endpoint will be generated at the same time as deployment. When using the API, the smaller the confidence
threshold is specified, the more results are returned. For example, when specifying 0, all results will be
returned because there is no filter based on the confidence level of the model. A visualization in terms of a
heatmap is also presented in the results, as shown in Figure 5. The heatmap quantifies the “importance”
of individual pixels with respect to the classification decision. The heatmap shows that most “important”
pixels are near the lung regions, indicating that the model indeed extracts some significant biomarkers for
COVID-19 detection.

Figure 5: Deployed model API endpoint and results with a heatmap

In conclusion, we used an X-ray image classification example to show how IBM Visual Insights helps train
a DL model only with a few clicks, using a streamlined interface. The platform can manage datasets and

5



perform data augmentation. The platform offers useful built-in models that are already trained as a starting
point to reduce the time required to train models and improve trained results.

References

https://www.ibm.com/support/knowledgecenter/SSRU69_1.2.0/base/vision_pdf.pdf. https://www.

ibm.com/support/knowledgecenter/SSRU69_1.2.0/base/vision_pdf.pdf

(accessed July 9, 2020). https://cloud.google.com/automl/

Automated deep learning design for medical image classification by health-care professionals with no coding
experience: a feasibility study. (2019). The Lancet Digital Health, 1 (5), e232–e242. https://doi.org/

https://doi.org/10.1016/S2589-7500(19)30108-6

http://www.redbooks.ibm.com/abstracts/redp5494.html. http://www.redbooks.ibm.com/

abstracts/redp5494.html

Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. (2020).
https://doi.org/10.1101/2020.03.30.20047456

Automatic X-ray COVID-19 Lung Image Classification System based on Multi-Level Thresholding and Sup-
port Vector Machine. (2020). https://doi.org/10.1101/2020.03.30.20047787

COVID-19 image data collection. (2020). In arXiv 2003.11597. https://github.com/ieee8023/covid-

chestxray-dataset

COVID-19 Image Data Collection: Prospective Predictions Are the Future. (2020). In arXiv 2006.11988.
https://github.com/ieee8023/covid-chestxray-dataset

6

https://www.ibm.com/support/knowledgecenter/SSRU69_1.2.0/base/vision_pdf.pdf.
https://www.ibm.com/support/knowledgecenter/SSRU69_1.2.0/base/vision_pdf.pdf
https://www.ibm.com/support/knowledgecenter/SSRU69_1.2.0/base/vision_pdf.pdf
https://cloud.google.com/automl/
https://doi.org/https://doi.org/10.1016/S2589-7500(19)30108-6
https://doi.org/https://doi.org/10.1016/S2589-7500(19)30108-6
http://www.redbooks.ibm.com/abstracts/redp5494.html.
http://www.redbooks.ibm.com/abstracts/redp5494.html
http://www.redbooks.ibm.com/abstracts/redp5494.html
https://doi.org/10.1101/2020.03.30.20047456
https://doi.org/10.1101/2020.03.30.20047787
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset

